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NONISOTHERMAL NEWTONIAN FILM BLOWING -

INEQUALITIES DEVELOPMENT

Abstract. In this paper, we present some scope of solutions to a

simplified equation of the system previously presented by us in [14],

equation obtained when disregarding gravity.
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1. Problem formulation

Temperature changes seem to influence how accurate the model, describ-

ing the process of film blowing, from die to die, is. Having into sight

what is mentioned in [11], we can see what major improvements are ob-

tained by considering temperature changes that got disregarded by the

isothermal models such as Tam’s model [2]. There are a few temperature

equations available in the present scientific community material, such as

Han and Park’s, Alaie’s, etc.

In [11], the model under analysis is for viscoelastic fluids, is described as

being the ‘Kelvin model’, and it makes use of a reasonably different tem-

perature equation when compared to ours. However, what is interesting

for us there is the experimental data, which we use here.

We have made an analysis of Tam’s results ([2]) and found out that it is

actually hard to get his equations working without using a negative ini-

tial slope for the radius curve, what makes the model inadequate, or not

as adequate as a model which does not hold such a problem. However,

we may allow room for other possible values, not detected by us, being
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able to generate a faithful model. Via analyzing what may be implied

taking the model as accurate, we may reach a definite proof, analytical,

of its inadequacy or, otherwise, more evidence in its favor.

Tam’s results should also derive from Han and Park’s work, just like

ours. However, because our equations are easier to manipulate, include

the temperature term, and give faithful bubble profiles for positive initial

slopes of the radius curve, we have decided to drop Tam’s equations in

favor of ours.

The intention is obviously reaching a stage when mathematical results

might become interesting for the industry in a way that it is worthwhile

investing on them. If we can reach a close-to-100% description of the

actual results in the process, our results might turn out to be of interest

to the industry who, until nowadays, thinks that the waste of the mate-

rial in the process is negligible. The waste under analysis, in this case,

is obviously the waste of polymer melt, once bad bubble formation leads

to failure of the process and waste of material 2.

What appears in [14] is a comparison between the isothermal newtonian

model and the nonisothermal newtonian model, so that the reader ac-

quires ‘choice power’ (is more equipped to decide which model is most

adequate in terms of describing each of the variables of interest in the

problem: radius, velocity, and temperature).

Our conclusion was that the nonisothermal model is better for the radius

profile but is worse for the velocity profile and, trivially, better for the

temperature profile.

Having this into sight, we develop some analytical incursions on one of

the simplified equations, which appears as a result of our nonisother-

mal system after ignoring gravity, as previously done by Tam in [2]. We

2We have made some inquiries to plastic manufacturers who all gave us this

information.
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achieve inequalities which provide some constraints for solution trials,

that is, we define a region for the perturbational work (see, for instance,

Shepherd3 et al, for example of pertubational work).

2. State of the art

Han and Park ([1]) obtained some results on nonisothermal newtonian

fluids regarding them as a restriction of the power-law fluids. Tam

([2]) took a completely newtonian approach, his results dealing with

the isothermal situation. Alaie and Papanastasiou ([3]) considered the

nonisothermal situation of film blowing and treated it with an integral

constitutive model. Kanai and White ([4]) produced an experimental

study on the stability of nonisothermal (temperature dependent viscos-

ity) film blowing of viscoelastic newtonian melts. Yamane and White

([5]) researched on the significance of non-newtonian viscosity on non-

isothermal film blowing. From the empirical observation, one may get

dynamic viscosity written as a function of temperature and frequency,

wall shear stresses, pressure losses, wall-slip coefficients, shear and tem-

perature dependent viscosities ([5]).

We now present these results from a different point of view, however: we

use a different scaling, which is supposed to facilitate calculations, and

prove that the system of equations, expressing the process of nonisother-

mal newtonian film blowing, should be split into three other systems. As

a side result, we present an alternative to the Force-balance equation,

as obtained by Han and Park. In this work, we depart from a generic

situation of film blowing, providing all generic tensors and parameters,

to then work with power-law film blowing (manufacture of plastic from

3John Shepherd, RMIT, AU, 2003, see conference papers up to the date, for

instance.
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fluids that obey the power-law rule), which then gets refined into newto-

nian film blowing. In short, this study provides a model for nonisothermal

newtonian film blowing.

For the next table, we base ourselves in [11], just changing one line of

[11]’s table, the line regarding Han and Park’s work: That is because we

consider their newtonian proposal, included in the power-law proposal,

instead of the power-law one, which disregards their model. We strongly

advise the reader to consult the sources mentioned in [11], which we paste

here with some minor corrections, for righter history regarding research

in the field. The present state of the art is:

Author/s Model description Limitations

Pearson and Petrie [12, 13] Isothermal Newtonian Did not incorporate the

non-Newtonian flow behavior

of polymer melts

Han and Park [7] Non-isothermal newtonian Did not account for

viscoelasticity

Kanai and White [4] Non-isothermal Newtonian with crystallization Did not allow for non-Newtonian

behavior of fluid

Sidropoulos et al. [11] Modified non-isothermal Newtonian Did not allow for viscoelastic

nature of polymer melt

Petrie [11] Non-isothermal Newtonian and Did not allow for the viscoelastic

isothermal purely elastic model response of materials

Table 1. 1
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3. Some analytical incursions in the solution of the bubble

system

We here deal with the simplified equation obtained in [15] by means of

inequalities, call it Eq. 1.

2C2r′′r2(fo−B(r2−1))+r(fo−B(3r2−1))(1+C2(r′)2)−5Cr′eβ( 1
s(z)

−1) = 0

PRIMARY DEVELOPMENTS

We take our suggested approach to the problem and consider that the

minimum the function r(z) reaches is r(0) = 1 and the maximum is

r(1) = A. The radius will always be a positive measure. Therefore:

0 ≤ r(0) ≤ r(z) ≤ r(1),

or

1 ≤ r ≤ A.

On top of the above information, we know that the bubble problem be-

longs to the scope of the Applied Problems in Mathematics, that is, it is

a severely forced fit between the perfect world of Mathematics and the

so inaccessible transcendent reality (transcending any possible human

description, part of the own God, for the perfect description of nature

elements will never be accessible by human beings, for it is impossible to

communicate all the precise complexity of anything in nature to another

human being. Like God, nature is something which transcends human

communication and it is only accessible via direct connection, depending

on the ability of the individual to connect with it (see [17] for instance)).

All this prologue was to introduce the idea of accepting, and incorporat-

ing, experimental values into the mathematical calculations as if they had

been attained via abstract mathematical deduction. Once it is impos-

sible to determine those values via abstraction without escaping reality
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completely, it is either the case that we never apply Mathematics to it,

or we accept holding less deterministic approaches in order to get at least

part of the work, maximum possible, performed via abstract mathemati-

cal tools. The mixed approach is well-accepted by many mathematicians,

and it ended up included in major theories relating differential equations,

for instance. It is also common for Abstract Mathematics, for instance,

that we ‘guess’ the roots of a hard-to-work-with equation, and we then

just confirm that to be the case, via algebraic calculations. In our prob-

lem, we have then made use of the computer to ‘guess’ the values for the

constants involved, what may be regarded as equivalent to the guessing

process for roots of equations. From that guess, we have plotted the

graph, and compared with the reality of the bubble for the Industrial

Process, therefore establishing the connection with the actual life model,

which is the major intention. With that done, we should then bring the

results from [15] to the present work. There, we found out that A,B,

and C should all be close to zero and less than one, all non-negative.

With those results, we shall proceed to a few inferences, which should,

then, bear proof in the computer model, which should be, to the best of

the human eyes observation, the most accurate picture of the real model

as possible. Our programs did not work with 3D-simulations, however,

and our simulations were based on those claiming they did perform real

life ones (therefore relying on their experimental work).

3.1. Second derivative. From Calculus, we recall that wherever a func-

tion increases, its first derivative is positive. Wherever a function de-

creases, its first derivative is negative, or the tangent to the graph of the

function in that location. Wherever it is not increasing, or decreasing,

the first derivative is zero.

The second derivative measures the variation of the first. Therefore,
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wherever the first derivative increases, the second is positive. Wherever

the first derivative decreases, the second is negative. Increase, as for first

derivative, means going from negative, or null, to positive, or lower slope

to higher slope, and these are the situations in which the second deriva-

tive will be non-negative.

Notice that our function suffers from two stages only, as for its profile

we consider: stable in a value, or increasing towards the vertical Z axis.

Therefore, the first derivative is either zero or positive. The second deriv-

ative, however, will observe the behavior of the first. Whilst the bubble

is doing the first turn, it is also suffering of increase in the tangent value,

that is, the second derivative is positive. When the bubble profile is ex-

panding, however, the first derivative is decreasing, up to zero, that is,

the second derivative is going negative to zero.

We have named those little pieces of the curve via naming a the first turn

and c the second. This way:

• EVEN: r′′ = r′ = 0 for z ∈ [0, a], z ∈ [d, 1];

• G.H.: r′ ≥ 0, r′′ ≥ 0 for z ∈ (c, d];

• G.L.: r′ ≥ 0, r′′ ≤ 0 for z ∈ (a, c).

For EVEN:

r(fo −B(3r2 − 1)) = 0 =⇒ Once r 6= 0, we have: f0 = B(3r2 − 1)

∴ 2B ≤ fo ≤ B(3A2 − 1),

as only possible inference from equation. r(z) = 1, or r(z) = A, in

those intervals. The contribution of the finding is then tying the solution

further.

For both (G.H.) and (G.L.) situations, we may assign:

•

T1 = 2C2r′′r2(fo −B(r2 − 1));
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•

T2 = r(fo −B(3r2 − 1))(1 + C2(r′)2);

•

T3 = −5Cr′eβ( 1
s(z)

−1).

Remark 1. Interesting enough to notice that half of the profile of the

bubble is convex, but the other half is concave. If we prefer, there might

be an s fitting the whole lot so that the bubble is S−convex up to a

certain value of A (and it is obviously less likely that we add mistake to

the analysis if we take the whole lot instead of a single piece of it).

Basically, we then have to split the problem into two parts: one where

the second derivative is non-negative (G. H.), another where the second

derivative is non-positive (G. L.), with the first derivative always non-

negative (once the tangent remains in the first quadrant).

(1) (G.H.):

In this case, once C is non-negative, but less than one (experi-

mental), B is non-negative and less than one as well, we have:

• 0 ≤ 2C2r′′r2 ≤ 2r′′A2. As for r2 − 1, we have: 0 ≤ r2 −
1 ≤ A2 − 1 =⇒ fo ≥ fo − B(r2 − 1) ≥ fo − B(A2 − 1),

or fo − B(A2 − 1) ≤ fo − B(r2 − 1) ≤ fo. This implies:

0 ≤ 2C2r′′r2(fo − B(r2 − 1)) ≤ 2r′′A2fo. As a result: 0 ≤
T1 ≤ 2r′′A2fo;

• 1 ≤ (1 + C2(r′)2) ≤ 1 + (r′)2. Also: 2B ≤ B(3r2 − 1) ≤
B(3A2− 1) =⇒ −2B ≥ −B(3r2− 1) ≥ −B(3A2− 1). As a

result: A(fo−2B) ≥ r(fo−B(3r2−1)) ≥ (fo−B(3A2−1)),

or (fo − B(3A2 − 1)) ≤ r(fo − B(3r2 − 1)) ≤ A(fo − 2B).

Finally: (fo−B(3A2−1)) ≤ r(fo−B(3r2−1))(1+C2(r′)2) ≤
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A(fo − 2B)(1 + (r′)2), or (fo − B(3A2 − 1)) ≤ T2 ≤ (fo −
2B)(1 + (r′)2)A.

• The temperature starts hot and goes to ‘frozen’ state. With

our scaling and etc., we got s(0) = 1 as a starting value

for our temperature. Therefore, it is true that: 0 ≤ 1
s(z)

−
1 =⇒ 0 ≤ β( 1

s(z)
− 1) =⇒ 1 ≤ eβ( 1

s(z)
−1) =⇒ −5Cr′ ≥

−5Cr′eβ( 1
s(z)

−1), that is:

−5Cr′ ≥ T3. Notice that s(z) will vary from 1 to 0. This

way, it is becoming little and, with that, it is making the

ratio go to infinity, what makes the whole expression go to

negative infinity, what does not provide us with a bound for

below in this case;

• As a final result for our G. H., we find:

(In. X)

T1 + T2 + T3 ≤ 2r′′A2fo + (fo − 2B)(1 + (r′)2)A− 5Cr′.

(2) (G.L.):

In this case,

• 2r′′A2 ≤ 2C2r′′r2 ≤ 0. As for r2 − 1, we have: 0 ≤ r2 −
1 ≤ A2 − 1 =⇒ fo ≥ fo − B(r2 − 1) ≥ fo − B(A2 − 1),

or fo − B(A2 − 1) ≤ fo − B(r2 − 1) ≤ fo. This implies:

2r′′A2(fo−B(A2− 1)) ≤ 2C2r′′r2(fo−B(r2− 1)) ≤ 0. As a

result: 2r′′A2(fo −B(A2 − 1)) ≤ T1 ≤ 0;

• 1 ≤ (1 + C2(r′)2) ≤ 1 + (r′)2. Also: 2B ≤ B(3r2 − 1) ≤
B(3A2 − 1) =⇒ −2B ≥ −B(3r2 − 1) ≥ −B(3A2 − 1). As

a result: fo − 2B ≥ (fo − B(3r2 − 1)) ≥ (fo − B(3A2 − 1)),

or r(fo − B(3A2 − 1)) ≤ r(fo − B(3r2 − 1)) ≤ r(fo − 2B).

Finally: r(fo−B(3A2−1)) ≤ r(fo−B(3r2−1))(1+C2(r′)2) ≤
r(fo − 2B)(1 + (r′)2), or r(fo − B(3A2 − 1)) ≤ T2 ≤ r(fo −
2B)(1 + (r′)2).
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• From the previous case, G. H., to this one, nothing changes

regarding the temperature. Therefore, our conclusion is:

−5Cr′ ≥ T3, as before;

• As a final result for our G. L., we find:

(In. Y)

T1 +T2 +T3 ≤ r(fo− 2B)(1+ (r′)2)− 5Cr′ ≤ r(fo− 2B)(1+

(r′)2).

Summarizing and joining:

• (In. 0)

EVEN: r′′ = r′ = 0 for z ∈ [0, a], z ∈ [d, 1]:

2B ≤ fo ≤ B(3A2 − 1),

with r(z) = 1 for z ∈ [0, a], and r(z) = A, for z ∈ [d, 1];

• (In. X)

G.H.: r′ ≥ 0, r′′ ≥ 0 for z ∈ (a, c):

T1 + T2 + T3 ≤ 2r′′A2fo + (fo − 2B)(1 + (r′)2)A;

• (In. Y )

G.L.: r′ ≥ 0, r′′ ≤ 0 for z ∈ (c, d];

T1 + T2 + T3 ≤ r(fo − 2B)(1 + (r′)2), and if fo ≤ 2B, then

T1 + T2 + T3 ≤ (1 + (r′)2)A, but if fo ≥ 2B, then T1 + T2 + T3 ≤
(fo − 2B)(1 + (r′)2)A.

With all the above reasoning, we may establish some reasonable new

analytical bounds and determine them, in terms of the solution for the

equation. With a few perturbational techniques, we reach a reasonable

bound for the solution. We then suggest further perturbational work to

reach the exact solution for the equation.
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4. Solution to the equations that are bounds

• For (In. X), we get:

2r′′A2fo + (fo− 2B)(1 + (r′)2)A = 0 =⇒ r′′ = − (fo−2B)(1+(r′)2)A
2A2fo

,

that is, r′′ = −fo−2B
2Afo

− (fo−2B)(r′)2
2Afo

, which we are going to solve

later on in this very paper, and we will refer to it as Eq. X;

• For (In. Y ), we get4: (fo − 2B)(1 + (r′)2)A = 0 =⇒ (r′)2 =

2B−fo

fo−2B
= −1 =⇒ r′ = ±i, what is not acceptable. However, we

can majorize the upper bound in order to achieve a real result.

If (fo − 2B) < 0, that is, fo < 2B, we do: (fo − 2B)(1 + (r′)2)−
(fo − 2B) = 0 =⇒ (r′)2 = 0 or we assert that the constants are

tied. This will imply r′ = 0 =⇒ r(z) = k. If ever working with

definite integral and the interval, we actually get: r(1) − r(0) =

k =⇒ A − 1 = k =⇒ A = k∗, what is no real progress,

but consistent. And if fo > 2B, we add r′ to the expression

to majorize it, getting (fo − 2B)(1 + (r′)2)A = −r′ =⇒ r′ =

(2B− fo)(1 + (r′)2)A, which we shall solve later on in this paper,

and we shall call this last equation, Eq. Y .

Our progresses then, with our bounds, seem to point at analytical approx-

imations, which lead to better understanding of the constants involved, if

nothing else. We are also left with solving the equations for the bounds:

• (Eq. X)

r′′ = −fo − 2B

2Afo

− (fo − 2B)(r′)2

2Afo

;

• (Eq. Y )

r′ = (2B − fo)(1 + (r′)2)A.

We notice the most important factor, for our solutions, regarding the

bounds, is |2B − fo|.

4Iff fo 6= 2B.
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We then hold two possible situations for the inequalities above (for if

fo = 2B, we are in EVEN): either fo−2B > 0 (and, therefore, fo > 2B),

or fo − 2B < 0 (and, therefore, fo < 2B). Call the former, Case 1, and,

the latter, Case 2.

Assuming either Case 1 or Case 2, leads us to:

• (Eq. X)

r′′ = −fo − 2B

2Afo

− (fo − 2B)(r′)2

2Afo

.

2r′′Afo + fo − 2B + (fo − 2B)(r′)2 = 0.

Now, we do v = r′, for calculation purposes, to get:

(Eq.O) 2v′Afo + (fo − 2B)(v2 + 1) = 0.

2Afodv + (fo − 2B)(v2 + 1)dz = 0 ⇐⇒
∫

dv

1 + v2
=

2B − fo

2Afo

z + k

∴ arctan v =
2B − fo

2Afo

z + k ⇐⇒ tan

(
2B − fo

2Afo

z + k

)
= v

∴ r(z) = −ln

∣∣∣∣ cos

(
2B − fo

2Afo

z + k

)∣∣∣∣
2Afo

2B − fo

+ k.

For verification purposes, suffices remembering that
∫

dx
1+x2 =

arctan x + k.

• (Eq. Y )

r′ = (2B − fo)(1 + (r′)2)A.

Same trick as with Eq. X will apply here:

v = (2B − fo)(1 + v2)A ⇐⇒ (2B − fo)Av2 − v + A(2B − fo) = 0

∴ v =
1±

√
1− 4(2B − fo)2A2

2A(2B − fo)

r(z) =
1±

√
1− 4(2B − fo)2A2

2A(2B − fo)
z + k
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5. Conclusion

We then have that our radius function will have, according to our calcu-

lations, one in three possible behaviors:

• (EVEN) r′′ = r′ = 0 for z ∈ [0, a], z ∈ [d, 1]: r(z) = k and

2B ≤ fo ≤ B(3A2 − 1), with k ∈ {1, A};
• (G. H.) r′ ≥ 0, r′′ ≥ 0 for z ∈ (c, d]:

r(z) = −ln

∣∣∣∣ cos

(
2B − fo

2Afo

z + k

)∣∣∣∣
2Afo

2B − fo

+ k,

what is possible because of the coefficient attached to the loga-

rithm expression, which may be negative;

• (G.L.) r′ ≥ 0, r′′ ≤ 0 for z ∈ (a, c):

r(z) ≤ 1±
√

1−4(2B−fo)2A2

2A(2B−fo)
z + k.

Remark 2. Remember here that we have created an artificial

bound in order to get a real value (on the issue of second de-

rivative).
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