Geometrical Significance of the Second Derivative Worksheet

Course/Level

NSW Secondary High School Year 12 HSC Mathematics.
Syllabus reference: 10.4.

1. (a) Sketch the graph of a function which is:
(i) increasing with an increasing gradient,
(ii) increasing with a decreasing gradient,
(iii) decreasing with an increasing gradient,
(iv) decreasing with a decreasing gradient.
(b) For each function in 1(a) state whether the function:
(i) is concave up, concave down or neither,
(ii) has a positive or negative first derivative,
(iii) has a positive or negative second derivative.
2. Draw a sketch of the function $y=\mathrm{f}(x)$ where, for all x in its domain,
(i) $\mathrm{f}^{\prime \prime}(x)>0$,
(ii) $\mathrm{f}^{\prime \prime}(x)<0$,
(iii) $\mathrm{f}^{\prime}(x)>0$ and $\mathrm{f}^{\prime \prime}(x)>0$,
(iv) $\mathrm{f}^{\prime}(x)>0$ and $\mathrm{f}^{\prime \prime}(x)<0$,
(v) $\mathrm{f}^{\prime}(x)<0$ and $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$,
(vi) $\mathrm{f}^{\prime}(x)<0$ and $\mathrm{f}^{\prime \prime}(x)<0$,
(vii) $\mathrm{f}(x)>0, \mathrm{f}^{\prime}(x)>0$ and $\mathrm{f}^{\prime \prime}(x)>0$,
(viii) $\mathrm{f}(x)>0, \mathrm{f}^{\prime}(x)>0$ and $\mathrm{f}^{\prime \prime}(x)<0$,
(ix) $\mathrm{f}(x)<0, \mathrm{f}^{\prime}(x)<0$ and $\mathrm{f}^{\prime \prime}(x)>0$,
(x) $\mathrm{f}(x)<0, \mathrm{f}^{\prime}(x)<0$ and $\mathrm{f}^{\prime \prime}(x)<0$.
3. Draw sketches of the following functions $y=\mathrm{f}(x)$ where $0 \leq x \leq 4$.
(i) $\mathrm{f}^{\prime \prime}(x)>0$ for $0 \leq x<2$ and $\mathrm{f}^{\prime \prime}(x)<0$ for $2<x \leq 4$. What do you think is the value of the second derivative at $x=2$?
(ii) $\mathrm{f}^{\prime \prime}(x)<0$ for $0 \leq x<2$ and $\mathrm{f}^{\prime \prime}(x)>0$ for $2<x \leq 4$. What do you think is the value of the second derivative at $x=2$?
(iii) $\mathrm{f}^{\prime \prime}(x)>0$ for $0 \leq x \leq 4$ and $f^{\prime}(2)=0$.
(iv) $\mathrm{f}^{\prime \prime}(x)<0$ for $0 \leq x \leq 4$ and $f^{\prime}(2)=0$.
4. Classify the stationary points where $x=2$ for the functions in 3(iii) and 3(iv). Could these functions have more than one stationary point?
5. Can you draw the graph of a function that is concave up at a maximum turning point? What about a function that is concave down at a maximum turning point?
6. (i) The graph of a function $y=\mathrm{f}(x)$ is concave up for all x and has one stationary point at $x=a$ (where a is some number). What sort of stationary point is this point? What can you say about the sign of $\mathrm{f}^{\prime \prime}(x)$?
(ii) The graph of a function $y=\mathrm{f}(x)$ is concave down for all x and has one stationary point at $x=a$ (where a is some number). What sort of stationary point is this point? What can you say about the sign of $\mathrm{f}^{\prime \prime}(x)$?
7. (i) Is the second derivative of a function positive or negative at a minimum turning point? Is this true for all minimum turning points?
(ii) Is the second derivative of a function positive or negative at a maximum turning point? Is this true for all maximum turning points?
8. Use your answers to Question 7 to describe how you would determine the nature of a turning point (that is, whether it is a maximum or minimum turning point).
