
Evolved Matrix Operations for Post-Processing Protein
Secondary Structure Predictions

Varun Aggarwal and Robert M. MacCallum
Stockholm Bioinformatics Center, Stockholm University, 106 91 Stockholm, Sweden

{varun,maccallr}@sbc.su.se

January 2004

Abstract

Predicting the three-dimensional structure of
proteins is a hard problem, so many have opted
instead to predict the secondary structural state
(usually helix, strand or coil) of each amino
acid residue. This should be an easier task,
but it now seems that a ceiling of around
76% per-residue three-state accuracy has been
reached. Further improvements will require the
correct processing of so-called “long-range in-
formation”. We present a novel application of
genetic programming to evolve high-level ma-
trix operations to post-process secondary struc-
ture prediction probabilities produced by the
popular, state-of-the-art neural network-based
PSIPRED by David Jones. We show that global
and long-range information may be used to
increase three-state accuracy by at least 0.26
percentage points – a small but statistically
significant difference. This is on top of the
0.14 percentage point increase already made by
PSIPRED’s built-in filters.

1 Introduction

Proteins are believed to fold to their native
states through a process driven by both lo-
cal sequence preferences and the consequences
of long-range interactions which form along
the way, for example during β-sheet forma-
tion. Currently, secondary structure prediction
(SSP) techniques predict, at best, about 76% of

residues correctly into one of three states: he-
lix, strand or coil. This quite respectable level
of performance can be seen as a reflection of
the importance of local sequence information in
the formation of structure – the predictors get
optimal results when fed information from a se-
quence window of ±7 residues only. However it
is generally agreed that substantial advances in
SSP will require long-range information to be
incorporated effectively. In the last few years,
a number of efforts have been made in this
direction[12, for a review], but it seems difficult
to break the 76% ceiling. Very recently how-
ever, Meiler and Baker[9] extracted long-range
information from predicted three-dimensional
structures, and fed this back into their sec-
ondary structure predictor. For proteins smaller
than 150 residues, they report a substantial
improvement in SSP accuracy (around 4-5%),
although the computational demands are very
high (many hours) for each prediction.

Here we explore a more modest approach
in which we post-process (and hopefully im-
prove) existing secondary structure predictions
from the program PSIPRED[4] with the aid
of long-range information. While connection-
ist machine learning techniques, like the neural
networks (NNs) used in PSIPRED, have been
shown to be the most effective way to map lo-
cal sequence information into secondary struc-
tural state, we propose that a more rule-based
approach may be best for the purpose of post-
processing. For example, nearly all proteins

1

obey this simple rule: they have either zero
or ≥ 2 strands (because unpaired strands can-
not exist in isolation). For input data, we may
choose between using symbols or continuous
variables. We chose the latter, because it is easy
to take a 3×N matrix of helix, strand and coil
“probabilities” (for each protein of N residues)
directly from PSIPRED. See the left side of Fig-
ure 1 for an overview of PSIPRED. Our aim is
to produce a set of rules/operations/filters that
transform these matrices so that they produce
better predictions. Genetic programming[7, for
an introduction] (GP) is a convenient tool for
this task, since it can produce solutions of vary-
ing size and complexity, and we do not have
to make many assumptions about the nature of
the solution.

Although the idea of evolved matrix opera-
tions was introduced to GP some time ago by
Montana[10], we have found only one practical
application in the literature[6]. Although high-
level data manipulation libraries and languages,
such as MATLAB, are designed to make life eas-
ier for human programmers and scientists, they
should also be useful in GP. In this work we
claim to be the first to integrate such a data
language (namely PDL) seamlessly into GP. We
should also point out that another GP system,
GPLAB[13], also has the potential to work on
matrix data types using MATLAB operators,
although as currently provided it handles only
scalars.

The following section describes the datasets
used to benchmark our post-processors and our
novel approach to matrix-manipulating GP. In
Section 3 we present some necessary prelimi-
nary results concerning discrete filtering of sec-
ondary structure predictions. We then investi-
gate the “added value” of long-range informa-
tion by performing local and global averaging
on the inputs for GP runs which evolve ma-
trix transformations. We show that this aver-
aging leads to an improvement in SSP accuracy
of around 0.22 percentage points (which is sig-
nificant when compared to no averaging). The
results also suggest an upper limit of about 150
residues to the extent of long-range interactions.

Finally, by combining multiple post-processors
we can make improvements of at least 0.26 per-
centage points compared to standard PSIPRED
on our datasets.

2 Methods and Data

2.1 Training Data

When benchmarking structure prediction meth-
ods it is of critical importance to ensure that
the methods have not become good at predict-
ing just one particular group of proteins (unless
membership of that group can also be predicted
confidently). In supervised learning there is the
further complication that performance can be
overestimated if test-set proteins are related in
some way to proteins used for training. We
avoid these problems firstly by taking proteins
from an ASTRAL[2] subset of protein domain
sequences of known structure from SCOP[11]
release 1.55. Within this subset, no pair of se-
quences share more than 10% identical amino
acids after being aligned with each other. This
is a stringent cutoff which counters the over-
representation problem, but we go further and
ensure that our training and testing sets do
not contain more than 10 members of the same
SCOP superfamily (these are believed to have
common ancestry). Finally, and most impor-
tantly, we ensure that no members of the same
SCOP superfamily are present in both train-
ing and testing sets. The result is a training
set containing 911 domains and a test set with
477 domains. The data is available on request
from the authors. Unless otherwise stated, each
run uses a unique training set of 500 randomly
selected domains (from the original 911 train-
ing domains), and performance figures are cal-
culated for the entire test set (for individuals
selected on the basis of training performance).

2.2 Baseline PSIPRED Predic-
tions

We used PSIPRED[4] version 2.3 with de-
fault parameters to generate our baseline sec-

2

1 0 0−1 0 2 0 0 0−2 ... 0 0 1−1 2 0 0−2−2 0

0−1 0 1 2 0 0−1 0 3 ...−1 1 0 1 0−1−3 0 2 1

3 0 1 0−1 1−1 1 1 1 ... 0 3 1 1 0−1−1 1 0 0

...

2 0−1 0−2−1 0−2−3 1 ... 2−1 0 0−2 1 4 0 1−1

NKVYQDRFESMYSKIKDPANGYFS
−−−YGQRFMWLWNKIHDPASGYFN
AKDYDARFLELYGKITDPANGYFS

0

1

strand (E)helix(H) coil (C)

0

1

strand (E)helix(H) coil (C)

CCCCEEEECC HHHCCCCCEEEECEHHHCCCCE

Y1

Y2

CCCCEEEECC HHHCCCCCEEEE HHHCCCCCCE

CCC EEEECC HHH CCCCEEEE HHH CCCHC C EE C CCC EEEECC HHH CCCCEEEE HHH CCCH CCC C C

CCC EEEECC HH CCCCEEEE HHH CCCH CCE HHHCCC EEEECC HH CCCCEEEE HHH CCCH CCE HHH

PSIPRED
NN

15 residue windows

PSI−BLAST (final iteration)

Alignment of family members:

Position specific scoring matrix:
(20 x N)

PSI−BLAST (3 iterations)

NKVYQDRFESMYSKIKDPANGYFS
(with N residues)

Protein sequence:

MAX(H,E,C) transform()

filter()

MAX(H,E,C)

built−in PSIPRED filter

GP evolved

GP evolved

3 x N matrixRaw PSIPRED output:

take difference

Fitness = +6.2%

(between 1 and 2000 sequences)

predicted SS

actual SS

(also uses NN outputs)

PSIPRED accuracy = 27/32 = 84.4% Accuracy after processing = 29/32 = 90.6%

Figure 1: Fictional example showing the flow of data through the standard PSIPRED approach (left
side) and through our evolved matrix transform() and symbolic filter() functions (right side).
MAX(H,E,C) represents the simple function which converts a 3×N matrix of real values for helix,
strand and coil into a string of H, E and C characters respectively according to the maximum value
for each residue.

3

ondary structure predictions. PSIPRED uses
PSI-BLAST[1] to find similar sequences in a
sequence database (we used the set of non-
redundant sequences called “nr”, downloaded
from the NCBI on 22 July 2002). PSIPRED
takes the positional amino acid frequency ma-
trix generated by PSI-BLAST as input, and
outputs the prediction in horizontal and vertical
format. We need the vertical format file (“.ss2”
suffix) because it contains the raw NN outputs
for each secondary structural state. The vertical
format file also contains the “final” three-state
prediction which does not correspond exactly
to the maximal network output, but is instead
the result of applying PSIPRED’s filtering rules
(discussed in Section 3.1) to the network out-
puts.

Three-state SSP accuracy is most often re-
ported as the fraction of correctly predicted
residues in the entire dataset, and is denoted
Q3. We use the DSSP program[5] in the same
way as Jones[4] to objectively define the “cor-
rect” secondary structure from 3D coordinates.
The baseline PSIPRED Q3 values for the train-
ing and test sets used here are 79.89% and
78.69%. It is not surprising that these Q3 val-
ues are higher than the widely reported 76%,
because our training and test sets are likely to
include the same or similar proteins that were
used to train the PSIPRED NNs. This unavoid-
able overtraining should not affect our results,
because it is consistent across all our data.

2.3 GP Implementation

We have used the open-source PerlGP system[8]
in this study. It has a tree representation,
is strongly typed, and evolves programs which
follow a user-defined grammar. Because the
evolved code is evaluated by the Perl inter-
preter, we can include calls to the powerful
Perl Data Language[14] (PDL) with no extra
work. The grammar provides production rules
for a piece of Perl code containing two subrou-
tine definitions: transform() and filter().
Prior to fitness evaluation, each individual con-
verts its genome to a string of code and evalu-
ates it (with Perl’s eval()), thereby redefining

these two functions for that individual. Dur-
ing fitness evaluation, these two functions are
called (from a non-evolved function) on data for
each protein in the training set. The final re-
sult is a secondary structure prediction, which
is sent to the fitness function. Figure 1 out-
lines the flow of data and demonstrates how our
fitness measure, ∆Q3, is calculated simply as
the difference in correctness between our pre-
diction and the original PSIPRED prediction:
∆Q3 = Q3GP −Q3PSIPRED.

PerlGP’s default parameters were used
throughout (including population size 2000 and
tournaments of 50 individuals of which the
fittest 20 reproduce), except for crossover and
mutation rates, which were set to 1/100 and
1/200 events per node, respectively. In all cases,
duplicate runs were performed for fixed times
(see Section 3) in parallel on “identical” ma-
chines on a Linux cluster. No migration be-
tween populations was allowed unless otherwise
stated.

2.4 PDL and Evolved Matrix
Manipulation

PDL[14] is one of a number of high-level nu-
merical data manipulation languages, of which
MATLAB is perhaps the best known. These
languages allow effortless use of arithmetic,
trigonometric, and other functions on multi-
dimensional arrays of data. The arrays are
treated just like scalars, in syntactic terms. For
example, if x is a 100× 100× 100 floating point
array, then operations like y = x + log(1 +
abs(x))) are possible. In this case, operations
are performed element-wise and the result is an
array with the same dimensions as x. Routines
are usually also available for manipulating the
matrix dimensions, slicing, rotating, and so on.

For a number of reasons, Perl is highly in-
efficient at doing calculations on large arrays.
This prompted a group of mostly astrophysi-
cists to develop the PDL Perl library so that
large arrays could be stored compactly and ma-
nipulated easily. The guts of PDL are coded in
C (like many Perl modules) and it is very fast.

4

An outline of the evolved transform() func-
tion is shown in Figure 2(a). This is where the
evolved matrix operations are performed using
PDL. The function inputs one or more 3 × N
PDL variables, initialises a 3 × N “memory”
or register matrix (with the zeroes method),
makes a copy of the first input, and then ma-
nipulates this copy (and the memory array) be-
fore returning the result. The inputs are de-
scribed in more detail in Section 3. The gram-
mar guiding the generation of the PDL manip-
ulating code is explained in Figure 2(b), and a
piece of code from a best of run individual is
given in Figure 2(c).

The reader should note that the grammar
used here does not allow arbitrary matrix arith-
metic in the sense that submatrices of different
sizes are manipulated (the application does not
seem to need this). PerlGP could be used to
evolve PDL code for such manipulations how-
ever, as long as safeguards were put in place to
handle dimension incompatibilities (as in [6]).

3 Results and Discussion

3.1 Symbolic Filters

In the following sections we will be evolving the
transform() function to manipulate the matrix
of NN outputs from PSIPRED, with the aim to
produce better predictions. In PSIPRED, the
final prediction is not a simple winner-takes-all
transformation of the NN outputs, but involves
a few hand-coded filters to clean up some of
the noise (which would produce infeasible sec-
ondary structures). One of these filters involves
the NN outputs, while the others are boolean
rules to flip the secondary structure (of a lone
strand residue surrounded by coil or helix, for
example). Unfortunately, it is not possible to
re-use PSIPRED’s filters in this study (even
though the source code is available) because the
transformed matrices are not guaranteed to be
in the range 0 to 1, and the filter using NN out-
puts might not function as intended.

Instead we used GP to find a usable set of
symbolic filters (i.e. discrete state transitions)

based on Perl’s search-and-replace function (see
Fig. 3(b) for an example of the type of filters
which could be evolved). We investigated the
effect of allowing different numbers of evolved
filters. The results are summarised in Fig-
ure 3(a). The filter() function chosen for use
in the rest of this study (and shown in Fig. 3(b))
performs very similarly to PSIPRED’s filters
(∆Q3 ≈ −0.02%).

3.2 Evolved Transforms and
Long-Range Information

3.2.1 Global and local means.

In Section 1, the cooperativity of β-sheet for-
mation was discussed, and it was suggested
that if the number of predicted strands is very
low, then those strands may be incorrectly pre-
dicted. In practice though, perhaps the number
of residues in predicted strands is more relevant,
or maybe the real-valued PSIPRED NN out-
puts. Our previous unpublished work suggested
that the global mean of each PSIPRED NN
output was possibly more useful than element-
based or residue based information. Back then,
our approach was too slow to allow enough data
to be gathered to do a proper statistical anal-
ysis. Now, with fast, evolved PDL transforms
we can perform enough runs to test the null hy-
pothesis that using the mean PSIPRED data
makes no difference at all.

But does a global mean make sense from a
protein point of view? Natural proteins of-
ten contain multiple domains, that is, subunits
which can fold independently and may have
been swapped around during evolution. β-
sheets are rarely shared between domains, and
the domains within a protein may have sharply
contrasting secondary structural content. Fur-
thermore, very long-range contacts are rare: in
our set of training proteins, only 3.2% of in-
tramolecular contacts (including strand-strand
pairings) are made between residues more than
300 residues apart. Because it is not always
possible to split a sequence correctly into sub-
domains prior to SSP, local averaging has also
been investigated using various window sizes.

5

sub transform {

get the arguments

my ($pdl1, $pdl2) = @_;

initialise $mem

my $mem = $pdl1->zeroes;

initialise $out

my $out = $pdl1->copy;

modify $out and $mem

Statement; # expand using

grammar -->

then return the result

return $out;

}

(a)

Statement ::= Statement ; [newline] Statement

Statement ::= MatrixLHS *= Matrix

Statement ::= slice(MatrixLHS, Column) *= Vector

MatrixLHS ::= $out | $mem

Column ::= 0 | 1 | 2

Matrix ::= Matrix * Matrix

Matrix ::= Matrix * Vector

Matrix ::= Matrix * Scalar

Matrix ::= rotate_horiz(Matrix, Scalar)

Matrix ::= rotate_vert(Matrix, Scalar)

Matrix ::= $out | $mem | $pdl1 | $pdl2

Vector ::= slice(Matrix, Column)

Vector ::= Vector * Vector | Vector * Scalar

Vector ::= sumover(Matrix) | minimum(Matrix)

Vector ::= rotate_vert(Vector, Scalar)

Scalar ::= Scalar * Scalar

Scalar ::= sum(Vector) | min(Vector)

Scalar ::= 0 | 1 | 2 | 3 ...

(b)

$out *= ((($pdl2 + rotate_horiz($pdl2,2) * slice($pdl2, 1)) + ((($pdl2 +

rotate_horiz($pdl2,2) * slice($pdl2,1)) + pdldiv($mem,$mem)) +

($pdl1 * $pdl2))) + (($pdl1 * $pdl2) * $pdl1));

$out -= pow(slice($mem,1),2); # does nothing ($mem still zero)

(c)

Figure 2: Generating the PDL transform() function. The basic layout of the function is given in
(a). The “evolved statements” are generated initially by following production rules from a grammar
similar to the one outlined in (b) which is given in Backus-Naur form. The grammar is heavily edited
for brevity – for example, all standard arithmetic operations are allowed (not just the element-
wise multiplication shown). Note in particular that the rotate vert() function allows access to
neighbouring residue information. In (c), an example of evolved contained in transform() is given.

A series of GP runs were performed using
the filter() function derived in Section 3.1
(and shown in Figure 3(b)), and an evolved
transform() function taking two inputs, the
raw PSIPRED output and a locally or globally
averaged version of the same data. The averag-
ing is done separately for helix, strand and coil
in a circular fashion (wrap-around ends). In
one set of runs, the second input was identical
to the first (no averaging). For each configura-
tion, mean ∆Q3 over 50 runs after 6h was cal-
culated on the test set data using the final best-
of-tournament individuals (selected on training
fitness).

The somewhat noisy peak in Figure 4 sug-
gests that applying a local mean with radius
150 to the raw PSIPRED outputs could give
better results than applying a global mean.
We have two estimates of ∆Q3 for each in-
put treatment. They are, with standard de-

viations, 0.234% (0.0423) and 0.219% (0.0482)
for local mean (150 residue window radius) and
global mean respectively. A two-sided t-test
gives the result d = 1.724, from which we con-
clude that the difference between the two ∆Q3
means is not significant at the 5% level. Iter-
ated local averaging using smaller window radii
gives similar results to global averaging (see also
Fig. 4). Because our data originates from the
mainly domain-based SCOP database, it is pos-
sible that more conclusive results could be ob-
tained using datasets containing more multi-
domain proteins. Interestingly, the peak at 150
agrees quite well with the mean size of the pro-
teins in our training set (169 residues). With
either local or global means, the improvement
in Q3 after 6h is significantly greater than that
obtained using untreated inputs (d = 17.5).

6

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 2 4 6 8 10 12

m
ea

n
Q

3
im

pr
ov

em
en

t

number of filters

fixed # filters - training
fixed # filters - testing

evolved # filters - training
evolved # filters - testing

(a)

sub filter {

my $ss = shift;

$ss =~ s/EHE/EEE/g;

$ss =~ s/EHC/ECH/g;

$ss =~ s/CEC/CCC/g;

$ss =~ s/CHC/CCC/g;

return $ss;

}

(b)

Figure 3: GP is used to find search-and-replace rules to “clean up” raw PSIPRED output. (a) Mean
final fitness values (∆Q3 after 2h, 15 runs each) for training and test sets are shown for different fixed
numbers of filters and for runs where the number of filters was variable/evolved. On the test set,
unfiltered PSIPRED output would give ∆Q3 = −0.144%. Before overtraining becomes a problem,
our symbolic filters almost reach ∆Q3 = −0.02%, which we believe is satisfactory. (b) The evolved
filter used in subsequent experiments (∆Q3 ≈ −0.02%).

3.2.2 Majority post-processors.

We performed 50 GP runs for a longer time
(24h) using the whole training set (previously
this was sampled, see Section 2.1). The in-
puts were treated with a local mean with win-
dow radius 150. Overtraining was judged not to
have occurred. The 50 best-of-final-tournament
post-processors have a mean ∆Q3 of 0.242%
on the test set and 0.264% on training (fur-
ther details in Table 1). We combine all the
post-processors, good and bad, into one using
majority voting (at each residue position). The
resulting post-processor has a ∆Q3 of 0.30% on
test data, and 0.26% on training. From this we
conclude that ∆Q3 on a large unseen data set
would be approximately 0.26–0.3%.

Put into perspective, however, a 0.3% in-
crease corresponds to just one “improved”
residue in every 333 – less than one residue per
protein on average! Indeed, there are 122 pro-
teins in our test set which undergo no change
in Q3 at all. Figure 5 shows a histogram of
the non-zero per-protein ∆Q3 values over the
test set. Many larger changes occur in the posi-
tive direction, and these are not restricted only
to the shorter proteins (for which large changes

are more likely). For example, for the SCOP
domain d1g73a (157 residues) there is a 10.8%
rise in Q3 (from 67.5% to 78.3%).

3.2.3 Per-state accuracy.

If we measure the contribution made by each
type of secondary structure to the 0.3% in-
crease in Q3 we see (in Table 1) that only
the prediction of helix and coil residues are
improved, at the expense of strand accuracy
(strand residues comprise only 20% of proteins
on average). It would clearly be desirable to
have a post-processor which made small im-
provements in all three states. We have per-
formed preliminary experiments with modified
fitness functions to encourage this. So far we
have evolved a majority post-processor with
∆Q3 = 0.24 (∆Qhelix = 0.11, ∆Qstrand = 0.11,
∆Qcoil =0.41). The modified fitness landscapes
seem to be harder to search but we anticipate
better overall solutions.

7

Table 1: Results for the majority post-processor (using 50 individuals trained for 24h)
individual post-processors majority post-processor

dataset mean ∆Q3 min ∆Q3 max ∆Q3 ∆Q3 ∆Qhelix ∆Qstrand ∆Qcoil

training set 0.264 0.203 0.301 0.26 0.22 -1.86 1.31
test set 0.242 0.124 0.299 0.30 0.24 -1.75 1.41

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250 300 350 400

m
ea

n
Q

3
im

pr
ov

em
en

t (
n=

50
)

local mean window radius

local mean
16 cycles of smoothing

no smoothing/mean
global mean

Figure 4: Locally averaged PSIPRED outputs
are given as input for GP evolved transform()

function. The mean test set fitnesses (∆Q3)
from 50 runs are shown for various windows
sizes. Averaging is applied either once, 16 times,
or not at all (as a control). The results using
a globally meaned input are also given. Local
means do not perform significantly better than
the global mean at the 5% level (see text), de-
spite the possible peak around window radius
150.

4 Final Remarks

We have made a small but statistically signif-
icant increase in SSP accuracy, as measured
by Q3 on our test set, using evolved post-
processors for PSIPRED which make use of
long-range information (global and local averag-
ing). Indisputable evidence that we have actu-
ally improved SSP could only come from exten-
sive blind testing, such as in the EVA continu-
ous evaluation experiment[3]. Because a typical
end-user would not appreciate a 0.26% increase
in Q3, this work should be viewed as the first of
a number of steps on the path to better SSP by
post-processing. In future work we will provide

 0

 20

 40

 60

 80

 100

 120

 140

-6 -4 -2 0 2 4 6 8 10 12

nu
m

be
r o

f p
ro

te
in

s

Q3 difference bins (see legend)

Figure 5: Histogram of ∆Q3 for 477 test set pro-
teins using a majority predictor which uses 50
individuals evolved for 24h. The bins are the
rounded integer values of per-protein ∆Q3. The
solid bars indicate positive changes, the dashed
bars indicate a negative change, and the 122 pro-
teins with zero change in Q3 are not shown.

GP with higher-level matrix manipulation func-
tions, such as window averaging functions (here
we applied them offline), or Fourier transforms.
We also plan to incorporate other sources of in-
formation, including contact map predictions.

References

[1] S. F. Altschul, T. L. Madden, A. A. Schaf-
fer, J. H. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman. Gapped BLAST and
PSI-BLAST: a new generation of protein
database search programs. Nuc. Ac. Res.,
25:3389–3402, 1997.

[2] S. E. Brenner, P. Koehl, and M. Levitt.
The ASTRAL compendium for protein
structure and sequence analysis. Nuc. Ac.
Res., 28(1):254–256, 2000.

8

[3] V. A. Eyrich, M. A. Marti-Renom,
D. Przybylski, M. S. Madhusudhan,
A. Fiser, F. Pazos, A. Valencia, A. Sali,
and B. Rost. EVA: continuous automatic
evaluation of protein structure prediction
servers. Bioinformatics, 17(12):1242–1243,
Dec 2001.

[4] D. T. Jones. Protein secondary structure
prediction based on position- specific scor-
ing matrices. J. Mol. Biol., 292:195–202,
1999.

[5] W. Kabsch and C. Sander. Dictionary
of protein secondary structure — pattern-
recognition of hydrogen-bonded and geo-
metrical features. Biopolymers, 22:2577–
2637, 1983.

[6] M. Keijzer. Scientific Discovery using Ge-
netic Programming. PhD thesis, Danish
Technical University, Lyngby, Denmark,
March 2002.

[7] J. R. Koza. Genetic Programming: On the
Programming of Computers by Natural Se-
lection. MIT press, Cambridge, MA, 1992.

[8] R. M. MacCallum. Introducing a Perl
Genetic Programming System: and Can
Meta-evolution Solve the Bloat Problem?
In Genetic Programming, Proceedings of
EuroGP’2003, volume 2610 of LNCS,
pages 369–378, 2003.

[9] J. Meiler and D. Baker. Coupled pre-
diction of protein secondary and tertiary
structure. Proc. Natl. Acad. Sci. USA,
100(21):12105–12110, Oct 2003.

[10] D. J. Montana. Strongly typed genetic pro-
gramming. BBN Technical Report #7866,
Bolt Beranek and Newman, Inc., 10 Moul-
ton Street, Cambridge, MA 02138, USA, 7
May 1993.

[11] A. G. Murzin, S. E. Brenner, T. Hubbard,
and C. Chothia. SCOP — a structural clas-
sification of proteins database for the in-
vestigation of sequences and structures. J.
Mol. Biol., 247:536–540, 1995.

[12] B. Rost. Review: protein secondary struc-
ture prediction continues to rise. J. Struct.
Biol., 134(2-3):204–218, 2001.

[13] S. Silva. GPLAB - A Genetic Pro-
gramming Toolbox for MATLAB.
http://www.itqb.unl.pt:1111/gplab.

[14] C. Soeller, R. Schwebel, T. J. Lukka,
T. Jenness, D. Hunt, K. Glazebrook,
J. Cerney, and J. Brinchmann. The Perl
Data Language. http://pdl.perl.org.

9

