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Abstract

In this one more precursor paper, we wish to settle the concept of

S−convex sequence, as a main target. Second, we wish to improve

the wording of Mercer’s work, on convex sequence inequalities, as well

as fix a few of his results.

Key-words and phrases: Polindronic polynomials, convex sequences,

S−convex sequences, numerical operator, inequalities, series.

AMS2000 : 26D15 (Primary), 12E10 (Secondary)

∗I.R., (mrpprofessional@yahoo.com): questions, comments, or corrections to this doc-

ument, may be directed to this e-mail address. Postal address: PO Box 12396, A’Beckett

st, Melbourne, VIC, AU, 8006.

1



1 Introduction

From [3-MERCER1], we learn that if ‘a’, ‘b’, and n are natural numbers,

zero not allowed as a value for any of the variables involved, then:

1

n + 1
[an + an−1b + ... + bn] ≥

(
a + b

2

)n

.

The above equates to:

1

n + 1

n∑
m=0

an−mbm ≥
(

a + b

2

)n

,

In [1-HARBER], one finds the following proof steps:

• Assume a ≥ b;

• Divide all by an.

Here, according to our development so far, we then get:

1

n + 1

n∑
m=0

a−mbm ≥
(

a + b

2a

)n

;

• Set x = b
a
. According to our notation, we then get:

1

n + 1

n∑
m=0

xm ≥
(

1 + x

2

)n

; (Inequality 1);

• From [1−HABER], we are reminded that: (1+x)n =
∑[n/2]∗

0 (xi+xn−i)

and
∑n

0 x =
∑[n/2]∗

0 (xi +xn−1) and, from here, we end up at Inequality

2;

• Inequality 1 is then equivalent to Inequality 2, and working with one

of them is the same as working with the other.
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From [3-MERCER1], we learn the following lemma:

Lemma 2. For a sequence {βn}, which is non-increasing, and a sequence

{αv}, whose sum from 0 to n is null, which is also non-increasing, and if

the latter is ordered in a manner such that all positive members precede the

negative ones, then, for the sequence {αvβv}, the sum of all members, from

0 to n gives us a non-negative value.

The proof of this lemma is quite easy. Once there must be same sum, in

modulus, for negative and positive parts of the second sequence, if the posi-

tive ones are multiplied by the highest in value figures of the first sequence,

it should be the case that the result can only be either zero or positive.

Mercer ([4-MERCER2]) also claims to have produced the following result,

which will be proven to be an equivocated development from both an en-

thymeme contained in the main theorem involved and a mathematical im-

possibility:

Theorem 2.1. Let {uv}n
v=0 be a convex sequence1. Then

1

n + 1

n∑
v=0

uv ≥ 1

2n

n∑
v=0

(
n

v

)
uv. (Inequality 2)

Below, we go through the process of scrutinizing Mercer’s work, going step

by step of it, regarding his claimed proof of the theorem just stated. These

are the steps found at Mercer’s paper:

1Notice how interesting it is the notation used by both Haber and Mercer. One wonders

why complicating. The natural thing to do with a sequence would be starting from v = 1

instead...
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• Put Q = [n
2
];

Problem O: we do not really know what symbol is this one,

used by Mercer. Most obvious inference is that there was a

typo here and it should actually read Q = bn
2
c, once this is

compatible with the equality mentioned by him, connected,

according to himself, to the inequality he wants to prove, as

well as that to which Lemma 2 would apply.

• Write

Q∗∑
v=0

γv =





γ0 + γ1 + ... + γQ, case n is odd

γ0 + γ1 + ... + γQ−1 + 1
2
γQ, case n is even

;

• The previous step allow us to produce the following equality:

1

n + 1

n∑
v=0

uv − 1

2n

n∑
v=0

(
n

v

)
uv =

Q∗∑
v=0

cv[uv + un−v],

where cv = 1
n+1

− 1
2n

(
n

v

)
;

( Problem P: Notice that, contrary to p. 611, from [MER-

CER2], cv does not sum zero in
∑Q∗

v=0 cv. Easy counter-examples

are found (n = 3, for instance) ).

• Notice that {cv} is non-decreasing, rather than non-increasing, once

supposing this is the case, that is, the member number n is less than, or

equal to, the member number n+1, leads to the following development:

1

n + 2
− 1

2n+1

(
n + 1

v

)
≥ 1

n + 1
− 1

2n

(
n

v

)
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⇐⇒ −1

(n + 1)(n + 2)
− 1

2n+1

(
n + 1

v

)
+

1

2n

(
n

v

)
≥ 0.

Remember that

(
n

v − 1

)
+

(
n

v

)
=

(
n + 1

v

)
. With this, we have:

−1
(n+1)(n+2)

− 1
2n+1

[(
n + 1

v

)
− 2

[(
n + 1

v

)
−

(
n

v − 1

)]]
≥ 0

⇐⇒ −1

(n + 1)(n + 2)
+

n!

2n+1

[
n− 2v + 1

(n− v + 1)!v!

]
≥ 0,

which is negative, trivially, if (n − 2v + 1) is, as well, that is, only if

v ≥ n+1
2
≥ n

2
. Because there is a restriction imposed to all, that v gets

split into sets going to n
2
, then it is always true;

• The sequence {uv} being convex, with sum zero, and non-increasing,

one could apply the previously mentioned Lemma to it, possibly. How-

ever, suppose a sequence is both convex and non-increasing. Let’s take

the definition of convex sequence into consideration:

2an+1 ≤ an + an+2,∀n ∈ N.

If the sequence is also non-increasing, it is true that an ≥ an+1 ≥ an+2.

Suppose, then, that an = an+2 + δ, and that an+1 = an+2 + δ1. This

way, all the previously stated would imply

2δ1 ≤ δ,∀n ∈ N,

what is possible.

Now we also need to prove that such a sequence may have sum zero. To
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hold sum zero, some of its members will be positive, whilst others will

be negative, trivially. However, assuming that ak < 0, ak+1 > 0, and

willing to find the same situation as in the previous statement, that

is: an = an+2 + δ, and an+1 = an+2 + δ1, plus 2δ1 ≤ δ, we would have

an+2 + δ < 0 and an+2 + δ1 > 0, then −δ1 < an+2 < −δ, what makes

−δ1 + δ < an < 0 and 0 < an+1 < −δ + δ1. With this: δ1 < an < 0,

what is inconsistent, once δ1 is either zero or positive. It would also be

true that 0 < an+1 < − δ
2
, what is also inconsistent;

We have then just proved that a sequence cannot be both non-

increasing and convex, at least if its members are different

from each other.

• On the other hand, cv does not have sum zero either. We need at least

one sequence with sum zero for Mercer’s result to work. Therefore, it

would have to then be the convex sequence attached. However, it also

does not have sum zero, so that the theorem he claims to make use of

does not fit there at all, and he does not prove what he would like to

have proved with what he thinks to be an extension, but is not.

• As for the second theorem found in Mercer’s paper, its proof gets fi-

nalized by Mercer’s written statement (with minor editing), on p.3 of

[3 −MERCER1]: ‘once (uk) is convex, and {ck} ⊂ <+, we arrive at

the result
∑n

0 akuk ≥ 0’. Comparing the definition of convex sequence

with X = uk+2−2uk+1+uk, one reaches the conclusion that X can only

be non-negative. Because he claims that ck would also be non-negative,

then
∑n

0 akuk will also be and, therefore, according to the reasoning
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exposed in p.3 of [3−MERCER1], so is
∑n

0 akx
k, as intended.

• The conclusion is then that the result, which gets to being proven

sound, by Mercer, is ‘for any convex sequence {uk}, and any set of

non-negative coefficients ck, attained after division of main polynomial

by its two prime factors, containing root one, is made, these being

only coefficients found left in the resulting polynomial, then, if we call

that
∑n

o akx
k, we hold this result as being non-negative’, as proved

recently in this paper. There is no mention to the possibly negative

part of the coefficients after division by prime factors is made, so that

the main theorem intended is a fake. In reality, Mercer worked with

the premise ‘bk is zero’. However, it is still true, as it reads there,

that: if (uk) is convex and {ck} ⊂ <+, then
∑n

0 akuk =
∑n−2

0 ck(uk+2−
2uk+1 + uk) is verified if and only if ak is non-negative, all the way

through. Unfortunately, this is not the same as stating that the product

formed by elements of a convex sequence, and positive constants, is

non-negative. In fact, counter-examples to this statement are easily

found (for instance, (1, 2, 3) is a convex sequence, once 4 ≤ 1 + 3.

And so is (1,−2, 3), once −4 ≤ 4. However, choose your cks to be

{0, 2, 1}, and in multiplying them we get (0,−4, 3), and the sum of

these elements is, unfortunately, clearly negative, contradicting what

could have been a theorem by Mercer, but there is no mercy there:

it cannot be such). The small, perhaps irrelevant, result, regarding

convex sequences, cannot be extended to S−convex sequences because

the direction of the inequality will change for those with S 6= 1.
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• The observation regarding the values, used as coefficients, being posi-

tive, for the theorem mentioned by Mercer to apply, is actually made

in a paper from 2005 from the same Jipam.

Mercer’s work is motivation for the introduction of the definition of S−convex

sequences, the main objective of this paper.

We here follow this order of presentation:

1. Definitions and Notations used by us to deal with S−convexity in gen-

eral (coherence test for results for sequences);

2. Definition of both convex and S−convex sequences, the second result

being our novelty;

3. Conclusion.

3 Notation and Definitions

We use the symbology defined in [5-PINHEIRO]:

• K1
s for the class of S−convex functions in the first sense, some s;

• K2
s for the class of S−convex functions in the second sense, some s;

• K0 for the class of convex functions;

• s1 for the variable S, 0 < s1 ≤ 1, used for the first type of S-convexity;

• s2 for the variable S, 0 < s2 ≤ 1, used for the second type of s-convexity.
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Remark 2. The class of 1-convex functions is simply a restriction of the

class of convex functions, which is attained when X = <+,

K1
1 ≡ K2

1 ≡ K0.

We use the definitions presented in [5-PINHEIRO]:

Definition 4. A function f : X− > < is said to be s1-convex if the inequality

f(λx + (1− λs)
1
s y) ≤ λsf(x) + (1− λs)f(y)

holds ∀λ ∈ [0, 1]; ∀x, y ∈ X; such that X ⊂ <+.

Remark 3. If the complementary concept is verified, then f is said to be

s1−concave.

Definition 5. A function f : X− > < is called s2−convex, s 6= 1, if the

graph lies below a ‘bent chord’ (L) between any two points, that is, for every

compact interval J ⊂ I, with boundary ∂J , it is true that

supJ(L− f) ≥ sup∂J(L− f).

Definition 6. A function f : X− > < is said to be s2−convex if the inequal-

ity

f(λx + (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds ∀λ ∈ [0, 1]; ∀x, y ∈ X; such that X ⊂ <+.

Remark 4. If the complementary concept is verified, then f is said to be

s2−concave.
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7 S−convex sequences and Convex sequences

7.1 Convex sequences definition

A convex sequence is defined as a sequence where

2an+1 ≤ an + an+2,∀n ∈ N, (1)

or, according to the source, for better reading, putting δan = an − an+1 and

δ2an = δan − δan+1, we then may reduce all to

δ2an ≥ 0, n ∈ N.

To be reassured of this definition, please see [2-KUDRYAVTSEV].

7.2 Main result: defining S−convex sequences

Theorem 7.1. An S-convex sequence is defined as a sequence where

2san+1 ≤ an + an+2,∀n ∈ N, (2)

if dealing with K2
s , or

2an+1 ≤ an + an+2,∀n ∈ N, (3)

if dealing with K1
s .

Proof. We take the definitions in consideration:

f(λx + (1− λ)y) ≤ λsf(x) + (1− λ)sf(y).
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We now make the image to the left correspond to the midpoint image, and

call it an+1. To the midpoint image, a value of λ = 0.5 corresponds. With

it, we get 0.5s to the right side, whose members we call an and an+2, with

all coherence that is possible to have. Therefore: 2san+1 ≤ an+an+2, a. w. s.

f(λx + (1− λs)
1
s y) ≤ λsf(x) + (1− λs)f(y).

We now look for the midpoint of the sum of the images, because there is

where the balance is found. This point is attained when λ = 0.5
1
s . We then

call f(x), an, and f(y), an+2. We now must reflect this in the left side of the

inequality as well. Replacing λ with its value, we get 0.5
1
s (x+y). As s varies

from open zero to closed one, we get 0 and 0.5 as boundaries for the position

of the element to the left side in the domain. Half is ideal, for it is superior

quote. Therefore: 2an+1 ≤ an + an+2, a. w. s.

8 Conclusion

In this work, we think we have nullified the claimed extension of results

made by Mercer in what regards the works of Haber. We also think we have

presented the best definition for S−convex sequences as possible.
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