DAMPENING INFLAMMATION BY MODULATING TLR SIGNALLING

DR. M. TARIQ JAVED PROFESSOR DEPARTMENT OF PATHOLOGY, UAF.

javedmt@gmail.com http://www.geocities.ws/mtjaved/

- Both infection and sterile tissue injury generate strong immune responses
- Among the cellular receptors that sense these danger signals, Toll-like receptors (TLRs) represent a key molecular link between
 - tissue injury
 - infection
 - inflammation

- number of **endogenous molecules** generated upon tissue injury that activate TLRs have been identified.
 - Some are intracellular molecules normally inaccessible to the immune system that are released into the extracellular milieu
 - Others are ECM molecule fragments that are released upon tissue damage or ECM molecules that are specifically upregulated in response to tissue injury
- It is also becoming apparent that PAMPs and DAMPs act in quite a different manner in order to stimulate an immune response.

Endogenous Activators of TLRs

- heat shock protein 60 (HSP60) induce cytokine synthesis through TLR4
- TLR2 and TLR4 stimulation occur by
 - Heat shock proteins (HSP70, Gp96, HSP22, HSP72, HMGB1)
 - ECM molecules (biglycan, tenascin-C, versican)
 - fragments of ECM
 - oligosaccharides of hyaluronic acid
 - heparan sulfate
- Self nucleic acids have also been described as endogenous danger signals
 - mRNA recognized by TLR3
 - Single stranded RNA sensed by TLR7 and 8
- IgG chromatin complexes recognized by TLR9

• E. coli produce many of these endogenous molecules recombinantly, and the fact that most endogenous proteins activate TLR2 and 4,

• TLR3 was also shown to recognize cells **undergoing necrosis** during acute inflammatory events

TLRs also cooperate with other families of receptors to recognize microbial ligands

- TLR2 was shown to collaborate with dectin-1 in zymosan recognition **or**
- with the macrophage receptor with collagenous structure in addition to CD14 to respond to cell wall glycolipid from Mycobacterium tuberculosis

Mechanisms of TLR Activation by DAMPs versus PAMPs

Exogenous Ligand Recognition.

- TLR can interact with a wide variety of ligands ranging from
 - proteins
 - lipoproteins
 - nucleic acids
 - saccharides, all of which of different in size and chemical properties.
- The extracellular domains (ECDs) of TLRs contain leucine-rich repeat (LRR) motifs that are responsible for PAMP recognition
- three diverse modes of exogenous ligand recognition exists by TLRs

Endogenous Ligand Recognition

- surfactant protein A was shown to down regulate peptidoglycan and zymosan induced NFκB activation and TNFα secretion by binding to the extracellular domain of TLR2
- There is also evidence that **DAMPs** require different coreceptors and accessory molecules to PAMPs
 - A first group of DAMPs requires both CD14 and MD-2
 - A second group of DAMPs requires only CD14
 - A third group comprises DAMPs that have been shown to involve only MD-2
 - A fourth group includes DAMPs that require molecules other than CD14 and MD-2, like Biglycan

TLR Signalling and Biological Outcomes

- Ligand-induced receptor homo- or heterodimerization leads the **cytoplasmic signalling domains** of TLRs to **dimerize**.
- The resulting **TIR-TIR complex** initiates downstream signaling through recruitment of specific adaptor molecules
- Five adaptors have been described so far:
 - myeloid differentiation factor 88 (MyD88),
 - MyD88-adaptor like (Mal),
 - TIR domain containing adaptor inducing IFN-beta (TRIF),
 - TRIF-related adaptor molecule (TRAM), and
 - sterile alpha and HEAT-Armadillo motifs (SARM)
- Depending on the adaptors recruited to the TLRs, two major intracellular signalling pathways can be activated by TLRs.

- The first, a MyD88-dependent pathway, is activated by all TLRs except TLR3
 - It involves the
 - IL-1R-associated kinases (IRAK),
 - IRAK-1 and IRAK-4,
 - TNF receptor-associated factor 6 (TRAF-6)
 - mitogen-activated kinases (MAPK)
 - it culminates in the activation of the transcription factor NFκB via the IkB kinase (IKK) complex.
 - In turn, NFkB mediates the **transcription** of proinflammatory cytokine genes

- The second pathway, **TRIF pathway**, is independent of MyD88 and can be activated upon stimulation of **TLR3 or 4**
 - It leads to activation of the interferon regulated factors (IRF) family of transcription factors via recruitment of TRIF and results in the synthesis of interferon (IFN)
- High Levels of DAMPs Are Associated with Human Inflammatory Disease.
- · The amelioration of inflammatory diseases occur by
 - Inhibition of DAMP Action
 - Targeted Deletion of DAMPs
 - Or use of DAMP Antagonists

References

- Takeuchi, O. & S. Akira (2010) Cell 140: 805.
- Schroder, K. & J. Tschopp (2010) Cell 140:821.
- Kingeter, L.M. & X. Lin (2012) Cell. Mol. Immunol. 9:105.
- Mogensen, T.H. (2009) Clin. Microbiol. Rev. 22:240
- Iwasaki, A. & R. Medzhitov (2004) Nat. Immunol. 5:987.
- Kawai, T. & S. Akira (2011) Immunity 34:637
- Osorio, F. & C. Reis e Sousa (2011) Immunity 34:651.
- Drummond, R.A. et al. (2011) Eur. J. Immunol. 41:276
- Ting, J.P. et al.(2008) Immunity 28:285.
- Elinav. E. et al.(2011) Immunity 34:665.
- Franchi, L. et al.(2009) Nat. Immunol. 10:241.
- Lamkanfi, M. et al. (2011) Immunol. Rev. 243:163.
- Loo, YM. & M. Gale Jr. (2011) Immunity 34:680