INTEGRATION – WORKSHEET

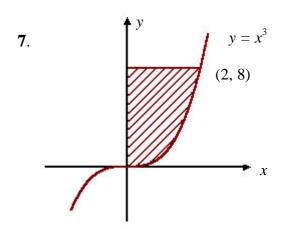
COURSE/LEVEL

NSW Secondary High School Year 12 HSC Mathematics. Syllabus reference: 11.1 – 11.4.

1. Find the primitives of:

(i)
$$\sqrt[3]{x^5}$$
 (ii) $\frac{5}{x^3}$

(iii)
$$(1-x)^8$$
 (iv) $\sqrt{3x-1}$

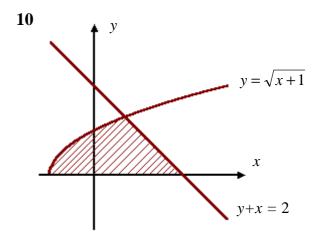

- 2. Find the area bounded by the curve $y = 3x x^2$ and the *x*-axis.
- **3**. Complete the following table:

x	0	1	2	3	4
$f(x) = \frac{1}{x - 1}$					

Hence evaluate
$$\int_0^4 \frac{dx}{x+1}$$
 using 5

function values of Simpson's Rule.

- 4. Find the area enclosed between the parabola $y = x^2 + 2x$ and the straight line y = x.
- 5. If f''(x) = 6x 8 and f'(0) = 6, f(1) = 1, find f(x).
- **6**. Evaluate:
 - (i) $\int_{1}^{2} 2x(x^{2} + 3)dx$ (ii) $\int_{-1}^{1} \sqrt{5x + 8} dx$


Find the area of the shaded region.

8. The area bounded by the parabola $y = 9 - x^2$ and the *x*-axis is rotated about the *x*-axis. Find the volume generated.

9. If
$$y = \sqrt{1 - 4x^2}$$
,

(a) find
$$\frac{dy}{dx}$$
.

(b) Hence evaluate
$$\int_0^{\frac{1}{2}} \frac{x \, dx}{\sqrt{1-4x^2}}$$
.

Calculate the area of the shaded region.