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Abstract

In this work, we establish, for the first time in the mathematical history,

a detailed analysis of the geometric features of S−convexity in the second

sense as first seen, in the broadest scientific media, in the hands of Hudzik

and Maligranda, in 1994, which had definitions re-written by us, with a

more convex-like looks, since 2001. We truly think S−convexity might

become a very useful tool for any field involving Real Analysis. That is

because it allows us to deal with different shapes of curves, which approach

convex functions, locally, and from above. In this sense, a huge family of

curves is found ‘orphan’ of good mathematical care. With our work, this

family gets to be included in the paradise of ‘nice’ curves to work with,

where convex ones are found.
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1 Introduction

It is widely known that convexity has got many applications, in many

different areas, including optimization. It also seems that optimization is

interesting for many different human fields. With this paper, we try to

make S−convexity ‘palatable’ to uses in optimization, just like convexity

is.

In this precursor paper, which opens way for optimization to make use

of ‘approximation’ functions to convex functions, we provide the optimiza-

tion worker with geometric tools to understand the concept of S−convexity

as well as to use the ‘limiting curve’ measurement to both classify a curve

as S−convex, determining the value of S, which would lie between 0 and

1, and start reasoning of theorems on ‘approximating’ convex functions

from above (K2
s ).

We have already obtained a few pages of good analytical results, some

of them still formally unpublished, on S−convexity and, although we do

not intend to work on optimization theories, or computational theories,

just opening way for researchers from these fields to have their additional

findings ( we do intend to progress with our analytical findings and we

might come up with a few theorems for local approximations to convexity,

studying what goes on in the neighborhood of S−convexity ).

This paper is focused only in geometric results, due to their relevance and

importance per se.

In the second section, we present our last and, hopefully, final, form of

defining S−convexity1, with all proposed symbology.

In the third section, we introduce the concept of ‘limiting curve’, which is

going to distinguish curves that are S−convex from those that are not.

In the fourth section, we write about how the choice of S affects the lim-

iting curve.

We finish our work with a short summary with the most meaningful com-

1One must pay attention here that Hudzik and Maligranda, in 1999, mentioned two kinds

of convexity. S1, as we decided to name it, is usually disregarded by literature for the not-

so-easy similarity with any sort of known, or relevant, functions properties (we will, however,

try to change this as well.
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munications.

2 Definitions and symbology

Definition of S−convex functions2

Definition 1. A function f : X− > < ∈ C1 is said to be S2−convex if

the inequality

f(λx + (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X such that X ⊂ <+.

Remark 1. f is called s2-concave if −f is s2-convex.

Definition 2. The function (f : X− > <f ) 3, f continuous, is called

convex if the inequality

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X.

Refinement on the alternative geometrical definition of convexity

Definition 3. f is called convex if the graph lies below or on the chord

between any two points, that is, for every compact interval J ⊂ I, with

boundary ∂J , and every linear function L intersecting the curve represent-

ing f graphically in two points at ∂J , we have

supJ(f − L) ≤ sup∂J(f − L)

One calls f concave if −f is convex [2].

Proposed Geometrical definition for S−convexity [5]

Theorem 1. f is called s2−convex, s 6= 1, f ≥ 0, if the graph lies below a

‘bent chord’ (L) between any two points, that is, for every compact interval

J ⊂ I, with boundary ∂J , it is true that

supJ(L− f) ≥ sup∂J(L− f)

2see [5]
3here, f means closure of <
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Proof. It is easy to see that with the assumption that f belongs to C1

there would be no doubts as to asf(x)+bsf(y) being a continuous smooth

function. It is also easy to see that a ≤ as and b ≤ bs. With that, it is

only possible that we get a ‘bent’ curve or a chord (case in which s = 1)

as a limiting defining curve for S2−convexity.

3 Limiting curve

The same way that the chord joining f(x) to f(y)-corresponding to the

verification of the convexity property of the function f in the interval

[x, y]-forms the limiting height for the curve representing f to be at, limit

included, in case f is convex ([2]), and this chord is represented by λf(x)+

(1− λ)f(y), all analytically expressed by the most usual statement of the

property of convexity, f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), there is a

‘bent’ curve representing the limiting height for the curve f to be at, limit

included, in case f is S-convex, S 6= 1 ([5]). This curve is represented by

λsf(x)+(1−λ)sf(y), for each chosen S between 0 and 1. S = 1, however,

is taken away from our writings obviously because if S = 1 one gets the

property of convexity and the chord again.

It is not difficult to intuitively see that all other values of S, once 0 <

S ≤ 1, are going to define limiting curves which approach the chord

λf(x) + (1−λ)f(y) from above: the greater the value of S, the closer the

limiting curve will be to become the mentioned chord.

The relevance of this limiting curve is extremely obvious: If we cannot

precisely define it, there is no way we can classify a curve as S−convex by

means of our naked eyes (nor even if they are not naked!). On the other

hand, in getting to know the details about such a limiting curve, such

as maximum height, one finds ways of excluding curves that are not of

that sort immediately. In understanding the exact shape of the limiting

curve, one learns how to build Geometry tools to work out S−convexity

by hand. Easy to see how such study makes computational work easy as

well.

K2
s
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From the definition, we know that this limiting curve is smooth (f is a

C1), grows from f(x), up to the middle, and then decreases to the side of

f(y), all evenly, once asf(x) = bsf(x), if one considers the set of numbers

fulfilling the relationship a + b = 1. With all this, we can be sure there is

a maximum point in this curve and this maximum point should be in the

middle of it.

4 Effects of S on the limiting curve

Our limiting curve has a few aspects to it: maximum height, length, and

local inclination. We try to deal with each one of them in a sequence:

• Height: Consider a bijection between the interval [0, 1] and the con-

vex combination λf(x)+(1−λ)f(y), which is obvious if we consider

that λ is between 0 and 1 ( In one extreme, with λ = 1, one gets

f(x). In the other extreme, with λ = 0, one gets f(y)).

For each λ and, therefore, each result λf(x) + (1 − λ)f(y), it cor-

responds a member of the domain, (λx + (1 − λ)y), whose image

should be compared to that height and should prove itself to be less

than, or equal to, it to allow the function to be classified as convex.

One knows that asf(x) + bsf(y) is a continuous curve if f is contin-

uous ( f is always continuous according to our definition ).

When a + b = 1 is under consideration in convex functions, af(x) +

bf(y) naturally spans all the interval between x and y (as well as the

interval between f(x) and f(y)). On the other hand, a, as well as b,

will definitely span [0, 1]. And as should be a continuous function, as

well as bs. A continuous function should take compact intervals into

compact intervals. If both as and f(x) are continuous, so is their

multiplication and the sum with bsf(y).If both of them have images

in compact intervals, their sum also does. With all that, we can

safely state that asf(x) + bsf(y) will span the interval [c, d], which

contains f(x) and f(y). Because both a and b span [0, 1] and as, bs

are ‘twin’ functions, the images should be exactly the same. It is

then not hard to see that as +bs should give us a compact [0, 2] as its
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range of action. In the convex case, a+b, one can see that the image

gets reduced to one, the result of that sum, via definition, being one.

That results in a chord between f(x) and f(y), also via definition.

In the exponential case, with a ratio as exponent, also easy to see

that as + bs ≥ 1 and, therefore, the counter-domain is going to be

a bit beyond [0, 1]: Say [0, 1 + δ]. Trivial, that δ = f(s). One can

also safely utter that the smaller the value of ‘s’ is, the greater the

counter-domain size obtained, that is, the value of δ itself. We can

actually state that the greater the value of ‘s’ is, the closer we are

to a+ b, the chord and, therefore, the smaller δ will be, approaching

zero rapidly. Once the peak of as + bs will occur when a = b, it is

easy to see that 2as gives us the value of δ, that is, we know ‘how

much’ our curve can vary, at most, based on reasoning over 2as.

With the limitation a + b = 1, we can choose a = 1
2

as the peak

and 21−s becomes the maximum of the interval. If s = 1, 1 is the

answer. If s = 1
2
, ≈ 1.41, and so on so forth, the most interesting

result, illustrating our analytical findings, being when s = 0.1 ( we

get ≈ 1.87 as an answer ). It is then easy to see how as s approaches

0 we get rapidly close to 2, what clearly illustrates the fact that the

limiting value for δ is 1.

We can also write things in another way to justify that fact: the

maximum of the limiting s2−curve is 21−s.

The maximum of our curve can only be found easily if f(x) and f(y)

are at the same height, once we are only interested in the limiting

curve and not in any interferences caused by the values at the ex-

tremes of the interval.

With all this in mind, it is still easy to see that a simple analysis of

as + bs = λs + (1 − λ)s = F (λ) will give us the value of λ for this

maximum ( K2
s ).

Indeed, the first derivatives of F (λ) will lead us to λ = 1
2
, as an

analytical confirmation of our earlier assertions.

One must bear in mind that our limiting curve is symmetric and, if

drawn to the middle, suffices that it is then mirrored to the other
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side. Therefore, by drawing the curve from λ = 0 to λ = 1
2
, when

the curve should reach its maximum height, we have a model for the

rest of it. And, not to be forgotten, 21−s is always the maximum

height for our curve.

• Length (How bent is the limiting curve?): It is not hard to notice

that an analysis of

f(λ) = λsX + (1− λ)sY = (λsX, (1− λ)sY ), making f(x) = X and

f(y) = Y , will give us precisely the idea of how our limiting curve

gets designed.

Simple plotters, such as Maple, will let the reader know how the

limiting curve looks like. It is also worth mentioning that, in the

case of convex functions, the result is simply 1, a straight line, 1

meaning size of the straight line joining f(x) to f(y).

The simplest way of measuring the size of the limiting curve from

f(x) to f(y) is via arc-length:

size(λ) =

∫ 1

0

√
1 +

[
df

dλ

]2

∴ size(λ) =

∫ 1

0

√
1 + (sλs−1 − s(1− λ)s−1)2

∴ size(λ) =

∫ 1

0

√
1 + s2λ2s−2 + s2(1− λ)2s−2 − 2s2λs−1(1− λ)s−1dλ.

Once we are interested on the effects of λ, we choose X almost

equal to Y , and both almost one, once they cannot be equal by

definition of S−convexity, but they might be almost the same, to

the imperceptible difference for the naked eye...

Notice that when s = 0, we get size(λ) = 1.

When s = 1, we also get size(λ) = 1.

Notice, as well, that when λ = 0 and s = 0.5, for instance, then

size(0) =
√

5
4
, and the same happens to λ = 1.

On top, if we make use of s = 0.5, and experiment two symmetrical

values, say 0.25 and 0.75 (in relation to the middle of the unitarian

interval), we will find out that the result of the function size(λ) will

not disappoint us, confirming, once more, what we stated regarding

the shape of K2
s members.
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Of course it is also possible to prove such in a generalized manner,

simply departing from an equality between what really counts in the

function formula. Suffices considering any value whose distance was

counted departing from zero, say own λ, such that 0 ≤ λ ≤ 0.5, and

its counter-part departing from one, 1− λ:

s2λ2s−2 + s2(1− λ)2s−2 − 2s2λs−1(1− λ)s−1

≈

s2(1− λ)2s−2 + s2(λ)2s−2 − 2s2(1− λ)s−1(λ)s−1,

and there we go: we have now provided an alternative analytical

deduction for our previous assertion on the shape of S-convexity!

• Local inclination: The local inclination of our limiting curve is

easily found by means of the first derivative of f(λ) = λsf(x)+ (1−
λ)sf(y). Therefore, the inclination is f ′s(λ) = sλs−1f(x) + s(1 −
λ)s−1f(y) and varies accordingly to the value of λ. Corresponding

λ, either in f ′s(λ), or in f(λ), with members of the interval [x, y]

is extremely easy, once, for each x + δ, there is a λx + (1 − λ)y

equivalent expression (recall that x and y are fixed at the beginning

of the process).

5 Conclusions

In this paper, we have provided the reader with as many geometric de-

tails as possible on the limiting curve for S−convexity, now equating its

use to that of convexity, which is just a particular case of S−convexity,

occurring when S = 1. Our work provides any reader with sufficient tools

to geometrically classify a curve as S−convex, or not, and even determine

the value of S by hand.
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