Course/Level

NSW Secondary High School Year 12 HSC Extension 2 Mathematics.

HSC TRIAL EXAMINATION

MATHEMATICS

Extension 2

Time allowed - Three hours

DIRECTIONS

- Attempt ALL questions
- EACH question is out of 15 marks
- All necessary working should be shown. Marks may be deducted for careless or poorly arranged work
- Start each question on a new page

QUESTION 1.

(a) (3 marks)

Find $\int \sin ^{3} x d x$
(b) (4 marks)

Using the substitution $t=\tan \left(\frac{\theta}{2}\right)$, or otherwise, show that

$$
\int_{0}^{\pi / 2} \frac{1}{1+\sin \theta} d \theta=1
$$

(c) (4 marks)

Evaluate $\int_{0}^{1} \tan ^{-1} x d x$
(d) (4 marks)
(i) Express

$$
\frac{3-x}{\left(1+2 x^{2}\right)(1+6 x)}
$$

in partial fractions.
(ii) Show that

$$
\int_{0}^{2} \frac{3-x}{\left(1+2 x^{2}\right)(1+6 x)} d x=\frac{1}{2} \ln \left(\frac{13}{3}\right)
$$

QUESTION 2.

(a) (3 marks)

Given that $(2+3 i) p-q=1+2 i$, find p and q if
(i) $\quad p$ and q are real
(ii) $\quad p$ and q are complex conjugate numbers
(b) (3 marks)

If $z=\cos \theta+i \sin \theta$, show that

$$
\frac{1}{1+z}=\frac{1}{2}\left(1-i \tan \frac{\theta}{2}\right)
$$

(c) (4 marks)
(i) On an Argand diagram, shade in the region for which

$$
0 \leq|z| \leq 2 \text { and } 1 \leq \operatorname{Im} z \leq 2
$$

(ii) Write down the complex number with largest argument that satisfies the inequalities of (i). Express your answer in the form $a+i b$.
(d) (5 marks)
(i) Find the two square roots of $5-12 i$ in the form $x+i y$ where x and y are real.
(ii) Show the points P and Q representing the square roots on an Argand diagram. Find the complex numbers represented by points R_{1}, R_{2} such that the triangles $P Q R_{1}$ and $P Q R_{2}$ are equilateral.

QUESTION 3.

(a) (5 marks)

The rate of change, with respect to x, of the gradient of a curve is constant and the curve passes through the points $(1,2)$ and $(-3,0)$, the gradient at the former point being $-1 / 2$. Find the equation of the curve and sketch the curve.
(b) (10 marks)

For the ellipse $x^{2}+4 y^{2}=100$,
(i) Write down the eccentricity, the co-ordinates of the foci and the equations of the directrices.
(ii) Sketch a graph of the ellipse showing the above features.
(iii) Find the equation of the tangent and normal to the ellipse at the point $P(8,3)$.
(iv) If the normal at P meets the major axis at G and the perpendicular from the centre 0 to the tangent at P meets that tangent at K, prove that $P G . O K$ is equal to the square of the minor semi-axis.

QUESTION 4.

(a) (6 marks)
(i) If $P(x)=x^{3}-9 x^{2}+24 x+c$ for some real number c, find the values of x for which $P^{\prime}(x)=0$. Hence find the two values of c for which the equation $P(x)=0$ has a repeated root.
(ii) Sketch the graphs of $y=P(x)$ for these values of c. Hence write down the values of c for which the equation $P(x)=0$ has three distinct real roots.
(b) (6 marks)

Let $f(x)=x-2+\frac{3}{x+2}$.
(i) Find the points at which $f(x)=0$.
(ii) Find the turning points of $f(x)$, if any, and identify them.
(iii) Find the asymptotes.
(iv) Sketch the curve, marking all the features you have found in parts (i) - (iii) above.
(c) (3 marks)

The polynomial $x^{3}+x^{2}+3 x-2=0$ has roots α, β and γ. Find the equation with roots $\alpha^{2} \beta \gamma$, $\alpha \beta^{2} \gamma$ and $\alpha \beta \gamma^{2}$.

QUESTION 5. (15 marks)

A particle of mass m is projected vertically upwards under gravity in a medium which exerts a resisting force of magnitude $m g(v / k)^{2}$, where v is the speed of the particle and k is a constant.
(i) For the upward motion of the particle, draw a diagram showing the forces acting on the particle and write down the equation of motion.
(ii) If U is the speed of projection, show that the greatest height of the particle above the point of projection is

$$
\frac{k^{2}}{2 g} \ln \left(\frac{k^{2}+U^{2}}{k^{2}}\right)
$$

(iii) Repeat part (i) for the downward motion of the particle and hence write down the particle's terminal velocity.
(iv) If V is the speed of the particle on returning to the point of projection, show that

$$
\frac{1}{V^{2}}-\frac{1}{U^{2}}=\frac{1}{k^{2}}
$$

QUESTION 6.

(a) (3 marks)

Let $\min (a, b)$ denote the minimum of the numbers a and b. Sketch the function $y=\min (2, x)$ over the interval $0 \leq x \leq 3$ and evaluate $\int_{0}^{3} \min (2, x) d x$.
(b) (3 marks)

Find the area enclosed between the curves $y=x^{3}$ and $y^{3}=16 x$.
(c) (9 marks)
(i) Sketch the curves $y=\tan x$ and $y=2 \cos \left(x+\frac{\pi}{12}\right)$ between $x=0$ and $x=\frac{\pi}{2}$
(ii) Verify that $x=\frac{\pi}{4}$ is a solution of the equation $\tan x-2 \cos \left(x+\frac{\pi}{12}\right)=0$.
(iii) Find the area enclosed by these curves and the y-axis.
(iv) If this area is rotated through one revolution about the x-axis, find the volume of the solid formed.

QUESTION 7.

(a) (7 marks)

Two circles intersect at A and B. The tangents from a point on $B A$ produced meet the circles at P and Q.

If P, A and Q are collinear,
(i) Draw a diagram showing this information.
(ii) Prove that $\triangle T A P||\mid T T B P$ and $\triangle T A Q|| \mid T B Q$.
(iii) Prove that T, Q, B, P are concyclic.
(iv) Prove that $T P=T Q$.
(b) (8 marks)

For a given integer $n \geq 1$, let the positive integers $c_{0}, c_{1}, \ldots, c_{n}$ be defined by the equation, valid for all (real and) complex numbers z :

$$
(1+z)^{n}=c_{0}+c_{1} z+\ldots+c_{n} z^{n} .
$$

(You are not required to establish this identity.)
Prove that
(i) $c_{0}=1$,
(ii) $c_{0}-c_{1}+c_{2}-c_{3}+\ldots+(-1)^{n} c_{n}=0$,
(iii) if n is odd then $c_{1}+c_{3}+\ldots+c_{n-2}+c_{n}=2^{n-1}$,
(iv) if n is divisible by 4 then $c_{0}-c_{2}+c_{4}-\ldots-c_{n-2}+c_{n}=(-1)^{n / 4} 2^{n / 2}$.

QUESTION 8.

(a) (2 marks)

If the functions $f(x)$ and $g(x)$ are such that $f(x)>g(x) \geq 0$ for $a \leq x \leq b$, by using a sketch (or otherwise) explain why $\int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x$.
(b) (13 marks)

Let

$$
u_{n}=\int_{0}^{1}\left(1-t^{2}\right)^{(n-1) / 2} d t
$$

where n is a non-negative integer.
(i) Using integration by parts, or otherwise, show that $n u_{n}=(n-1) u_{n-2}$ if $n \geq 2$.
(ii) Let $v_{n}=n u_{n} u_{n-1}, n \geq 1$. Show that $v_{n}=\frac{1}{2} \pi$, for all values of $n \geq 1$.
(iii) Using part (a), or otherwise, show that $0<u_{n}<u_{n-1}$. Prove that

$$
\sqrt{\frac{\pi}{2 n+2}}<u_{n}<\sqrt{\frac{\pi}{2 n}}
$$

