_ 1

Exam 1														
Prob.	1	2	3	4	5	6	7	8	9	10	11	12	EC	
Value	6	8	6	8	7	15	8	4	10	10	10	8	4	100
Points														

 $1. \ {\rm Use} \ {\rm your} \ {\rm calculator} \ {\rm to} \ {\rm evaluate} \ {\rm the} \ {\rm following} \ {\rm expressions}.$

Give at least three correct significant digits.

(a)
$$\frac{5-\pi}{\pi-4}$$

(b)
$$\frac{12 - (1.7)3^{\frac{7}{2}}}{\sqrt{6.4^3 - 2.1^2}}$$

(c)
$$\frac{6+\sqrt{8^2+24}}{15(2)}$$

2. Let a = -2.7, b = 3, and c = 5. Evaluate the following to at least three correct significant digits.

(a)
$$\frac{a^c + b}{b - a}$$

(b)
$$\frac{c + \sqrt{c^2 - a^2}}{c}$$

3. True or False, (circle one).

- (a) (T) (F) For x > 0, $\sqrt{x^2 + 9} = x + 3$.
- (b) (T) (F) If a function is 1-1, then its inverse is also 1-1.
- (c) (T) (F) $x^2 = c$ iff $x = \sqrt{c}$.

- 4. Short answer.
 - (a) Give the natural domain of $f(x) = \sqrt{x+6}$.
 - (b) If f(x) = 3x + 1, give $f^{-1}(x)$.
 - (c) What condition must a function have so that an inverse function will exist?
 - (d) If f(4) = 7, give a point on the graph of f^{-1} .
- 5. (a) Let $f(x) = (5+x)^2$. Find simpler functions, gand h, such that f(x) = g(h(x)).
 - (b) Let $k(x) = x(x+16)^2$. Give k(x+c).
- 6. For each of the following equations, choose the BEST method for solving the equation. Choose Guess and Check if and only if no other method will work. Do not solve.
 - (a) $x^2 + \sqrt{x} + 4 = 0.$ (b) $3(\frac{x}{2} + 5) = 17.$ (c) $(4x + 7)^2 + 3(x + 2) = 6.$ (d) $(4x + 1)^2(x + 7) + (4x - 1)(x + 5)^2 = 0.$
 - (e) $(4x+1)^2(x+7) + (4x-1)(x+7)^2 = 0.$

Name:_____

3

7. Here is a representative graph of f. The grid lines are one unit apart.

- (b) Solve for x: f(x) = -1.
- 8. Given the fact that $1 + 3 + 5 + 7 + ... + (2n 1) = n^2$, evaluate 1 + 3 + 5 + 7 + ... + 107.

9. Find
$$f^{-1}(x)$$
 if $f(x) = \frac{7}{5-x}$.

10. Let $f(x) = x^2 + 3x$. Simplify $\frac{f(x+h) - f(x)}{h}$.

- 11. The figure gives the location of the points (a, b) and (c, d) on a square scale. Sketch the location of the points P = (c, b) and Q = (a, -d).

12. Let $f(x) = x^2 + 3$. Solve for x: 3f(x) = f(4)f(-1).

13. (Extra Credit @ 4 point): Use the theorem in problem #8 to evaluate 79 + 81 + 83 + ... + 197.