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Abstract

In this work, we establish, for the first time in the mathematical history,

a detailed analysis of the geometric features of S−Convexity in the first

sense as first seen, in the broadest scientific media, in the hands of Hudzik

and Maligranda, in 1994, which had definitions re-written by us, with a

more convex-like looks, since 2001. We truly think S−Convexity might

become a very useful tool for any field involving Real Analysis. That is

because it allows us to deal with different shapes of curves, which approach

convex functions locally, and from above. In this sense, a huge family of

curves is found ‘orphan’ of good mathematical care. With our work, this

family gets to be included in the paradise of ‘nice’ curves to work with,

where convex ones are found. One annoying ‘progress’ of this paper is that

we actually found out why the reasoning applied in Pearce and Dragomir’s

work, regarding S-Convexity in first sense being formed of non-decreasing

functions, is equivocated, therefore nullifying our previous weak referral

of that result, now with solid argumentation.
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1 Introduction

It is widely known that Convexity has got many applications, in many

different areas, including optimization. It also seems that optimization is

interesting for many different human fields. With this paper, we try to

make S−Convexity ‘palatable’ to uses in optimization, just like Convexity

is.

In this precursor paper, which opens way for optimization to make use

of ‘approximation’ functions to convex functions, we provide the optimiza-

tion worker with Geometry tools to understand the concept of S−Convexity

as well as to use the ‘limiting curve’ measurement to both classify a curve

as S−convex, determining the value of S, which would lie between 0 and

1, and start reasoning of theorems on ‘approximating’ convex functions

from above (K1
s ).

We have already obtained a few pages of good analytical results, some

of them still formally unpublished and, even though we do not intend to

work on optimization theories, or computational theories, just opening

way for researchers from those fields to have their additional findings, we

do intend to progress with our analysis work and we might come up with

a few theorems for local approximations to Convexity, studying what goes

on in the neighborhood of S−Convexity.

This paper is focused only in geometric results, due to their relevance and

importance per se.

In the second section, we present our last and, hopefully, final, form of

defining S−Convexity1, with all proposed symbology.

In the third section, we introduce the concept of ‘limiting curve’, which is

going to allow us to tell which curves are S−convex and which are not.

1One must pay attention here that Hudzik and Maligranda, in 1999, mentioned two kinds

of Convexity. S1, as we decided to name it, is usually disregarded by literature for the not-

so-easy similarity with any sort of known, or relevant, functions properties (we will, however,

try to change this as well).
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In the fourth section, we write about how the choice of S affects the lim-

iting curve.

We finish our work with a short summary with the most meaningful com-

munications.

Remark 1. From here onwards, each time we come up with a new result,

we place a F close to it to indicate it is such, and each time we prove old

statements, published in the literature, so far, are equivocated, we place

a } close to them to indicate it is such.

2 Definitions and symbology

Definition of S−convex functions2

Definition 1. A function f : X− > < is said to be s1-convex if the

inequality

f(λx + (1− λs)
1
s y) ≤ λsf(x) + (1− λs)f(y)

holds ∀λ ∈ [0, 1]; ∀x, y ∈ X; X ⊂ <+.

Remark 2. If the complementary concept is verified, then f is said to be

s1−concave.

Definition 2. A function f : X− > < ∈ C1 is said to be S2−convex if

the inequality

f(λx + (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X such that X ⊂ <+.

Remark 3. f is called s2-concave if −f is s2-convex.

Definition 3. The function (f : X− > <f ) 3, f continuous, is called

convex if the inequality

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X.

2see [4]
3here, f means closure of <
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Refinement on the alternative geometrical definition of

Convexity

Definition 4. f is called convex if the graph lies below or on the chord

between any two points, that is, for every compact interval J ⊂ I, with

boundary ∂J , and every linear function L intersecting the curve represent-

ing f graphically in two points at ∂J , we have

supJ(f − L) ≤ sup∂J(f − L)

One calls f concave if −f is convex [2].

Proposed Geometrical definition for S−Convexity [4]

Theorem 1. f is called s1−convex, s 6= 1, if the graph lies below a ‘bent

line’(L), between any two points, that is, for every compact interval J ⊂ I,

with boundary ∂J , it is true that

supJ(L− f) ≥ sup∂J(L− f)

Proof. It is easy to see that, with the assumption that f belongs to C1,

there would be no doubts as to asf(x)+bsf(y) being a continuous smooth

function. It is also easy to see that a ≤ as and b ≤ bs. However, we

have previously seen, with K2
s (refer to [6]), that when the sum of the

‘weights’ on the domain points chosen is one, the image expands to almost

2. Therefore, the ‘walk’ covered by K1
s functions would have to be, at

least for a specific s, close to zero, half, only, of the walk covered by K2
s

ones.

3 Small fixing, or refinement, in favor of

accuracy, or well-posedness, on definition

of S-Convexity

When working on this paper, a major issue came into play: the expres-

sions, for both types of S-Convexity, are actually the same, and may even

be written the same way, if the current wording of each definition is kept,
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at the exception of the constraints imposed upon a and b. However, all

which happens, from one type of constraints to the other, is that one stops

getting the sum half the way for s1, has got half of the options than the

other, as couples of possible points for (a, b). In a+b = 1, or (a, 1−a), one

gets [0, 1] covered by only present variable. In as+bs = 1, or (a, (1−as)
1
s ),

one also gets [0, 1] covered. Where they differ, more remarkably, is at the

curve defined between the images of the points of the domain considered.

In (a, 1 − a), one will get, as image boundary, (as, (1 − a)s), but in the

first type, one gets (as, (1− as)). Notice that the first term in the couple

is the same. It will vary from 0 to 1 as well, independently of the value

of s. However, (1− as) ≤ (1− a)s. (Step 1) See4:

• It is true for s = 0.5, 2 being lowest integer which may be used as

denominator.

• Suppose it is true for s = 1/n.

• Let’s prove s = 1/(n+1): (1−a1/n) ≤ (1−a)1/n. Because the basis of

both powers, present in the calculation, is either a ratio (non-passive

of simplification), or one in two integer values (0 or 1), and assuming

any of the integers will lead to immediate validation, we know that,

in between integers, it is true that: (1 − a1/(n+1)) ≤ (1 − a1/n) as

well as (1− a)1/n ≤ (1− a)1/n+1.

• Proved!

With this, not mattering the ‘s’ involved, it will always be the case that s1-

Convexity will go lower than s2-Convexity, or, at most, equal. Accompany

now the following steps of proof:

• Step 1;

• Now, let’s assume that Step 1 inequality is actually an equality. In

this case: (1 − as) = (1 − a)s. Notice that our equality could be

written the following way: (1 − 1
m

)q

= 1 −
(

1
m

)q

. After simpli-

fication in writing, we get: (m − 1)q = mq − 1. Notice now that

4We prove all for 1
n

-sort-of-ratio. Of course real numbers will fill in the gap, so that this

is not a complete proof...However, the rationals of this sort act as ‘attractors’, and we may

extend reasoning easily using continuity and sequences, so that this is enough proof.
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the only way both sides will equate is when the difference of the

fractionary powers of a natural figure and the natural figure after

it equals to one. For this to happen, we would better consider the

ratio which allows larger expansion of basis as possible. If it is not

valid in the largest, it cannot be valid, as assertion, for any other

expansion...The largest expansion is achieved when q = 0.5. In this

case, the last equality implies m − 1 = m + 1 − 2
√

m ⇐⇒ −2 =

−2
√

m ⇐⇒ 1 =
√

m ⇐⇒ m = 1;

• Therefore, 1 disregarded as possibility, (1 − as) < (1 − a)s. This

implies K2
s >> K1

s .

Another interesting observation is that f(x) =
√

x, for instance, is not a

convex function if the domain considered is [0, 1] or [0, 1]
⋃

I, where I is

any real interval of interest which allows continuity (due to the geometric

definition).

However, it will be S−convex in both senses. See:

• K2
s :

√
ax + (1− a)y ≤ √

a
√

x +
√

(1− a)
√

y ⇐⇒ ax + (1− a)y ≤
ax + (1 − a)y + 2(

√
ax(1− a)y), what is always true, given that

2(
√

ax(1− a)y) ≥ 0 always for the domain of definition of the func-

tion. Therefore, f(x) ∈ K2
0.5.

• K1
s :

√
ax + (1−√a)2y ≤ √

a
√

x + (1 − √
a)
√

y ⇐⇒ ax + (1 −
√

a)2y ≤ ax + (1 − √a)2y + 2
√

ax(1−√a)y, what is always true,

given that 2
√

ax(1−√a)y ≥ 0 always for the domain of definition

of the function. Therefore, f(x) ∈ K1
0.5.

Another not less interesting case is f(x) = − 1
10000

x2 + 1
100

x in any piece

of the real domain [0, 100]. f(x) is not convex either.

• K2
s : Suppose it is true. Then − 1

10000
(ax + (1 − a)y)2 + 1

100
(ax +

(1 − a)y) ≤ − as

10000
x2 + as

100
x − (1−a)s

10000
y2 + (1−a)s

100
y. Such implies

−asx2 − (1− a)2y2 − 2ax(1− a)y + 100ax + 100(1− a)y ≤ −asx2 +

100asx− (1−a)sy2 +100y(1−a)s. Therefore, −(1−a)2y2−2ax(1−
a)y ≤ −(1 − a)sy2. This last inequality will lead us to two values

for y: y = 0 and −(1− a)2y − 2ax(1− a) + (1− a)sy = 0 ⇐⇒ y =

2ax(1−a)

(1−a)s−(1−a)2
. We are interested in the values which will make y
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become non-positive. Therefore, once the parabola is downwards, we

are interested in y ≤ 0 or y ≥ 2ax(1−a)

(1−a)s−(1−a)2
. With such restrictions

in place, the inequality will always be verified. Therefore, f(x) ∈ K2
s ,

any s, values of y restricted, in function of x.

• K1
s : Suppose it is true. Then − 1

10000
(ax + (1− as)

1
s y)2 + 1

100
(ax +

(1− as)
1
s y) ≤ − as

10000
x2 + as

100
x− (1−as)

10000
y2 + (1−as)

100
y. Such implies

−a2x2 − (1 − as)
2
s y2 − 2ax(1 − as)

1
s y + 100(ax + (1 − as)

1
s y) ≤

−asx2+100asx−(1−as)y2+100(1−as)y. Therefore, −(1−as)
2
s y2−

2ax(1− as)
1
s y + 100(1− as)

1
s y ≤ −(1− as)y2 + 100(1− as)y. This

way we get two possible values for the roots of y: y = 0 or −(1 −
as)

2
s y−2ax(1−as)

1
s +(1−as)y = 0 ⇐⇒ y = 2ax(1−as)

1
s

(1−as)−(1−as)
2
s

. Same

reasoning as before leads us to y ≤ 0 or y ≥ 2ax(1−as)
1
s

(1−as)−(1−as)
2
s

. The

beauty of all this is that the practical results always confirm previous

deductions from Analysis. Notice that the bound for K1
s is lower

than that for K2
s , what makes s2 fit in s1, but not automatically

vice-versa, very special conditions being necessary for the fitting

process to take place.

Notice that the existence of a minimum interval, between x and y, is

necessary to keep the definition of S-Convexity viable as well...Whilst,

in Convexity, we work with same proportion, two straight lines, in S-

Convexity we work either with exponential to the limit curve and straight

line to domain, or with inverse of exponential in the domain and straight

line ‘reasoning’ in the limit curve...

There is obvious a mismatch between the proportions, and the need to

hold a minimum interval to allow the proportion to work. Before, with

Convexity, we picked ax with af(x). Now, we will pick either ax with

asf(x), or a
1
s x with af(x). This way, we need to add, to function domain,

the piece corresponding to (as − a)x, or (a
1
s − a)x, at least.

F

Definition 5. A function f : X− > < is said to be s1-convex if the

inequality

f(λx + (1− λs)
1
s y) ≤ λsf(x) + (1− λs)f(y)
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holds ∀λ ∈ [0, 1]; ∀x < y ∈ X; X ⊂ <+.

Remark 4. If the complementary concept is verified, then f is said to be

s1−concave.

Definition 6. A function f : X− > < is said to be s2-convex if the

inequality

f(λx + (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds ∀λ ∈ [0, 1]; ∀x < y ∈ X; X ⊂ <+.

Remark 5. If the complementary concept is verified, then f is said to be

s2−concave.

Notice, as well, that if we allow x = y in s2−Convexity, for instance, we

also get a further restriction which is equivocated: f(0) ≥ 0. These are

all hints that such thing cannot, possibly, happen.

4 Limiting curve

The same way that the chord joining f(x) to f(y)-corresponding to the

verification of the Convexity property of the function f in the interval

[x, y]-forms the limiting height for the curve representing f to be at, limit

included, in case f is convex ([2]), and this chord is represented by λf(x)+

(1− λ)f(y), all analytically expressed by the most usual statement of the

property of Convexity, f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), there is a

‘bent line’ representing the limiting height for the curve f to be at, limit

included, in case f is s1-convex, s1 6= 1 ([4]). This curve is represented

by λsf(x) + (1− λs)f(y), for each chosen s1 = s between 0 and 1. s = 1,

however, is taken away from our writings obviously because if s = 1 one

gets the property of Convexity and the chord again.

It is not difficult to intuitively see that all other values of s, once 0 < s ≤ 1,

are going to define limiting curves which approach the chord λf(x)+(1−
λ)f(y) from above: the greater the value of s, the closer the limiting curve

will be to becoming the mentioned chord.

The relevance of this limiting curve is extremely obvious: If we cannot

precisely define it, there is no way we can classify a curve as S−convex by
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means of our naked eyes (nor even if they are not naked!). On the other

hand, in getting to know the details about such a limiting curve, such

as maximum height, one finds ways of excluding curves that are not of

that sort immediately. In understanding the exact shape of the limiting

curve, one learns how to build Geometry tools to work out S−Convexity

by hand. Easy to see how such study makes computational work easy as

well.

K1
s

From the definition, we know that this limiting curve is smooth (f is a

C1), grows from f(x), up to the middle, and then decreases to the side

of f(y), all evenly, once asf(x) = bsf(x). With all this, we can be sure

there is a maximum point in this curve and this maximum point should

be in the middle of it, given the ‘give and take’ nature of the expression.

As the sum of the terms in L(s1) will always be one, the maximum has

to be 0.5 for each one of the parcels, so that a = b = 0.5 on its maximum

moment, and the maximum point is actually 21− 1
s .

5 Effects of S on the limiting curve

Our limiting curve has a few aspects to it: maximum height, length, and

local inclination. We try to deal with each one of them in a sequence:

• Height: Consider a bijection between the interval [0, 1] and the con-

vex combination λf(x)+(1−λ)f(y), which is obvious if we consider

that λ is between 0 and 1 ( In one extreme, with λ = 1, one gets

f(x). In the other extreme, with λ = 0, one gets f(y)).

For each λ and, therefore, each result λf(x) + (1 − λ)f(y), it cor-

responds a member of the domain, (λx + (1 − λ)y), whose image

should be compared to that height and should prove itself to be less

than, or equal to, it to allow the function to be classified as convex.

One knows that asf(x) + bsf(y) is a continuous curve if f is contin-

uous ( f is always continuous according to our definition ).

When a + b = 1 is under consideration in convex functions, af(x) +

bf(y) naturally spans all the interval between x and y (as well as the
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interval between f(x) and f(y)). On the other hand, a, as well as b,

will definitely span [0, 1]. And as should be a continuous function,

as well as bs. A continuous function should take compact intervals

into compact intervals. If both as and f(x) are continuous, so is

their multiplication and the sum with bsf(y).If both of them have

images in compact intervals, their sum also does. With all that, we

can safely state that asf(x) + bsf(y) will span the interval [c, d],

which contains f(x) and f(y). Because both a and b span [0, 1] and

as, bs are ‘twin’ functions, the images should be exactly the same.

It is then not hard to see that as + bs should give us a compact [0, 2]

as its range of action whenever {a, b} ⊂ [0, 1]. However, we limit

the value to 1, in order to hold similar behavior to that presented

by the Convexity line: L(s1) will then be close to the straight line,

as close as it may be, still being an exponential. In the convex case,

a + b, one can see that the image gets reduced to one, the result of

that sum, via definition, being one. That results in a chord between

f(x) and f(y), also via definition. In the exponential case, with a

ratio as exponent, but with the sum limited to one by force, one

will have same size as in Convexity. Once the peak of as + bs will

occur when a = b, it is easy to see that 2as gives us the value of

the maximum. L(s1) will, however, ‘amputate’ several points from

L(s2) (all those having as + bs > 1), therefore closing lower than

L(s2). The rule does not change, what changes is points considered.

Once the limitation is made clear via definition, obvious maximum

height for L(s1) is one.

• Local inclination: The local inclination of our limiting curve is

easily found by means of the first derivative of f(λ) = λsf(x)+ (1−
λs)f(y). Therefore, the inclination is f ′s(λ) = sλs−1f(x)−sλs−1f(y)

and varies accordingly to the value of f .

}

CLAIM 1 (see [2, PEARCE, p.283]): An s1-convex function is

always non-decreasing in (0,∞), but not necessarily in [0,∞).
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Proof. So, we are basically to prove the non-veracity of CLAIM 1.

Claim 1 consists of 2 parts (non-decreasing function=part 1; where

it is non-decreasing=part 2). The non-veracity of Part 2 has already

been dealt with in [9]. The first part has been put down in this very

paper, earlier on. Not only we have provided the reader with an

actual example of an s1-function which is decreasing in the interval

claimed to be impossible bearer of such, but we also have provided

the reader with the reasons as to why such is untrue.

The Lemma which follows should settle this matter for good:

Lemma 1. In the definition of any sort of S−Convexity, it is found,

as basic enthymeme, that one cannot, ever, possibly, hold x = y, for

the soundness of their theory.

Proof. In this very paper, we mention at least one example of an

s1−convex function, which is also decreasing. Therefore, such state-

ment cannot, ever, be proven true. We now hold an essential problem

with a proof we, ourselves, got confused about, and even claimed to

have refereed, at some stage, that of Dragomir et al. regarding the

fact mentioned also at [3]. Even though the counter-example proves

the fact, we do need to find a fallacy with the proof, which is analyt-

ical. Basically, we work there with approximations, fact disregarded

by Dragomir et al. in their report of the proof. In being S-Convexity

a majorly geometric definition, as much as Convexity is, it is funda-

mental to hold at least two points in the reals, and such has to be

accompanied by a multitude of them (in the reals universe), there-

fore making it impossible for x to ‘copy’ y with perfection (or for

use to sustain that it is possible to accept x = y as possible values

to be applied to the definition). The proof is also of doubtful nature

if made to check on consistency of the Convexity definition, for in-

stance. However, we explain the fact via continuity and irrelevance

of figures coming after the decimal mark, making the values ‘the

same’.

We hold several options to go about the proof of the above Lemma:
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– Point of proof 1: Even for Convexity, making x = y in the

definition statement, seems to be analytically unsound. Notice

that we hold two coefficients for the domain points. One ‘takes’

what the other ‘puts in’, basically, making use of 1 size as basis.

The major question to be asked then is whether we could take

so little from each extreme at a point of making them be the

same, once no mathematical formulae would be well-posed if

allowing for x, y to actually mean only x. There is obviously

assumption of ‘necessity’, or ‘imperative of force’, there. This

is the explanation, or justification, via well-posedness theory;

– Point of proof 2: There is 1, which appears there as figure to

measure distance between points of the domain picked by formu-

lae as basis. The fact obvious knocks down any trial of making

x converge to y, or vice-versa. Basically, not even in Convexity,

should one make use of such a reasoning. It all sounds equivo-

cated. That is the distance between domain points being used

as argumentation;

– Point of proof 3: There seems to be ‘algebraic’ allowance

for a person to assume x = y in the domain point, which is

supposed to actually mean point between two other points (x

and y in the formulae), that is, it seems ‘algebraically’ sound to

do so. When writing x = y in the formulae, we actually notice

that, for any value of a picked, only one of the variables will

remain inside of brackets, validating that reasoning. However,

analytically, one cannot think of such. The analytical definition

is matched to a geometric definition, which is clear as to the

necessity of an ‘interval’, which is non-degenerated, in which

to measure a function as to its pertinence to the S-Convexity

group. No inconsistencies can be allowed in Analysis. Dragomir

et al. seems to change distance 1 into distance 0 between two at

least psycho-linguistically implied-to-be different points of the

domain of the function. However, 1 has to do with same line of

reasoning as that of proportion (or ‘scaling’). Can one propose
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a 0 unit factor for scaling? Do not think so...;

– Point of proof 4: The consistency of Mathematics guaran-

tees that x must be fully different from y. S-Convexity is sup-

posed to be an extension of Convexity, not mattering its sense.

Any extension must guarantee inclusion of whatever is being

extended...they both include Convexity algebraically. Allowing

x = y in their formulae, however, makes of every convex func-

tion a non-decreasing function with f(0) ≥ 0, what is absurd.

Another obvious thing is that, for s1, not even algebraically

possible such is, for there is no possible value for a in that sit-

uation.

Remark 6. Interesting enough is noticing that one should actually

find x and x in each definition of each type of S-Convexity, therefore

in the own basic definition for Convexity, as well. Making use of two

variables, instead of one, for a definition which is supposed to live

in the real domain of one dimension, is obviously mathematically

unsound. Such misconception cannot be allowed at all in Science.

Science should hold most objective language as possible, meaning

that whatever adds confusion to any definition should not be there.

The way the definition is presently found, one does not understand,

as Dr Sever and his group did not, that the concept is not living in

<2, because it actually is living there algebraically, even though that

is not the case with the geometric definition...Such fact is not an ex-

cuse, however, for a whole editorial board to accept atrocities and

publish that, exposing millions of researchers to possible exponential

growth of mistake, for it is obviously the case that an equivocated

definition, that is, in breach of rules of well-posedness, may gener-

ate as much confusion as a law which is badly written. Such has to

be fixed, and we will endeavour doing it here, hoping nobody ‘pro-

gresses’ further in ‘digression’ of Science for misunderstanding of its

foundational concepts...Our ‘ultimate fixing’ follows the proof of the

Lemma which will, once more, reassure the reader that it is impossi-

ble to accept repeated values in the construction of the domain point
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picked by the left side of the inequality of definition of any type of

S-Convexity, of which Convexity is a special case (s = 1).

Following any of the lines of reasoning above will easily justify the

assertion contained in our Lemma.

In the fixing of the definitions of S-convexity, we also add the following

Theorem, with proof in [7]:

Theorem 2. For every function in K2
s , it has to be the case that the

whole set of images is either located entirely on the positive share of the

counter-domain, or entirely on the negative share of it. In the case of the

reals, (f(x) ∈ <+)∨(f(x) ∈ <−), ∀x ∈ Df .

F

Definition 7. A function f : X− > < is said to be s1-convex if the

inequality

f(λx + (1− λs)
1
s (x + δ)) ≤ λsf(x) + (1− λs)f(x + δ)

holds ∀λ ∈ [0, 1]; ∀x ∈ X; X ⊂ <+, for all fixed δ ∈ <∗+, δ ≥ (0.5− 0.5
1
s ).

Remark 7. If the complementary concept is verified, then f is said to be

s1−concave.

Definition 8. A function f : X− > <+∨<− is said to be s2-convex if

the inequality

f(λx + (1− λ)f(x + δ)) ≤ λsf(x) + (1− λ)sf(x + δ)

holds ∀λ ∈ [0, 1]; ∀x ∈ X; X ⊂ <+, for all fixed δ ∈ <∗+, δ ≥ (0.5s − 0.5).

Remark 8. If the complementary concept is verified, then f is said to be

s2−concave.

Remark 9. In being Convexity a special case of either of the definitions

above, or of both, we do not need to ever use the definition of convex

function anymore in the literature. We may simply replace it with its

extension, and work with them always as a family of functions, rather

than a split group.
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6 On inconsistency of denominations, or

referents, or sigmatoids, in Science: S-

Convexity

Apparently, as seen on [10], a group of researchers from Statistics have

missed out not doing enough survey, and came up with new definition

for an old mathematical expression. Unfortunately, that generates incon-

sistency in Science, and the ones to fix denomination have to be those

with most recent definitions. In quick consultation to [11], one finds out

that, with I. Prof. M. Denuit, the name S−Convexity appears by 1997.

That means re-defining the mathematical concept which became better

known in the scientific media by Hudzik and Maligranda’s paper, concept

created well before that decade (Hudzik’s paper dates from 1994): Such is

unethical. We do not hold inspecting bodies for ethics in Mathematics, or

Statistics, what makes our progress, in those pieces of Science, something

very unlikely to happen with consistency. However, common sense would

definitely lead Dr. Denuit, and fellows, to modify the symbol currently

used to designate their concept, which differs substantially from the one of

equal name in Mathematics. Basically, in their work, S-Convexity relates

to stochastic processes, majorly. The value of S there differs substantially

from the mathematical value. On top of that, it has to do with time series

and, therefore, evolution in time of something (like the stock market). The

properties of his defined processes are different, in nature, from those of

the mathematical concept. In Statistics, actually making more sense than

in Mathematics, they apparently have associated the name ‘S-Convexity’

to symmetric distribution: S from symmetric. However, in Mathematics,

square root of a real, for example, is an S-convex function with no sym-

metry whatsoever to it: The concepts are clearly incompatible. On top,

the word ‘ordering’ is used associated with the concept S-Convexity in the

works of Denuit et al.: Ordering is not involved in the mathematical con-

cept (In Mathematics, perhaps, at most, ordering would have to do with

the families’ members evolution (each specific value for s1, for instance)).
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To make it short, Dr. Denuit et al. must add something extra to their

current symbols (and denominations), to make them differ from those in

Mathematics, or find a way of connecting both concepts, taking Hudzik’s

definition as a basis for such.

7 Conclusions

In this paper, we have provided the reader with as many geometric details

as possible on the limiting curve for s1−Convexity, now equating its use

to that of Convexity, which is just a particular case of s1−Convexity,

occurring when s1 = 1. Our work provides any reader with sufficient

tools to geometrically classify a curve as s1−convex, or not, and even

determine the value of s1 by hand.

As a side extraordinary result, we get to fix the definition of Convexity,

to a palatable definition, in terms of Real Analysis.

Results observed, we seem to have completed the foundational share for

S−Convexity, in the Cartesian universe. Future work shall bring more on

Jensen’s inequality (continuous versions), as well as on Complex Analysis.
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