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Abstract: In this one more precursor paper, we deal with one specific model

which is currently found in the literature on S−convex functions: polynomial.

We not only review this model, making it look more mathematically solid, but

we also extend it a bit further. On top of that, side remarks of quality are

made regarding the subject.
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1. Introduction

In this paper, we deal with a few issues related to models proclaimed to gen-

erate S−convex functions, that is, with theorems, which are already found

in the literature regarding that. In the lines which follow, we investigate the

polynomial model in depth, criticizing it and fixing it, as well as extending it.



Generators

U. R1.: Related problems found in the literature

U. R.: PROBLEM 1) Basic model: how good, or adequate, it actually is?

Regarding polynomial models, what is found in the literature so far is:

From Dragomir and Pierce [1], page 283:

M) For 0 < s < 1, {a, b, c} ∈ <, u ∈ <+, take M to be:

f(u) = a, u = 0

and

f(u) = bus + c, u > 0.

U. R.: PROBLEM 2) Conditions of fitting found in the literature so far:

Are they correct?

1.B) Generators for s1−functions

1.B.1) If, in the model just mentioned, b ≥ 0 and c ≤ a, then f ∈ K1
s , which

we shall name A, that is, A will stand for set of conditions for which the func-

tional model M is a generator of examples of functions in K1
s .

1.C) Generators for s2−functions

1.C.1) In Dragomir and Pierce [1], p. 292, we read that if b > 0 and c < 0

then f 6∈ K2
s ;

1.C.2) The same source, same page, also reveals that if b ≥ 0 and 0 ≤ c ≤ a

then f ∈ K2
s .

U. R.: PROBLEM 3) From the same source, [1], p. 283, we read that if A

is found but c < a, that is, not allowing c = a, then we have a non-decreasing

1Our acronym for ‘under review’.



function in (0,∞] but not necessarily in [0,∞]. This is a severely odd remark,

once there is mathematical proof, also provided in Dragomir and Pierce [1], as

to state that any function in K1
s will fall into the non-decreasing category for

the (0,∞] case. Problem 3 has already been addressed by us in [3]. Solved.

In the sections that follow, we deal with:

• Terminology;

• Definitions;

• A simple extension, in the polynomial case, for M , as well as A, also

addressing of problems encountered;

• Conclusion.

2. Terminology

We use the same symbols and definitions presented in Pinheiro [2]:

• K1
s for the class of S-convex functions in the first sense, some S;

• K2
s for the class of S-convex functions in the second sense, some S;

• K0 for the class of convex functions;

• s1 for the variable S, 0 < S ≤ 1, used in the first definition of S-

convexity;

• s2 for the variable S, 0 < S ≤ 1, used in the second definition of S-

convexity.



Remark 1. The class of 1-convex functions is just a restriction of the class

of convex functions, that is, when X = <+,

K1
1 ≡ K2

1 ≡ K0.

3. Definitions so far

Definition 3. A function f : X− > <, f ∈ C1, is said to be s1-convex if

the inequality

f(λx + (1− λs)
1
s y) ≤ λsf(x) + (1− λs)f(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X such that X ⊂ <+.

Definition 4. f is called s2-convex, s 6= 1, if the graph lies below a ‘bent

chord’ (L) between any two points, that is, for every compact interval J ⊂ I,

with boundary ∂J , it is true that

sup
J

(L− f) ≥ sup
∂J

(L− f).

Definition 5. A function f : X− > <, in C1, is said to be s2-convex if

the inequality

f(λx + (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds ∀λ ∈ [0, 1], ∀x, y ∈ X such that X ⊂ <+.



4. New Definition

F

Definition 6. A function f : X− > <, f ∈ C1, is said to be s1-convex if

the inequality

f(λx + (1− λs)
1
s y) ≤ λsf(x) + (1− λs)f(y)

holds ∀λ ∈ [0, 1], ∀x < y ∈ X such that X ⊂ <+.

3. Simple extension, polynomial case model, and addressing of the

problems

From here onwards, each time we come up with a new result, we place a F close

to it to indicate it is such, and each time we prove old statements, published in

the literature, so far, are equivocated, we place a } close to them to indicate

it is such.

F

Theorem 6.1. K1
s is not a class formed by exclusively non-decreasing func-

tions.

Proof. There is obviously no sense in using the same member of the domain

twice in one essentially geometric definition, always referring to limit curves,

like in convexity. However, one could use that reasoning as a draft for work with

limits. Such refinement will keep their results, in terms of the K1
s group being

formed by non-decreasing functions. Suffices, then, considering the second



point as close to the first as wanted, so that there is no essential difference,

given continuity, between the second and the first point considered.

We actually kill any chances of such claim by Dragomir et al. being true with

the following Lemma:

Lemma 1. In the definition of any sort of S−convexity, it is found, as basic

enthymeme, that one cannot, ever, possibly, hold x = y, for the soundness of

their theory.

Proof. Easy examples of s1−convex functions, which are also decreasing, are

found (Take, for instance, f(x) = − 1
10000

x2 + 1
100

x in y ≥ 2ax(1−as)
1
s

(1−as)−(1−as)
2
s
).

Therefore, such a statement cannot, ever, be proven true, for validity of own

Mathematics. We now hold an essential problem with a proof we, ourselves,

got confused about, and even claimed to have refereed, at some stage, proof of

Dragomir et al., which we actually made equivocated use of at [6, P INHEIRO].

Even though the counter-example proves the fact, we do need to find a fallacy

with the proof, which is analytical. Basically, we work there with approxi-

mations, fact disregarded by Dragomir et al. in their report of the proof. In

being S-convexity a majorly geometric definition, as much as convexity is, it

is fundamental to hold at least two points in the reals, and such has to be

accompanied by a multitude of them, therefore making it impossible to accept

x = y as a possibility. The proof is also of doubtful nature if made to check on

consistency of the convexity definition, for instance. However, we explain the

fact via continuity and irrelevance of figures coming after the decimal mark,

making the values ‘the same’.

We hold several options to go about the proof of the above Lemma:

• Point of proof 1: Even for convexity, making x = y in the definition



statement, seems to be analytically unsound. Notice that we hold two

coefficients for the domain points: One ‘takes’ what the other ‘puts in’,

basically, making use of 1 size as basis. The major question to be asked

then is whether we could take so little from each extreme, at a point of

making them being the same, once no mathematical formulae would be

well-posed if using x, y to mean only x. There is obviously assumption

of ‘necessity’, or ‘imperative of force’, there. This is the explanation, or

justification, via well-posedness theory;

• Point of proof 2: There is 1, which appears there as figure to measure

distance between points of the domain picked by formulae as basis. The

fact obvious knocks down any trial of making x converge to y, or vice-

versa. Basically, not even in Convexity, should one make use of such

a reasoning. It all sounds equivocated. That is the distance between

domain points being used as argumentation;

• Point of proof 3: There seems to be ‘algebraic’ allowance for a person

to assume x = y in the domain point, which is supposed to actually

mean point between two other points (x and y in the formulae), that

is, it seems ‘algebraically’ sound to do so. When writing x = y in the

formulae, we actually notice that, for any value of a picked, only one

of the variables will remain inside of brackets, validating that reasoning.

However, analytically, one cannot think of such. The analytical definition

is matched to a geometric definition, which is clear as to the necessity of

an ‘interval’, which is non-degenerated, in which to measure a function

as to its pertinence to the S-convexity group. No inconsistencies can be

allowed in Analysis. Dragomir et al. seems to change distance 1 into



distance 0 between two supposedly different points of the domain of the

function. However, 1 has to do with same line of reasoning as that of

proportion, or ‘scaling’. Can one propose a 0 unit factor for scaling? Do

not think so...;

• Point of proof 4: The consistency of Mathematics guarantees that x must

be fully different from y. S-convexity is supposed to be an extension

of convexity, not mattering its sense. Any extension must guarantee

inclusion of whatever is being extended...they both include Convexity

algebraically. Allowing x = y in their formulae, however, makes of every

convex function a non-decreasing function with f(0) ≥ 0, what is absurd.

Another obvious thing is that, for s1, not even algebraically possible such

is, for there is no possible value for a in that situation.

Following any of the lines of reasoning above will easily justify the assertion

contained in our Lemma. With this Lemma, our assertion is trivially proven,

once Dragomir et al. makes their result out of the ‘taken-for-granted’ assump-

tion that x may be equal to y in the definition of the first sense of convexity.

F

Lemma 2. The sum of two S−convex functions is also an S−convex func-

tion.

Proof. Take f and g to be S−convex (f and g inside of the same class: either

K1
s or K2

s ). We now have: f(ax+by)+g(ax+by) ≤ as(f +g)(x)+bs(f +g)(y).

This implies (f + g)(ax+ by) ≤ as(f + g)(x)+ bs(f + g)(y), that is, the sum of

two S−convex functions is, indeed, an S−convex function, as wished for.



F

Theorem 6.2. Every s1−convex function is also s2-convex.

Proof. Proving the statement is trivial: Suppose it is not. We then will find

a such that the s1 property is verified, but s2 is not. With this, there is an

element of the domain, situated between x and y chosen for both cases, which

is higher in image than asf(x) + (1 − a)sf(y). The same element is found in

s1 in the situation of being less than asf(x) + (1 − as)f(y). Notice that this

implies such element, call it y, being in an impossible to be situation, according

to our previous proofs (asf(x) + (1− a)sf(y) < f(y) ≤ asf(x) + (1− as)f(y)).

This can never happen due to the fact, proven before, that (1−as) ≤ (1−a)s.

Therefore, K1
s ⊂ K2

s . The converse reasoning does not yield any conflict.

6.1 Past statements reviewed

• If it suffices that each member of the sum is S−convex, why would it be

necessary to hold the restrictions b ≥ 0 and c ≤ a, for one of the cases,

and {a, b, c} ∈ <, or u ∈ <+?

• The current literature seems not to account for the situations in which the

domain member is zero. Taking it to be zero will lead us, via approxima-

tion reasoning, to f(0) ≤ (as +bs)f(0). That means (1− (as +bs))f(0) ≤
0. If in K1

s , that will always be true. In the second sense, however, that

would bring us to a negative value multiplied by f(0) being non-positive.

What that means is that f(0) ≥ 0 is a mandatory condition for a func-

tion to belong to K2
s , s 6= 1. We have dealt with this issue already, even



in this very paper, earlier on.

}

Claim 1.B.1 is not true. The fact that b ≥ 0 and c ≤ a, in M, will not guar-

antee that f belongs to K1
s ,that is, A should be revisited and revised, in all.

Furthermore, if c 6= a, in M, we do not hold continuity. We have already made

this point to exhaustion. Basically, we do wish for a continuous function, it

cannot make any sense to have zero apart from rest of the domain. Such equiv-

ocated assertion may only have emerged from the same imagination scenery

in which the function would be non-decreasing for non-negative domain, with-

out zero: It is all nonsense...We believe to have already addressed this issue.

Continuity does imply closed interval in this case, and the own definition does

demand continuity, cannot go without it. The major intention in convexity

extensions is doing similar geometric job, which is basically spanning all space

of images between the images of the extremes of the domain interval chosen.

Therefore, continuity is implied by the definition, at least in the interval under

consideration.

F

Theorem 6.3. For every function in K2
s , it has to be the case that the

whole set of images is either located entirely on the positive share of the counter-

domain, or entirely on the negative share of it. In the case of the reals, (f(x) ∈
<+)∨(f(x) ∈ <−),∀x ∈ Df .

Proof. From [5], we see that the derivative of the limit curve for K2
s demands

the whole function to belong to either the positive side of the real axis entirely,

or to its negative side, entirely, with no mix allowed. This because if f(x) is



found on the positive side, but f(y) is found on the negative side of the axis, one

is left with no possible value for λ in terms of a maximum existing there, and

such is not acceptable, or compatible, with our deductions and definitions.

Remark 2. Notice that the above theorem would make of K2
s a proper

extension for convexity in particular cases of occurrence of its phenomenon

only (where the counter-domain restriction occurs originally).

F

Lemma 3. c

(
u
n

)s

+ d, where {u, d} ∈ <n
+, is an S−convex function.

Proof. Notice that d is irrelevant because one ends up with (as + bs) its value

to the right of the inequality, which is trivially bigger than, or equal to, itself,

in our case. For matters of proof, we know that as long as c is non-negative,

c is then made also irrelevant. Notice, also, that the null function will al-

ways satisfy the inequality for S−convex functions. Consider then analyzing(
ax+by

n

)s

≤ as

(
x
n

)s

+bs

(
y
n

)s

, as to its veracity. It looks trivial to infer the in-

equality is correct (raise to the inverse of the power, both sides, for instance).

The result will be verified the same way for several dimensions (see [5], for

instance, for definitions).

F

Theorem 7. A model for S−convex functions, of either sense, is S:

f(u) = a1u
s1 + a2

(
u

n

)s2

+ a3

(
u

n− 1

)s3

+ ... + am

(
u

n−m

)sm

+ am+1,



u 6= 0, 0 ≤ m < n, {m,n} ⊂ N, 0 < sn ≤ 1, (an) ⊂ <+, {u, am+1} ∈ <x
+,f in

K1
s

⋃
K2

s ; (f(x) ∈ <+)∨(f(x) ∈ <−),∀x ∈ Df , f in K2
s .

Model S models a function which is sk-convex, where k = min{s1, ..., sm}.

Proof. Lemmas plus all previously mentioned theorems entitle us to think the

theorem is accurate.

Remark 3. Notice that we do like continuous functions better, and see no

sense in defining f(0) in a way of making our S-convex function discontinuous.

On top of that, we hold a geometric definition for the concept of S-convexity;

a clear one. That definition implies continuity of the domain, as well as in the

image, so that we cannot really afford having a discontinuity there.

}

On the chance that it is possible, or necessary, to define f(0) as something

apart from the rest of the S-convex function, in terms of model:

It makes no sense at all thinking of a discontinuous S-convex, or convex, func-

tion. Perhaps a set, but not a function...Basically, the definitions are assembled

in a way to imply continuity both in the domain piece under analysis and in

the image piece resulting of the application of the function over that piece of

domain.

}

Regarding 1.C.1, b > 0 and c < 0 then f 6∈ K2
s , the assertion is trivially not

true. Take, for instance, the function:

f(0) = a0



f(u) = a1u
s + am+1,

where us ≥ 1 and a1 > 0. We then have f(ax + by) = a1(ax + by)s + am+1.

On the other hand, asf(x) = asa1x
s + asam+1 and bsf(y) = bsa1y

s + bsam+1.

Trivially, not mattering the value of the independent term, it is not relevant for

our judgment on S−convexity pertinence or not (if it is in K1
s , elimination is

direct on inequality formation; am+1 ≥ 0 guarantees the pertinence to K2
s , but

that does not imply it to be only case. If am+1 is close to zero, but less than

zero, the function of this shape should still be located in K2
s provided modulus

of the term with the variable overcomes its value), regarding the function.

As one of the infinitely many possible examples, take f(x) = 2x0.5 − 0.0001.

See: f(λx+(1−λ)y) = 2(λx+(1−λ)y)0.5−0.0001 =⇒ 2(λx+(1−λ)y)0.5−
0.0001 ≤ λ0.52x0.5 − λ0.50.0001 + (1− λ)0.52y0.5 − (1− λ)0.50.0001. By raising

both sides to the second power, the inequality is trivially verified.

}

The second assertion, in 1.C.2, b ≥ 0 and 0 ≤ c ≤ a then f ∈ K2
s , is also not

accurate. Notice that b ≥ 0 should be OK, needed condition, c ≥ 0 as well,

but there is apparently no connection between f(0) and rest, so that c ≤ a

does not make sense there.

Remark 4. Paying attention to the mentioned page, in the source, a = a0,

c = am+1, and b = a1. What is noticed then is that if discontinuity is verified,

one would have a 6= c, making odd assertion true in almost full content, missing

replacing c < a with c 6= a.



8 On the name: What is special about the S?

Basically, a very well published researcher asked us this question. In his mind,

there should be a special reason for the S to be there...However, a bit of

research on the subject, easily found condensed at [6], will prove the name

has originated on a very logical mind: both r− and R− convexity had al-

ready been defined by time of invention of the S−convexity! (one of the

citations there refers to 1972). Hudzik’s article is from 1994, Breckner’s, from

1978...Therefore, it is simply logical that next sort of convexity would be called

S−convexity...

As we have seen here, there is nothing to any of the functions which could hold

any sort of connection with the letter, in special. In Statistics, they apparently

have used it to indicate symmetry. There is a symmetry on the limit curve for

S-convexity, so that this might be useful in a lecture, for instance, making it

easy for the student to remember what S-convexity means.

As for our research power, this was all which was found to be true regarding

its choice for baptism in being born.

6. Conclusion

In this paper, we review, and fix, the basic model for S-convex functions, as

well as extend it inside of the polynomial scope. As a side result, we also

review and fix assertions, which exist in the literature, about a few properties

of the S-convex functions.
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