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Abstract. A simple scaling law is obtained for ionization of hydrogenic targets by impact of fast
electrons. This law is shown to be exact for the first-order Born approximation whenMT � 1
(withMT the target mass) independently of the kinematical conditions considered. For high enough
target nuclear charges, the scaling is proven to be valid in a Coulomb–Born approximation (CBA)
in which correct boundary conditions are included in the initial wavefunction. The scaling formula
is also studied for an extension with correct initial boundary conditions of the model introduced
by Brauner, Briggs and Klar (BBK) in which an approximation to the exact final wavefunction
is made, taking into account properly the asymptotic Coulombic character of the interactions
between the aggregates of the collision system. In this case, the validity of the scaling is shown
for a coplanar asymmetric geometry. At high enough impact energies, the scaling law works
well for smaller target nuclear charges when the CBA and the BBK theoretical descriptions are
used.

1. Introduction

The ionization of atomic species by electron impact is one of the simplest reactions leading to
three unbound charged particles in the final channel interacting through Coulomb potentials.
This kind of reaction is of interest in many fields such as astrophysics, controlled nuclear
fusion, short-wave laser development, plasma physics and medical physics. The theoretical
description of this process is a difficult task because the motion of the three particles remains
correlated even at infinite separations due to the long range of the Coulomb forces.

In the case of neutral hydrogen targets, a model (hereafter referred to as BBK (Brauner,
Briggs and Klar)) has been developed taking into account the correct asymptotic behaviour
of the three-body problem in the final channel of the reaction [1]. A similar model was
first proposed to study ionization of hydrogen atoms by proton impact [2]. The BBK model
shows a very good agreement with experimental data [3, 4] of triple differential cross sections
(TDCS) in a coplanar asymmetric geometry in an energetic domain in which the first Born
approximation (FBA) is not able to reproduce the experiments [1].

In particular, hydrogenic ions with their simple electronic structure are easy to handle
theoretically and can bring a deeper understanding of ionization reactions of more complex
targets. However, reactions with hydrogenic systems are not easily performed. Preparation and
experimental control of the target require great effort and the related intensity problems make
this kind of measurement extremely difficult. As a result, in most ionization experiments
involving ionic targets only total and single differential cross sections have been measured
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[5–12]. In particular, measurements of the total ionization cross section from the ground
state of He+ have been performed [13, 14] as well as Li2+ [15]. Data concerning multiply
charged ions up to Ar17+ were obtained by modelling the charge evolution of ions in a
trap [16].

Only recently, advancements in experimental techniques combining heavy-ion storage
rings with electron cooling devices have made it possible to perform more elaborate
measurements in electron–ion collisions [17–19].

Experiments addressed to measured TDCS for photon-impact ionization are presently
underway [20]. It is well known that TDCS give the most detailed information about
the ionization reaction providing an excellent test to theoretical models. This fact adds
interest to the computation of TDCS for electron-impact ionization serving as a guide to
obtaining proper double, single and total cross sections and to motivate future experimental
work.

In the ionization reaction of hydrogenic targets by electron impact, the aggregates of the
collision interact asymptotically through Coulomb potentials. This complicates the theoretical
treatment of ionization of H-like targets with respect to the case of neutral atoms due to the
fact that the long-range electron–ionic target must be taken into account properly in the initial
channel of the collision. At the same time, this difficulty adds interest to the subject because
new physical effects may appear in the dynamics of the reaction. Recently, the influence of
nuclear charges and the mechanism to produce forward peaks for (e, 2e) reactions of H-like
ions were studied [21]. It has been shown that the forward peak disappears if the incident
Coulomb wave describing the electron–ionic target interaction is replaced by an incident plane
wave. These are only theoretical predictions but after the work of Marrs [17] and Moores and
Reed [22] using the super-electron beam ion trap (super EBIT) there exists some indication
that the corresponding experimental check is possible.

Some calculations have been done for ionization of hydrogenic targets but the final
wavefunction employed in these works either does not satisfy the correct asymptotic three-
body boundary conditions [23] or is suitable only for highly asymmetric collisions [24].
A generalization of the BBK approximation for hydrogenic targets has been developed
[21, 25, 26] treating the asymptotic conditions in the entry and final channels of the reaction
in the proper way. Triple differential cross sections of ionization for hydrogenic ions are
computed in the intermediate- and high-energy regimes, for coplanar symmetric and for
coplanar asymmetric geometry.

In this work, TDCS are evaluated by using the extended BBK, CBA and FBA
approximations for several hydrogenic targets. In a previous work [27], a scaling formula has
been obtained allowing comparison of BBK and FBA cross sections resulting from the impact
on hydrogen targets of projectiles with different masses. In studying TDCS for hydrogenic
targets within the frameworks of the distorted-wave Born model and a CBA approximation with
effective charges [28], Spivack and co-workers [20] found interesting qualitative similarities
in the cross sections for different target nuclear chargesZT when the excess energy of the
incident electron is scaled byZ2

T for a coplanar symmetric geometry. As a matter of fact, the
shape of the cross sections turns out to be almost the same. And this is true not only in the
case of the hydrogen isoelectronic sequence but also in the helium one. This striking feature is
revisited here and further insight is gained by deriving a scaling law for the TDCS of different
hydrogenic targets.

This paper is organized as follows. In section 2, the generalized BBK, CBA and FBA
approximations are summarized. In section 3, the scaling law is obtained. In section 4, results
and conclusions are given. Atomic units are used unless otherwise specified.
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2. Theory

The reaction of interest is

e + (ZT + e)→ e +ZT + e (1)

whereZT is the nuclear charge of the target with massMT.
At the energies considered in this work, exchange and relativistic effects are negligible.

The TDCS in the coplanar geometry is thus given by

d3σ

d�a d�b dEb
= (2π)4 ka kb

Ki
|Tif |2 (2)

whereKi , ka andkb are the momenta of the incident, the scattered and the ejected electrons,
respectively, as measured from the centre-of-mass system. In the same expression,�a and
�b are the solid angles subtended by the two outgoing electrons andEb is the energy of the
ejected electron.

For simplicity, the extended version of the BBK approximation is summarized in the
following and the CBA and FBA approximations are obtained as particular cases.

Theprior version of the transition matrix element reads

Tif = 〈9−f |Vi |9i〉 (3)

where9i and9−f are the initial wavefunction and the exact final wavefunction with correct
incoming conditions, respectively, andVi is the perturbation interaction in the initial channel.

The initial wavefunction9i is chosen as a product of a Coulomb wave and a bound
wavefunction, i.e.

9i(ra, rb) = Fc(Ki , ra) ϕ(rb) (4)

with ra andrb the Jacobi coordinates which, to the order 1/MT, denote the projectile and the
ejected electron position vectors, respectively, in a reference frame fixed to the target nucleus.
Coordinates are sketched in figure 1.

The bound state wavefunctionϕ describing the electron in the initial ground state of the
hydrogenic atom is given by

ϕ(r) = (Z3
T/π)

1/2 exp(−ZTr). (5)

The incident electron is represented by the Coulomb wavefunctionFc(Ki , ra) that is taken
to be

Fc(Ki , ra) = (2π)−3/2 exp(−παi/2) 0(1 + iαi) exp(iKi · ra)

×1F1(−iαi; 1; i(Kira −Ki · ra)) (6)

whereαi = −(ZT − 1)/Ki . This wavefunction takes into account the long-range behaviour
of the Coulomb interaction between the incident electron and the charged hydrogenic atom.

The projectile–target interactionVi is thus given by

Vi = 1

rab
− 1

ra
(7)

with rab = ra − rb. It is easy to show that this interaction vanishes asymptotically faster than
a Coulomb potential (i.e. asra tends to infinity whilerb remains finite).

The final-state wavefunction9−f is approximated as in the BBK model, i.e.

9−f ' (2π)−3 exp(ika · ra + ikb · rb)C(αPT,ka, ra) C(αeT,kb, rb) C(αeP,kab, rab) (8)
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Figure 1. Coordinates used in the text.

where the Coulomb factorsC(α,k, r) are given by

C(α,k, r) = 0(1− iα) exp(−πα/2) 1F1(iα; 1;−i(kr + k · r)) (9)

and the Sommerfeld parametersαPT, αeT andαeP are defined as

αPT = −ZT/ka

αeT = −ZT/kb

αeP= 1

2kab

(10)

with kab = ka − kb, the momentum conjugate torab.
Finally, theT-matrix element may be written as

Tif = (2π)−9/2N

(
Z3

T

π

)1/2 ∫
dra drb exp(iKi · ra − ikb · rb − ika · ra)

×1F1(−iαi; 1; i(Kira −Ki · ra)) 1F1(−iαeT; 1; i(kbrb + kb · rb))

×1F1(−iαeP; 1; i(kabrab + kab · rab)) 1F1(−iαPT; 1; i(kara + ka · ra))

×
(

1

rab
− 1

ra

)
exp(−ZTrb) (11)

where

N = 0(1 + iαeT) 0(1 + iαeP) 0(1 + iαPT) 0(1 + iαi) exp(−π/2 (αeT + αeP + αPT + αi)).

(12)
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The CBA matrix element may be obtained from equation (11) by taking the Sommerfeld
parametersαPT andαeP equal to zero. In a similar way, the FBA matrix element is obtained
by taking additionallyαi = 0 and replacing the perturbation term−1/ra by−ZT/ra. To the
order(1/MT), these terms do not collaborate in the computation ofTif in the CBA and FBA
models due to the orthogonality of the(e − T ) bound and continuum wavefunctions.

3. Scaling laws

In the following, a scaling law for the TDCS is derived. This scaling law is valid for asymmetric
collisions when the incident energy and the nuclear charge of the target are sufficiently high.

Let us consider the following scaling in the incident energy:

E
(ZT2)
i =

(
ZT2

ZT1

)2

E
(ZT1)
i (13)

which is equivalent to the following scaling in momenta:

K
(ZT2)
i =

(
ZT2

ZT1

)
K

(ZT1)
i . (14)

The upper indices indicate that the magnitudes involved are those corresponding to the impact
of an electron on a target of nuclear chargeZT. From the energy conservation law (considering
MT � 1),

1
2K

2
i − 1

2Z
2
T = 1

2k
2
a + 1

2k
2
b (15)

it can be seen that the momentaka andkb scale in the same way asKi and consequently, the
energies of the dispersed and ejected electrons,Ea andEb, respectively, also scale in the same
way. In the last formula, use has been made of the binding energyεi = −Z2

T/2 of the ground
state of a hydrogenic atom.

The Sommerfeld parametersαPT and αeT are invariant with respect to the scaling in
momenta, i.e.

α
(ZT2)
j = α(ZT1)

j (16)

wherej stands for PT and eT. In contrast, the Sommerfeld parametersαePandαi do not behave
in this way. As a matter of fact, applying the scaling to theαi parameter one obtains

α
(ZT2)
i = −ZT2 − 1

ZT2

ZT1

K
(ZT1)
i

. (17)

However, at a fixed incident energyE(ZT)
i the scaling ofαi improves asZT increases. In

this case,

α
(ZT2)
i ' − ZT1

K
(ZT1)
i

' α(ZT1)
i . (18)

Now, the scaling applied toαeP gives

α
(ZT2)
eP = 1

ZT2

ZT1

2k(ZT1)
ab

(19)

and it can be seen that this parameter does not scale. However, ifkab � 1 (coplanar asymmetric
geometry),αeP vanishes and consequently the corresponding hypergeometric function tends
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to unity. This behaviour is also valid for the hypergeometric function in the entrance channel
at high enough momentumKi independently of the target nuclear charge.

In summary, at sufficiently high nuclear target charges and incident energies,
wavefunctions and confluent hypergeometric functions scale or approximately scale. A similar
analysis leads to the same conclusions with respect to the normalization constants of the
Coulomb wavefunctions.

Let us now consider the following scaling for the independent coordinates:

r
(ZT2)
i =

(
ZT1

ZT2

)
r
(ZT1)
i (20)

wherei = a, b. According to this, the Jacobian transforms as

dr(ZT2)
a dr(ZT2)

b =
(
ZT1

ZT2

)6

dr(ZT1)
a dr(ZT1)

b . (21)

Moreover, the coordinaterab transforms in the same way asra,b.
Then, theTif matrix element scales as

T
(ZT2)
if

(
E
(ZT2)
i , E

(ZT2)
b

) = (ZT1

ZT2

)7/2

T
(ZT1)
if

((
ZT1

ZT2

)2

E
(ZT2)
i ,

(
ZT1

ZT2

)2

E
(ZT2)
b

)
. (22)

Finally, the TDCS scales as

d3σ

d�a d�b dEb

(
ZT2, E

(ZT2)
i , E

(ZT2)
b

) = (ZT1

ZT2

)6

× d3σ

d�a d�b dEb

(
ZT1,

(
ZT1

ZT2

)2

E
(ZT2)
i ,

(
ZT1

ZT2

)2

E
(ZT2)
b

)
. (23)

Keeping in mind that the FBA and CBA approximations may be obtained from the
BBK model by setting to zero the corresponding Sommerfeld parameters, it is easy to show
that the scaling formula obtained for the BBK approximation is also valid for the two first
approximations. As in the FBAαPT = αeP = αi = 0, the scaling law is exact independent
of the kinematical and geometric conditions. In the CBA whereαPT = αeP = 0, the scaling
is valid at high nuclear targets charges and incident energies for both the coplanar symmetric
and asymmetric geometry.

4. Results and conclusions

Scaled TDCS with respect to the case of He+ for coplanar asymmetric collisions are presented
in the figures. In obtaining the TDCS, a numerical technique similar to that used in previous
works on positronium formation has been employed [29]. Moreover, in order to make
the computations of TDCS easier in the case of the extended BBK model, the following
approximation has been made. In the Coulomb wavefunction given by equation (6),αi is taken
to be equal to zero. At the impact energies considered in this work, TDCS are only slightly
modified by this approximation as the influence of the long-range Coulomb interaction in the
initial channel is most important at low incident energies [25]. In contrast, the inclusion of the
projectile–electron interaction in the exit channel has been shown to contribute even at high
impact energies and must be considered in the calculations [25].

In the figures, scaled TDCS for target nuclear chargeZT = 2, 3, 4, 5 are introduced.
TDCS forZT = 20 are also shown and may be considered as a limiting case corresponding
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Figure 2. Scaled TDCS with respect to He+ for electron-impact ionization for several hydrogenic
targets, as a function of ejected angleθb. Incident energyEi = (ZT/2)2×500 eV. Ejection energy
Eb = (ZT/2)2 × 20 eV and scattering angleθa = 4◦. The positive orientation for both angles is
taken clockwise. (a) FBA and CBA results.· · · · · ·, FBA results. CBA results: He+,——. Li2+,
—�—. Be3+, —•—. B4+, —4—. Ca19+, —×—. (b) BBK results. Same notation as in (a).

to a high enough target nuclear charge. In figures 2(a) and (b), the scaled incident energy is
Ei = (ZT/2)2×500 eV, whereas in figures 3(a) and (b),Ei = (ZT/2)2×1 keV and in figures 4
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Figure 3. Same as in figure 2 butEi = (ZT/2)2 × 1 keV.

and 5,Ei = (ZT/2)2× 4 keV. In all the figures, the ejection energy isEb = (ZT/2)2× 20 eV
except in figure 5 whereEi = (ZT/2)2 × 80 eV. FBA and CBA results are presented in
figures 2(a) and 3(a) and extended BBK results are shown in figures 2(b), 3(b), 4 and 5.
The last two figures are presented to analyse the behaviour of the BBK scaling at different
asymmetric conditions. It can be seen that the scaling law works well in almost all the angular
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Figure 4. Same as in figure 3(b) but with an incident energyEi = (ZT/2)2 × 4 keV.

 

 

 

 

Figure 5. Same as figure 4 but with an ejection energyEb = (ZT/2)2 × 80 eV.

domain except in the angular region corresponding to the binary and recoil peaks where some
discrepancies are found at the lowest incident energy considered. However, these deviations
tend to disappear as the impact energy increases.
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The differences found in scaled TDCS between CBA and FBA results forEi = (ZT/2)2×
500 eV (see figure 2(a)) are a measure of the influence of the initial continuum wave factor.
They increase in the binary encounter and recoil peaks asZT increases. Discrepancies remain
between CBA and extended BBK approximations even atEi = (ZT/2)2×1 keV. For example,
the maxima of the binary encounter peaks appear aroundθb ' 54◦ in CBA and aroundθb ' 69◦

in the extended BBK model.
To sum up, a scaling law for TDCS obtained within the generalized BBK, CBA and FBA

approximations for hydrogenic targets have been presented. It is easy to show that the angular
integrated cross sections verify a similar scaling law. The total cross sectionσ verifies the
following scaling law:

σ
(
ZT2, E

(ZT2)
i

) = (ZT1

ZT2

)4

σ

(
ZT1,

(
ZT1

ZT2

)2

E
(ZT2)
i

)
. (24)

The additional scaling factor(ZT2/ZT1)
2 comes from the integration over the ejection energy

Eb. This formula is in agreement with the classical scaling law predicted by Thomson [30].
Tinschert and collaborators [15] have performed a scaling of the available experimental data
of total cross sections for hydrogenic ions following the Thomson law. They found that as
the scaled incident energy increases, the scaling becomes valid. For scaled incident energies
greater than(ZT/2)2 × 500 eV the scaling works quite well. This may give an idea of the
validity range of the present scaling law for TDCS.

The scaling law provides a simple tool to compute cross sections for hydrogenic targets
with ZT > 2 from the corresponding cross sections of He+. This may be useful in designing
future experiments with hydrogenic ions or in saving computer time in non-relativistic
calculations involving highly charged hydrogenic targets.
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