Partner: Hector Matos

Question 1

Provide the name of a programming language of the literature that you never used and that is not cited in the lecture notes. Write a paragraph describing the name(s) of the author(s) of the language, why it was defined, the philosophy behind it and its features.

There is no one author of OpenGL, rather a company called Silicon Graphics. They were the first company to develop this language. Then in 1992 the company decided to work with other companies so the language could work on other platforms. So a review board was formed consisting of many companies such as, 3Dlabs, Apple Computer, ATI, Dell Computer, Evans & Sutherland, Hewlett-Packard, IBM, Intel, Matrox, NVIDIA, SGI and Sun Microsystems. The philosophies behind OpenGL are compatibility, easiness to use, and portability. This language was created to develop portable applications utilizing 2D and 3D interfaces. It is standard for 3D rendering and 3D hardware acceleration. OpenGL is widely used in computer games, video games, and professional 3D images and 3D effects because it works in real-time. It is able to work in real-time due to the incorporation of texturing mapping, special effects, and approximately another 250 visualization functions. One of OpenGL’s great attributes is its ability to work on all platforms, therefore making it reliable and portable. Another attribute is its ability to be utilized on all display devices. This allows the users to view and/or use the applications created by OpenGL on any size display, ranging from PCs, workstations, and supercomputers. The concept that makes OpenGL easy to use are the well structured and logical commands.

Question 2
Give a recursive definition of the subtraction of 2 natural numbers.

Diff (a,b) = if b=0

then a;

Else

Diff (a-1, b-1);

Question 3
Consider the following function defined for natural numbers.

A(0,n) = n+1

A(m,0) = A(m-1,1)

A(m,n) = A(m-1,A(m,n-1))

Compute A(0,3) and A(1,3). Show all steps.

a) A(0,3) = 3 + 1 = 4

b) A(1,3) = A(1-1, A(1, (3 -1)) = A(0, A(1,2))

 A (1,2) = A(1-1, A(1, (2-1)) = A(0, A(1,1))

 A(1,1) = A(1-1, A(1, (1-1)) = A(0, A(1,0))

 A(1,0) = A(1-1, 1) = A(0,1) = 2

 A(0,1) = 1 + 1 = 2 Now that we got a numerical value, we go back and plug 2 in for A(0,1)

 A(0,1) = 2

 A(1,0) = 2

 A(1,1) = A(0, 2) = 2 + 1 = 3

 A(1,2) = A(0, 3) = 3 + 1 = 4

 A(1,3) = A(0, 4) = 4 + 1 = 5

Question 4
Answer by true or false and explain.

If the definition of “f” is well-formed, then “f” is well-defined.

True. If we know that it is well-formed, we are safe to say that it is well-defined, according to the rules given in class, thus if it is well-formed for all n, then it is well defined for all n

If “f” is well-defined, then the definition of “f” is well-formed.

False. Just because a function is well-defined does not mean that function is well formed. Even though a function might be well-defined because it is well formed, it does not apply for the inverse.

If “f” terminates then the definition of “f” is well-formed.

True. The evaluation process will terminate if the function is well-formed

If “f” terminates then “f” is well-defined.

False. Just because a function terminates, does not shine any light on whether it is well-defined or well-formed

If “f” is well-defined, then “f” terminates.

False. A function being well-defined has not barring on whether that function will terminate.

If a definition of “f” is well-formed, then f terminates.

True. It is a given fact that if a function is well formed, it will automatically terminate.

Testing the termination of a function “g” is decidable.

True. We can test the termination of a function, given the information given on it, like that it is not well-defined for all arguments.

Question 5
f(a,b) = a if b = 0

f(a,b-1)+1 otherwise

Is this definition well-formed? Explain.

This definition is well-formed because it is possible to compute f(a,b) for all values of a and b. Also because it has a base case and a general case.

Is “f” well-defined? Explain.

This function is well-defined because it will always terminate. It is proven because regardless of the value of b, it will eventually decrease to 0. Then, when b = 0 it will terminate by returning the value of a.

Is this definition tail recursive? Explain.

It is not tail recursive because f does not fit the general format of tail recursion, which is F(x)= if c(x) then a(x) else f(p(x)).

Give an iterative definition of “f” using the method seen in class. Explain.

C(y) = b = 0

P(y) = (a, b-1)

C(y) = a

y = 1;

while (b!=0)

{

 b = b-1;

 a = a+1;

}

return a;

Question 6
Write an algorithm that permits us to test the mode of evaluation of recursive definitions in a programming language "L".

public class ModeOfEvaluationTest

{

 public static void main (String[] args) throws IOException

{

int x = 1, y = 1;

System.out.println ("This will be: " + mode (x, y));//Tells the user which mode it used.

}

public static int Mode (int x, int y)//recursive method

{

if (x == 0)

 return 0;

else

 mode (x - 1, mode (x, y));

 return 1;

}//method Mode

}//class ModeOfEvaluationTest

What is the mode of evaluation of recursive definitions in JAVA?

In JAVA, it uses the outermost evaluation because it will always terminate. If it uses the innermost evaluation, there will be a chance it will not terminate and be an infinite loop.
