Question 1

a. Implement in a class called "RecursionTest.java" the recursive functions described below (See the lecture notes on recursion). Use exceptions to ensure that these functions are defined for NATURAL NUMBERS ONLY.
NOTE: To assure the clarity of each recursive function we will only put the actual algorithm programmed for each functions; however, the full file of RecursionTest.java will be available on both of our websites.
· fact

public long fact (int n) throws IOException
 {

 if (1 == n || 0 == n)

 return 1;

 else

 return (n * fact(n - 1));

 }

· fib

public int fib (int n) throws IOException
{

 if (n == 1 || n == 2)

 return 1;

 else

 return (fib (n - 2) + fib (n - 1));

 }

· add

public int add (int a, int b) throws IOException
{

if (b == 0)

return a;

else

return add (a, b-1) + 1;

}

· gcd (The 2 different recursive definitions we saw in class)

One GCD:

 public int gcd1 (int a, int b) throws IOException
 {

 if (b == 0)

return a;

else

return gcd1 (b, a % b);

}

Two GCD:

public int gcd2 (int a, int b) throws IOException
{

if (a == b)

 return a;

else if (a > b)

 return gcd2 (a - b, b);

else

 return gcd2 (a, b - a);

 }
· H

public int h (int n) throws IOException
{

if (n == 1)

return 0;

else if ((n>1) && (n%2!=0))

return H(3*n+1);

else if (n%2==0)

return 1+H(n/2);

else return H(n);

}

· M
public int m (int n) throws IOException
{

if (n>100)

 return n-10;

else

return M(M(n+11));

 }

b. The topic of this question and the following is testing.

c. Implement the test cases in "RecursionTest.java." (All test cases should be successful!)
Write a set of test cases for each function using the following template:

	Test cases for function X
	
	
	

	Test
	Expected Result
	Effective Result
	Conclusion

	Test 1
	Res 1
	Res 1
	Success

	Test 2
	Res 2
	Res 2a
	Failure

Test for factorial

Test Cases for X
Expected Result
Effective Result
Conclusion

1

1

1

 Success!

2

2

2

 Success!

3

6

6

 Success!

4

 24

24

 Success!

5

 120

120

 Success!

Test for fibonacci

Test Cases for X
Expected Result
Effective Result
Conclusion

1

1

1

 Success!

2

2

2

 Success!

3

3

3

 Success!

4

 5

5

 Success!

5

 8

8

 Success!

Test for add

Test Cases for X
Expected Result
Effective Result
Conclusion

(1, 2)

3

3

 Success!

(2, 2)

4

4

 Success!

(2, 3)

5

5

 Success!

(3, 3)

 6

6

 Success!

(2, 5)

 7

7

 Success!

Test for gcd1

Test Cases for X
Expected Result
Effective Result
Conclusion

(2,10)

2

2

 Success!

(3 ,9)

3

3

 Success!

(1 -,1)

Error

Error

 Success!

 (45,50)

 5

 5

 Success!

(6 ,20)

 2

2

 Success!

Test for gcd2

Test Cases for X
Expected Result
Effective Result
Conclusion

(5,10)

 5

5

 Success!

(6 ,9)

 3

3

 Success!

(1 ,-1)

Error

Error

 Success!

 (24, 28)

 4

 4

 Success!

 (33 ,333)

 3

 3

 Success!

Test for h

Test Cases for X
Expected Result
Effective Result
Conclusion

0

1

1

 Success!

2

1

1

 Success!

17

9

9

 Success!

21

 6

6

 Success!

35

 10

10

 Success!

Test for m

Test Cases for X
Expected Result
Effective Result
Conclusion

98

91

91

 Success!

99

91

91

 Success!

100

91

91

 Success!

-1

 Error

Error

 Success!

1

 91

91

 Success!

Question 2
a. Show using a JAVA program that "+" on Strings is left-associative (in JAVA). Explain.

public string combine (string x, string y, string z)

{

x = foot; y = ball;

x + y = z;

System.out.println (“The word combined is ” +z);

}

As you can see the “+” is left-associative because the foot in football comes first; thus, making it left-associative. In java strings add by concatenating.
b. Show using a JAVA program that the assignment ("=") is right-associative (in JAVA). Explain.

public int store (int x, int y) { x = (y = 5)}

As you can see if we were to say, x = y = 5 that would make no sense in Java. However, in Java it would be x = (y = 5) thus making “=” right-associative.
Question 4
Using the grammar rules for “Integer” below develop a leftmost derivation for the integer 4520. How many steps are required? In general, how many steps are required to derive an integer with an arbitrary number, say “d”, of “Digits”?

Integer -> Digit | Integer Digit

Digit -> 0|...|9
integer → integer digit → integer digit digit → integer digit digit digit → digit digit digit digit → 4 digit digit digit → 4 5 digit digit → 4 5 2 digit → 4520

Question 5
Use the grammar below to develop parse trees for each of the following “Expressions”:

Assignment -> Identifier = Expression;

Expression -> Term | Expression + Term | Expression - Term

Term -> Factor | Term * Factor | Term / Factor

Factor -> Identifier | Literal | (Expression)

(a) (x+2)*y

 x
(b) 2*x+3/y-4

 +

 *

 4

 x
 2

(c) 1

1

Question 6
Repeat the previous exercise using the following EBNF grammar:

Assignment -> Identifier = Expression ;

Expression -> Term {[+|-]Term}*

Term -> Factor{['*'|/]Factor}*

Factor -> Identifier | Literal | (Expression)

(a) (x+2)*y

 x

(b) 2*x+3/y-4

 4

 2 x 3 y
(c) 1

1

Expression

term

term

factor

expression

expression

term

factor

factor

factor

factor

identifier

term

factor

literal

2

+

*

factor

identifier

 y

Expression

Expression

term

term

factor

factor

literal

identifier

term

factor

literal

Expression

term

factor

literal

Expression

term

factor

*

term

factor

factor

factor

factor

identifier

expression

 y

+

term

Expression

factor

term

literal

factor

identifier

2

 +

factor

term

literal

factor

 *

identifier

factor

literal

term

-

factor

literal

 /

factor

identifier

Expression

term

factor

literal

