©Mathematics Plus, 2002

COURSE/LEVEL NSW Secondary High School Year 12 HSC Extension 2 Mathematics.

HSC TRIAL EXAMINATION

MATHEMATICS

Extension 2

Time allowed - Three hours

DIRECTIONS

- Attempt ALL questions
- EACH question is out of 15 marks
- All necessary working should be shown. Marks may be deducted for careless or poorly arranged work
- Start each question on a new page

QUESTION 1.

(a) (3 marks)

Find $\int \sin^3 x \, dx$

(b) (4 marks)

Using the substitution $t = tan(\frac{\theta}{2})$, or otherwise, show that

$$\int_0^{\pi/2} \frac{1}{1+\sin\theta} d\theta = 1.$$

(c) (4 marks)

Evaluate
$$\int_0^1 \tan^{-1} x \, dx$$

- (d) (4 marks)
 - (i) Express

$$\frac{3-x}{\left(1+2x^2\right)\left(1+6x\right)}$$

in partial fractions.

(ii) Show that

$$\int_0^2 \frac{3-x}{\left(1+2x^2\right)\left(1+6x\right)} \, dx = \frac{1}{2} \ln\left(\frac{13}{3}\right).$$

QUESTION 2.

(a) (*3 marks*)

Given that (2+3i)p-q = 1+2i, find p and q if

- (i) p and q are real
- (ii) p and q are complex conjugate numbers
- (b) (3 marks)
 - If $z = \cos \theta + i \sin \theta$, show that

$$\frac{1}{1+z} = \frac{1}{2} \left(1 - i \tan \frac{\theta}{2} \right)$$

(c) (4 marks)

(i) On an Argand diagram, shade in the region for which

 $0 \le |z| \le 2$ and $1 \le \operatorname{Im} z \le 2$

(ii) Write down the complex number with largest argument that satisfies the inequalities of (i). Express your answer in the form a + ib.

(d) (5 marks)

- (i) Find the two square roots of 5-12i in the form x+iy where x and y are real.
- (ii) Show the points *P* and *Q* representing the square roots on an Argand diagram. Find the complex numbers represented by points R_1 , R_2 such that the triangles PQR_1 and PQR_2 are equilateral.

QUESTION 3.

(a) (5 marks)

The rate of change, with respect to x, of the gradient of a curve is constant and the curve passes through the points (1,2) and (-3,0), the gradient at the former point being $-\frac{1}{2}$. Find the equation of the curve and sketch the curve.

(b) (10 marks)

For the ellipse $x^2 + 4y^2 = 100$,

- (i) Write down the eccentricity, the co-ordinates of the foci and the equations of the directrices.
- (ii) Sketch a graph of the ellipse showing the above features.
- (iii) Find the equation of the tangent and normal to the ellipse at the point P(8,3).
- (iv) If the normal at P meets the major axis at G and the perpendicular from the centre 0 to the tangent at P meets that tangent at K, prove that PG.OK is equal to the square of the minor semi-axis.

QUESTION 4.

- (a) (*6 marks*)
 - (i) If $P(x) = x^3 9x^2 + 24x + c$ for some real number *c*, find the values of *x* for which P'(x) = 0. Hence find the two values of *c* for which the equation P(x) = 0 has a repeated root.
 - (ii) Sketch the graphs of y = P(x) for these values of c. Hence write down the values of c for which the equation P(x) = 0 has three distinct real roots.

(b) (6 marks)

Let
$$f(x) = x - 2 + \frac{3}{x + 2}$$

- (i) Find the points at which f(x) = 0.
- (ii) Find the turning points of f(x), if any, and identify them.
- (iii) Find the asymptotes.
- (iv) Sketch the curve, marking all the features you have found in parts (i) (iii) above.
- (c) (3 marks)

The polynomial $x^3 + x^2 + 3x - 2 = 0$ has roots α , β and γ . Find the equation with roots $\alpha^2 \beta \gamma$, $\alpha \beta^2 \gamma$ and $\alpha \beta \gamma^2$.

QUESTION 5. (15 marks)

A particle of mass *m* is projected vertically upwards under gravity in a medium which exerts a resisting force of magnitude $mg(v/k)^2$, where *v* is the speed of the particle and *k* is a constant.

- (i) For the upward motion of the particle, draw a diagram showing the forces acting on the particle and write down the equation of motion.
- (ii) If U is the speed of projection, show that the greatest height of the particle above the point of projection is

$$\frac{k^2}{2g}\ln\left(\frac{k^2+U^2}{k^2}\right).$$

- (iii) Repeat part (i) for the downward motion of the particle and hence write down the particle's terminal velocity.
- (iv) If V is the speed of the particle on returning to the point of projection, show that

$$\frac{1}{V^2} - \frac{1}{U^2} = \frac{1}{k^2}$$

QUESTION 6.

(a) (3 marks)

Let $\min(a,b)$ denote the minimum of the numbers *a* and *b*. Sketch the function $y = \min(2, x)$ over the interval $0 \le x \le 3$ and evaluate $\int_0^3 \min(2, x) dx$.

(b) (3 marks)

Find the area enclosed between the curves $y = x^3$ and $y^3 = 16x$.

(c) (9 marks)

- (i) Sketch the curves $y = \tan x$ and $y = 2\cos\left(x + \frac{\pi}{12}\right)$ between x = 0 and $x = \frac{\pi}{2}$
- (ii) Verify that $x = \frac{\pi}{4}$ is a solution of the equation $\tan x 2\cos\left(x + \frac{\pi}{12}\right) = 0$.
- (iii) Find the area enclosed by these curves and the y-axis.
- (iv) If this area is rotated through one revolution about the *x*-axis, find the volume of the solid formed.

QUESTION 7.

(a) (7 *marks*)

Two circles intersect at A and B. The tangents from a point on BA produced meet the circles at P and Q.

- If *P*, *A* and *Q* are collinear,
- (i) Draw a diagram showing this information.
- (ii) Prove that $\Delta TAP \parallel\!\mid \Delta TBP$ and $\Delta TAQ \parallel\!\mid \Delta TBQ$.
- (iii) Prove that T, Q, B, P are concyclic.
- (iv) Prove that TP = TQ.

(b) (8 *marks*)

For a given integer $n \ge 1$, let the positive integers c_0, c_1, \dots, c_n be defined by the equation, valid for all (real and) complex numbers *z*:

$$(1+z)^n = c_0 + c_1 z + \ldots + c_n z^n.$$

(You are **not** required to establish this identity.)

Prove that

- (i) $c_0 = 1$, (ii) $c_0 - c_1 + c_2 - c_3 + \dots + (-1)^n c_n = 0$,
- (iii) if *n* is odd then $c_1 + c_3 + \ldots + c_{n-2} + c_n = 2^{n-1}$,
- (iv) if n is divisible by 4 then $c_0 c_2 + c_4 \dots c_{n-2} + c_n = (-1)^{n/4} 2^{n/2}$.

QUESTION 8.

(a) (2 marks)

If the functions f(x) and g(x) are such that $f(x) > g(x) \ge 0$ for $a \le x \le b$, by using a sketch (or otherwise) explain why $\int_a^b f(x) dx > \int_a^b g(x) dx$.

(b) (13 marks)

Let

$$u_n = \int_0^1 \left(1 - t^2\right)^{(n-1)/2} dt$$

where n is a non-negative integer.

(i) Using integration by parts, or otherwise, show that $nu_n = (n-1)u_{n-2}$ if $n \ge 2$.

(ii) Let $v_n = n u_n u_{n-1}$, $n \ge 1$. Show that $v_n = \frac{1}{2}\pi$, for all values of $n \ge 1$.

(iii) Using part (a), or otherwise, show that $0 < u_n < u_{n-1}$. Prove that

$$\sqrt{\frac{\pi}{2n+2}} < u_n < \sqrt{\frac{\pi}{2n}}$$