Mathematics Extension 2

1. (H.S.C. Q.4(a), '91)

The diagram is a sketch of the function $y=\mathrm{f}(\mathrm{x})$.
On separate diagrams sketch:
(i) $\quad y=-\mathrm{f}(\mathrm{x})$
(ii) $\quad y=|\mathrm{f}(\mathrm{x})|$
(iii) $\quad y=\mathrm{f}(|x|)$
(iv) $\quad y=\sin ^{-1}(\mathrm{f}(x))$
2. (H.S.C. Q.4(b), '92)

Let $\mathrm{f}(x)=\ln (1+x)-\ln (1-x)$ where $-1<x<1$.
(i) Show that $\mathrm{f}^{\prime}(x)>0$ for $-1<x<1$.
(ii) On the same diagram sketch

$$
y=\ln (1+x) \text { for } x>-1
$$

$$
\begin{array}{ll}
& y=\ln (1-x) \\
\text { and } x<1 \\
\text { and } \quad y=\mathrm{f}(x) & \text { for }-1<x<1 .
\end{array}
$$

Clearly label the three graphs.
(iii) Find an expression for the inverse function $y=\mathrm{f}^{-1}(x)$.
3. (H.S.C. Q.4(a), '93)

Let $\mathrm{f}(x)=\frac{1-x}{x}$. On separate diagrams sketch the graphs of the following functions. For each graph label any asymptote.
(i) $\mathrm{y}=\mathrm{f}(x)$
(ii) $\quad y=\mathrm{f}(|x|)$
(iii) $\mathrm{y}=\mathrm{e}^{\mathrm{f}(x)}$
(iv) $\mathrm{y}^{2}=\mathrm{f}(x)$

Discuss the behaviour of the curve of (iv) at $x=1$.
4. (a) Given that $\mathrm{f}(x)=x^{2}\left(x^{2}-1\right)(x-1)$, sketch the following on separate axes. (It is not necessary to locate turning points).
(i) $\mathrm{y}=\mathrm{f}(x)$
(ii) $\quad y=\mathrm{f}(|x|)$
(iii) $\quad y=|\mathrm{f}(\mathrm{x})|$
(iv) $\mathrm{y}^{2}=\mathrm{f}(x)$
(v) $\quad y . \mathrm{f}(x)=1$
(b) Sketch the curve $y=e^{x}(x-2)^{2}$, locating any intercepts, turning points, points of inflection and asymptotes.

Hence or otherwise, sketch $x^{2} e^{x+2}+y=0$ on the same axes.

