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Absiract. We show that the simple two-amplitude Blair-Anholt formula for ionization in
the presence of a nuclear resonance can be generalized to electron capture, This generali-
zation has been obtained from a fully quantum mechanical treatment by performing
approximations which are the large-angle counterpart of those used to obtain the standard
semiclassical t matrix for forward scattering. The resulting formula involves electronic
amplitudes which must be calculated for a prescribed broken straight line nuclear trajectory.
Application of this simpje two-amplitude formula to different systems shows that it is able
to describe the gross features of the electron capture across a nuclear resonance.

1. Introduction

Over the past few years considerable effort has been directed towards experimental
investigations of the energy dependence of electron capture across a nuclear resonance
(Horsdal-Pedersen et al 1982, 1987, Scheurer et al 1985, Horsdal et al 1986, Baker et
al 1987, 1988). This effort has been motivated by the fact that the wsual criterion for
a manifest interference between an elastic scattering resonance and an atomic process
(i.e. that AE =T, where AE is the atomic energy transfer and I' the nuclear width) is
more favourable to electron capture than to total ionization. For this last process,
which has been extensively studied (see Meyerhof et al 1985 for a review on the
subject), the interference structure is smeared out by the energy spread of the emitted
elecirons. Moreover, the nuciear resonances that can be studied are restricted by the
fact that the transfer energy (i.e. the ionization energy) is often almost too small to
verify the above criterion for interference phenomena {Amundsen and Jakubassa-
Amundsen 1984a). From the theoretical point of view, the interplay of nuclear and
atomic physics is of great interest because it gives additional information on the atomic
amplitudes: the relative phases and magnitudes of the capture amplitudes which
describe the various election-capture-nuciear-resonance sequenoes are now accessible
to experimental test. Unfortunately, the theoretical work on the subject is limited and,
up until now, experimental data have been only confronted with the predictions of
the large-angle strong potential Born (spe) approximation developed by Amundsen
and Jakubassa-Amundsen (1984a) and Jakubassa-Amundsen and Amundsen (1985),
The sre model leads to a three-amplitudes formula which describes the sequences etf,
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and nuclear scattering, respectively. The gross features of the interference phenomena
are well reproduced by the spB calculation.

The interplay between atomic and nuclear processes must be studied at large angles,
where the resonant scattering is not clouded by the Coulomb dispersion. From a
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semiclassical point of view, these large-angle collisions only involve small impact
parameters, and so the nuclear path can be described by a broken straight line. This
simplification of the full quantum problem has been successfully applied in the
calculation of large-angle capture probabilities in the absence of nuclear resonances
{Kocbach and Briggs 1984, Amundsen and Jakubassa-Amundsen 1984b, Maidagan
and Salin 1987, Maidagan 1988). It is interesting to extend this semiclassical view to
electron-capture processes in the presence of nuclear resonances. The aim of the present
paper is to show that this generalization can be obtained from the full quantum
formulation by performing approximations which can be seen as the large angle
counterpart of those used to obtain the standard semiclassical ¢ matrix for forward
scattering (Wilets and Wallace 1968, Bransden and Coleman 1972, Flannery and
McCann 1973). We obtain a very simple two-amplitude formula which describes the
sequence ef and fe by means of semiclassical charge exchange semi-amplitudes which
must be calculated for a prescribed broken straight line nuclear trajectory. This
two-amplitude formula is also valid for ionization and is closely related to the pioneering
Blair-Anholt expression (Blair and Anholt 1982). Our second aim is to apply the above
formulation in order to present an additional numerical reference by calculating
approximate exchange probabilities for all the systems which have been the subjects
of experimental study. In this application the approximate semi-amplitudes are calcu-
lated by using the broken straight line version of the peaking impulse approximation
(r1A). We compare our theoretical resuits with the spB ones and with experimentali
data for protons on °C, "*N, *Ne and **Ne. Atomic vnits are used throughout unless
otherwise indicated.

2. The quantum amplitude

We shall consider the capture of an electron of a heavy atom by a light bare projectile.
An independent electron model for the multi-electronic target will be assumed and
therefore we are concerned with a three-body system as a simple model for the charge
exchange process. The coordinates R, R;, R;, rr and rp are displayed in figure 1. In
order to take into account exactly the strong R dependent internuclear interaction it
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Figure 1. Coordinates for the three-body problem. Or and Op denote the centre of mass
of 1arget-electron and projectile-electron systems, respectively.
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encounter collisions for which the internuclear potential cannot be treated perturba-
tively). For this choice the total Hamiltonian reads

H:HN+HT+ Vp+ VR (1)

where Hy is the nuclear Hamiltonian which describes the internuclear motion, Hr is
the electronic Hamiltonian in the target field, V, denotes the projectile-electron
potential and Vg reflects the fact that (R, r;) are not Jacobi coordinates for the
three-body problem. It is the so-called target recoil potential and it reads

Vo= M7'P - p=—iAM<'[R, Hy]-p (2)

where p and [P are the conjugate momenta of rr and R, respectively, A is the nuclear
reduced mass and M the target nucleus mass. As My is much bigger than the projectile
mass M, the target recoil potential becomes proportional to M;/ M and therefore it
can be taken into account perturbatively. This procedure has been adopted here and
in fact we assume, with respect to the wavefunction constructions, that the target
nucleus remains at rest in the laboratory reference frame.

In order to develop a distorted-wave model let us define the initial wavefunction
by means of

XEUR, 1) = xiV(R) ¢i{rr) (3)

where x." is the outgoing nuclear scattering state with initial relative momenta k; and
¢, is the initial electronic orbital. xf] is an exact eigenstate of the nuclear Hamiltonian
Hy; it includes exactly the strong internuclear interaction so that the large-angle
deviation is adequately described.
In the same way, we write the exact final wavefunction in the form

¥i'(R, 'T)=Xi;)(R)lflf(R, rr). (4
Here xi is the ingoing nuclear scattering state with final relative momenta k;. In
writing equation {(4) we have been motivated by the following consideration. In the
standard small-angle scattering the strong dependence cn R of the total wavefunction
is contained in the phase factor exp(ik;+ R). Therefore, the substitution ¥; (R, ry) =
explik;+ R)y(R, r7) leads to the ‘electronic wavefunction’ 4, which varies slowly with
R. This fact legitimizes the standard approximation |V&,| <« k.| V et/ || which is valid
above a few keVamu™' (Wilets and Wallace 1968, Bransden and Coleman 1972,
Flannery and McCann 1973} and leads to the well known semiclassical form of the
scattering amplitude, Obviously, this is so because in forward scattering the plane wave
adequately describes the nuclear motion. For intermediate energy large-angle scattering
the nuclear evolution is adequately described by means of nuclear state yj . Therefore,
one expects a slow dependence on R of 4, in equation (4) compared with that of y\ ™.
This fact will be discussed in more detail in section 3. Farther on, we shall show that
the function ¢, is closely related to the semiclassical time-dependent electronic
wavefunction. For our present purpose suffice it to say that ¢, is chosen in order that
W™ solves the full quantum Schrédinger equation (18). The distorted initial wavefunc-
tion X!*' and the exact final wavefunction ¥}~ are subjected to the asymptotic
conditions

X & exp(ik; - R)¢,{rr)+outgoing waves (5a)
"rf;‘li[e
pi o expliky - R, )¢,(r,)+ingoing waves (5b)

>
rp finite
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where k} is the relative final momentum which is related to k; by ki = k. + v, vy being
the final relative velocity. Using the approximate relation R,=R+M p'rp we can
rewrite equation (5b) as

pio = exp(ik;- R)¢,(r,) expliv,- (r,+ R))+ingoing waves, (5¢)

rpfinite

In the above equations and in those that follow we have neglected terms of the
order of Mp'. With this choice, the scattering amplitude f;" for the charge exchange
process is

SR =-A2m) (Y7, (H - E)X{) = —AQ7) (15 +15)

15 ={xig ¥ Vexic o4 (6)

th= M3y, PxE) - (pei))

7 T &xi ¥ (Pxy poi
where ¢ ) denotes a double R and r; integration. In writing equation (6}, we have
taken into account the fact that the initial distorting potential (i.e. the projectile-target
nucleus potential) cannot produce electron capture by itself. The total energy E can
be written using the energy conservation law as

k} ki
E=y+ s,-=ﬁ+ef+%v} (7)

where ¢ and g, are the electronic energies of the initial target and final projectile
orbital, respectively.

3. The broken straight line approximation

An important fact that helps us in the scattering amplitude calculation is the large
difference between the length scales of the nuclear and the atomic phenomena. Follow-
ing the Blair-Anholt discussion (Blair and Anholt 1982) we assume the existence of
a matching radius R,, between the typical atomic and nuclear distances, R, and R,,,
respectively. For the systems and resonance energies of interest in this work typical
R, and R, lengths are 107" and 107*, respectively. These typical values can be obtained
by calculating the distance of closest approach in a zero impact parameter Coulomb
collision and the K-shell radius of the atomic target. The choice R, =5x107" splits
the R integration in an inner region R < R,,, inside of which the electronic potential
and the atomic wavefunction vary slowly, and an external domain R > R, where the
nuclear wavefunctions have reached their asymptotic values. With these considerations
in mind let us rewrite the Coulomb ¢ matrix in the form

t5= j dR xi,*(R)xi (R)A(R)

(8)
A(R)= j dry 7 (R, r1) Vo(r,)}i(ro).
The asymptotic nuclear wavefunctions have the explicit forms
xi #=exp(ik; - R)+ 1k, R) exp(ik;R)/R ©)

xi " = exp(ik,- R)+f (K, R) exp(—ikR)/R
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where £’ and 7 are nuclear scattering amplitudes and R denotes the R direction.
At this point we can make use of the slow variation of ¢, with respect to the nuclear
coordinate R. As we have put forward in section 2, the chief R-dependence of the
total wavefunction ¥} {s contained in the nuclear state x,‘, , whose typical wavelength
is Ac=2m/vA. In effect, for large-angle scattering at intermediate and high energies
the nuclear motion is well described by the nuclear state )(S‘;’ which exactly takes into
account the nucleus-nucleus potential. The R-dependence of 4, is originated in the
nuclei-electron interactions. These nuclei-electron interactions cannot significantly
change the nuclear momentum distribution owing to the smallness of the electron-
nucleus mass ratio. So the typical R wavelength of , will be very large compared
with Ac. This means that ¢, does not change appreciably when R varies in the nuclear
scale. Of course, the electron-nucleus interaction is crucial for the electronic motion
and therefore ¢ will change noticeably with R varying in the atomic scale. With these
considerations in mind, let us rewrite the ¢ matrix (8) in the following way:

IdRXaf’*(R)x“’(R)[A(R)—A(O)] (10a)

which can be justified by noting that the orthogonality of the nuclear states with k; # k,
cancels the A(0) contribution. The advantage of writing tﬁ in the form (10a) is that
the relevant contribution to the integral comes from the external domain R> R,,,. In
fact, owing to the preceding discussion the ‘electronic wavefunction’ ¢, (R, r;) can be
well approximated by #,(0, rr) for R < R,,. Therefore, the bracket in (10a) vanishes
in the inner region. This permits us to replace the nuclear states for their respective
asymptotic forms in (10a) to obtain

2.[ dR xi " *(R)x i (R A(R) — A(0)]. (10b)

In order to carry out the R integration, we can use the large kR approximation of the
plane waves in equations (9):

exp(ik- R) 211_; [8(R - k) exp(ikR)— 8(R + k) exp(—ikR)]. (11)

In our case this large kR expansion is useful because the typical k value for the systems
under consideration is 10°. Then, for R> R,,, is valid the inequality kR > 50 which
legitimizes the use of equation (11). By inserting (9) in (10) and with the help of (11)
we obtain four contributions to the R integration. Two of these integrands include the
rapidly oscillating factors exp(=i(k,+k;)R) and can be discarded. The factors
exp(xi(k,— k;)R) can be integrated over all the directions of R to give, except for the
forward direction,

tf — tC(1n)+ tC(oul)

tc(ﬁL‘J=‘—~—f”’( ,fk,, kf) J- dR exp(d:iAkR)[A(ﬂFf,-JR)—A(O)} (12)
[

where we have used the time reversal equality f'*(k;, k) =r% k,l;,, Ef It must be

noted that the broken straight line nuclear trajectory emerges at this point in the

A-argument (F k, rR). Therefore, the values of the A(R) (and therefore those of the

¥r(R, rr)) outside the broken line are not relevant for the tﬁ evaluation. The change

of the relative nuclear momenta Ak can be found from the energy conservation law (7);

Ak=(k;—k})/2k = ~(Ae/v+1v) (13)
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where Ae is the change in the orbital electronic energy and v denotes the initial or
final collision velocity. In equation (12) and in those that follow the first (second)
subindex must be related to the upper (lower) sign. At this point the connection with
the semiclassical time-dependent formalism is apparent. In fact, we can rewrite the R
integrals carrying out the change of variable R =Fut, where the upper (lower) sign
corresponds to the way in (out). By making this, we obtain

ti=—27A"'[f(E, 8)a5" + f(E, 8)a5"] (14)

where the nuclear scattering amplitudes are f(E, 5, 6)=f""(k, ffc‘,-, A?,-) and where 8 is
the angle between k&, and k, and E; ; are the nuclear energies. The electronic Coulomb
amplitudes are

Fa3

ajton) = +i [ dt exp(i(Ae +Iv) D[ A(, ;1) — A(0)]. (15)
0

The above mentioned fact, that the values of ¢/ (R, ry) outside the broken line R = v,

are not relevant at all, permits us to define a new wavefunction restricted to the

mentioned broken path. Examination of A(R) in equation (&) suggests the following

definition of this new broken straight line electronic wavefunction:

Y75 (e, 1) = exp(=ie, + 307 ) (D 41, 17) (16)

where the first (second) subindex corresponds to negative (positive) times. By means
of this, the electronic Coulomb amplitudes can be rewritten in the familiar semiclassical
form

a5 = g§ulal) 4 gGutin)
afutond = iiJ. dey S (rr, 1), Ve (er, 1) exp(~ied)d;(r)) (17}
1]

a%lo) = F (A +302) (WP (rr, 0), Volrr, 01, (re))

where Vi =—2Z /|rr—p,,t|. To obtain the inner correction aj to the Coulomb
amplitude (the so-called Coulomb sticking term) we have assumed the existence of a
xong—rangc convergence facior in the R coordinaie; in fact this has been understood
in writing equations (10). The angular bracket notation in (17} denotes the integration
over the electronic coordinates.

So far, nothing has been said about the wavefunction - except that it is related
to ¢ through equation (16). In order to identify the above amplitudes with the ones
that follow from the semiclassical picture, we must prove that the function JIBSL satisfies
the time-dependent Schrédinger equation for the prescribed nuclear potential. To this

end, we start with the full quantum Schridinger equation .
(H-EYY\ (R, 1) =0 (18}

which leads, by using equation (4), to the following equation for the ‘electronic
wavefunction 4,

[Hr+ Vo= n(R) - Ve — (2A) 7'V — (g +30)Jdp(R, #1) =0
D(R)=A""Vexi /x5y

Although the V, and V% terms both contain the small factor A™', their orders of
magnitude are very different. In effect, the typical momentum of the Coulomb wave

BSL

{19a)
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is Av. Therefore the order of magnitude of % is the same as that of . In contrast, the
small factor A™" in the V3 term is not compensated for, owing to the large typical R
wavelength of the function ¢,. This is an ‘atomic’ wavelength, as has been already
discussed in the paragraph following equation (9). So, we can neglect the small fourth
term in (19a) and write:

[Hy+ Vo= 9(R) - Vg — (&, +30") 14y (R, #7) =0. (19b)
If we make the substitution:

r(R, rr) = exP(i(Ef/U‘*’%U)R)'I’f (R, rr) {20)
we find, inserting in (19), the following equation for the new wavefunction

[Hyt Ve—n Ve —(g/v+i0)(v+in- R)IY(R, rr)=0. (21)

This equation must be integrated only along the broken straight line because the other
R values are not relevant for the t}:; calculation (see the remark following equation
(12)). The vector i can be calculated by direct derivation of the asymptotic function
)(L;)“. For R along the prescribed path, this vector becomes

n(R)=ivR (R =78 ,R) (22)

which cancels the contribution of the third term of (21) and permits us to rewrite the
gradient term as ivd/aR, where 3/dR is the directional derivative along the broken
path In writing equation (22) for the way out we have used the 1nequahty |f ke, Ky )|«

. It can be justified by the time reversal invariance |f(7'(k;, kf | =|f Mk, — k)|
that permits us to regard £~ as a back-scattering nuclear amplitude whose order of
magnitude is the same as the typical nuclear distance R,,. To write equation (22) for
the in way we have used equation (11) in order to discard the plane wave contribution.
In both cases, terms of order A~ have been neglected. Inserting (22) in (21) and using
definition (16) and variable ¢, we obtain the time-dependent Schrodinger equation for
the electron in the nuclear field:

[Hr+ V&R (rr, 1) —i0/0t]4 5 (rr, 1) = 0. (23)
This semiclassical equation must be integrated subject to the final condition
> (rr, 1) = &y (rp) expli(ny- rr—(er+30)1)] (24)

which follows from (5¢), (9) and (16).

The preceding results permit us to conclude that the Coulomb ¢ matrix t§; can be
written, for large angles, as a two-term amplitudes formula: the first term corresponds
to the electron capture on the way in with a semiclassical broken straight line amplitude
a5 and a nuclear scattering amplitude f, which must be evaluated at the final nuclear
enecrgy E; = E; — AE because the nuclei make contact with an energy loss AE = Ae +1v?
the second interference term reflects the fact that electron capture can take place on
the way out and therefore the semiclassical amplitude a5 is multiplied by the
nuclear scattering amplitude at the initial energy E.. In both cases the electronic
evolution has been separated from the nuclear evolution and must be calculated by
solving the time-dependent Schrddinger equation for a prescribed broken straight line
trajectory. There is a contribution from the inner region (see equation (17)), the
Coulomb sticking term, which takes into account the possibility of electron capture
during the compound nuclei formation. As can be seen from equation {17) this
possibility does not modify the total capture amplitude af = a7+ a§*" but it plays
an important role in the interference phenomena.
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In order to conclude this general semiclassical formalism we must rewrite the target
recoil ¢ matrix in the form of a two-amplitude term expression as in the case of the
Coulomb contribution. To this end we use the second equality of equation (2}, the
Hermiticity of the nuclear Hamiltonian Hy and the additional approximation

Hyxi Wy =Hax, Ty — A7 Vexi - Ve (25)

which has been obtained by neglecting the term (~ 2A) x,‘j VY, rYy that does not include
the strong R derivation of the nuclear wavefunction. Making this, we obtain from (6)

fﬁ = tﬁ + f}}z
th' = AAEMTNX Wy xRV b (26)
1= —MI(Vexi,), Vet X3 RV, ).

The calculation of the first term of (26) can be carried out in the same way as in the
Coulomb case. Here, the R factor cancels the recoil sticking term. We obtain once
more the equation (14) with

‘ in N AAE .
a;.uou,)__. +i J[ dt<lfl?SL(l’T9 t_)_,M—_R 'V, (rr) exp(*le,-t)). (27)

O T

In order to evaluate the second target recoil term we replace the nuclear wavefunctions
by their asymptotic forms. By neglecting the two gradient terms which do not contain
the large momenta k; we again obtain a Coulomb-type expression with

in AE+ in Feo A
R = ( N &) aRii) 4 J‘ < ‘;,BS'-, R V.. ¢ exp(- isil)>. (28)
0

Finally, using the relationship between the ¢ matrix and the scattering amplitude, we
can write

i =af"f(E, -AE, 0)+a*'f(E, 0) .
_ _ {29)
a}?ul) = a%ﬂs(oul}-‘- a ou[]+ aRl(ou\)-'— aRz(uul)

where aj and a§~ are given by equation {17) and a}' and a}’ are given by equations
(27) and (28), respectively.

It must be remarked at this point, that the present formalism is not restricted to
the charge exchange process. In fact the only reference to the final state was the
asymptotic condition (24) for the exact final wavefunction. Thus we can conclude that
there is no formal difference in the theoretical treatment of ionization and electron
capture processes and both can be described by the very simple equation (29). We
must say that a two-amplitude formula like (29) has been already applied to charge
exchange by Horsdal et al (1986). In that work its use was justified in the framework

of the imnulse annrnvlmnhnn which Pucpnfln”v describes electron canture as ionization
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to a definite momentum state of the target continuum. We have shown in the above
discussion that the connection with the ionization process is not necessary to generalize
the Blair-Anholt formula.

In large-angle measurements of electron capture the quantity of interest is not the
differential cross section but the angular electron capture probability. This probability
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can be evaluated by means of the ratio

do/dQ imf (E—AE, 8) :

= |al" —+ gy (30)
UEF " fEe
where do/d€) is the differential cross section for charge exchange. In writing (30) it

is assumed that the elastic scattering is the dominant process so that | f|* can be regarded
as the differential cross section.

P™(E, 6) =

4. Applications

In this section we apply the preceding semiclassical formalism to the evaluation of
electron capture probabilities in the presence of nuclear resonances in order to make
a comparison with experimental data. The processes that have been subjected to
experimental measurements are

(1) C(p, p)'*C at Eg=0.462 MeV ['=35KeV =0 J=}
(2) “N(p, p)*N at Ex=1.058 MeV T'=6KeV =0 Jj=3
(3 Ne(p, py*®Ne at Ex=1955MeV TI'=4KeV =2 J=3%
(4) ZNe(p, p)**Ne at Ex=1.510MeV TI'=245KeV =0 J=3

where the resonance energies Eg as well as the widths ' are given in the laboratory
reference frame. Also we include the proton angular momenta [ and the total angular
moment J of each resonance. The first two reactions have been investigated by Scheurer
et al (1985), the third reaction has been measured by Horsdal et al (1986) and the last
one by Baker et al (1987, 1988),

To evaluate semiclassical electron capture amplitudes we have selected the broken
straight line version of the peaking impulse approximation (p1a) (Kocbach and Briggs
1984). This choice is prescribed by practical reasons: firstly, the piA code is available
from previous works (Maidagan and Salin 1987, Maidagan 1988) and it reproduces
the generaf trend of experimental data at intermediate energies for two of the systems
of interest here;, secondly, the target recoil and the sticking terms can be readily
incorporated into the calculation scheme developed in the mentioned works. The ria
model can be obtained by assuming

7%t = ¢ (0) 9y, (rr) exp(—izv’s) (1)

where qbi,;’ is an ingoing Coulomb state with momentum v, for all the time. The reader
is referred to Kocbach and Briggs (1984) for a physical discussion of this choice and
to Maidagan (1988) for the details of the numerical calculation. The sticking and the
target recoil contributions can be evaluated without difficulty by employing the tech-
niques developed by Maidagan (1988) (afi’ cancels for this choice).

The orbitals of the ground states of the target are described by a linear combination
of Slater orbitals, as calculated by Clementi and Roetti (1974) in their table 1. The
effective target distortion charge of the ingoing Coulomb state ¢}’ has been chosen
following the criterion of Belkié¢ et al (1979): ZZ=—2nis;, where & and n; are the
energy and the principal quantum number of the initial orbital, respectively. In the
description of the resonant nuclear scattering we have used a sum of pure Coulomb
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plus Breit-Wigner resonance amplitudes. The scattering amplitude f for the two proton
S,/2 resonances on '°C and *Ne are approximated by

EPTLN V-
S R B TE—T2
Z:Z,
n=——
v

where 0 is the centre of mass angle and K the relative momentum of the nuclei. The
resonance parameters for '’C have been extracted from Milne (1954) and for **Ne
from Keyworth et al (1968) and Bloch et al (1969). For the proton S, resonance on
"N it is necessary to take into account the two possibilities for the total angular
momenturn J which, for /=0, can take the values 3 and 3. Neglecting non-resonant
scattering with !+ 0 we write, following Hagedorn et al (1957),

|f[2 = %|f1/2|2 +§|f3/2|2

1
fl/2 :ﬂ:‘*‘E exP(i‘f’l/z) sin ¢z, (33)

e fet g XP(idh)sin b exp(lics) g,

where the hard sphere phaseshifts, ¢,,, =—0.5 and ¢,,, = —0.08, have been taken from
the mentioned authors. In order to compare with previous spe calculations we have
used the resonance energy of Ajzenberg-Selove (1981) and the width of Olness et al
{1958). Finally, in the proton d;,;, resonance on 20Ne we must take into consideration
the spin-flip amplitude (Bloch et al 1969) and we write

LA =14+ 1,

3 r/2
fn=tty Eq—E—il'/2
1 __ T2
" K Ex—-E-il/2
(2+in)(1+in)

(2=in)(1—in)

where PJ" is the associated Legendre polynomial. Experimental data report single-
electron capture probabilities from all subshells and so we have used equation (30)
for each electronic orbital and nuclear specification. Then we have performed an
incoherent sum of the various probabilities (in the '*N resonance it is necessary to
average over the two J values).

For the '2C case which has been experimentally studied by means of CH,, the K
shell electron capture is the most relevant process at the resonance energy (Horsdal-
Pedersen et al 1982). Therefore we have not included the L shell contribution in our
calculation. For the "N resonance captures from the 1s and the 2s subshells have been
considered while for *Ne and **Ne we have included 1s, 2s and 2p subshelis. Even
where experimental data refer to electron capture to all projectile states, our calculation
includes only capture to 1s projectile state.

explia,) P3{(cos )
Iy Pl(cos 8)

explia,) =
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In figure 2 we show the calculated transfer probability for protons on '*C at
8., = 150° in the vicinity of the 0.462 MeV elastic resonance. In this case the ratio
AE/T'=0.015 does not predict a resonance effect on capture probability and in fact
our calculation shows a small structure acrass the resonance energy. Experimental
data (Scheurer er al 1985) as well as previous theoretical spe results confirm this
prediction. In the bottom part of this figure we show the experimental 150°/30° counting
rate ratios of Scheurer er al (1985) and our calculated elastic nuclear cross section
ratio. The experimental counting rate ratios are proportional to the cross section ratios
and therefore we have scaled the theoretical curve to fit the experimental magnitudes.
Figure 3 is similar to figure 2 but for protons on “*N across the 1.058 MeV elastic
resonance. For this resonance the ratio AE/T" is approximately 0.16. Despite this small
value and the incoherent contribution of the 2s subshell (for which the ratio is 0.10),
the experimental and the theoretical data show a noticeable resonance effect. In figure
4 we present results for protons on “’Ne at 6,,, = 30° that are in good agreement with
the experimental probabilities as measured by Horsdal et al (1986). Also we show 5PB
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Figure 2. (o) Electron capture probabilities at 8,,, =  Figure3. Same as for figure 2 but for p+ N, collisions
150° for p+CH, collisions across the 0.462 MeV  across the 1.058 MeV resonance.

resonance. Present PlA, ; SPB, -~ - - =} experi-
mental data from Scheurer ef al {1985), . (b} The
150°/30° counting rate ratios for elastic nuclear scat-
tering, Present results (see text), ——; experimental
data from Scheurer er af (1985} .
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Figure 4. {a} Electron capture probabilities at 8,,, = 30° for p+Ne collisions across the
1955 MeV resonance. Present PIA, ——;, SPB, - - - -, experimental data from Horsdal
etal (1986), . (b) Difierential elastic scattering cross sections normalized to the
Rutherford cross section. Present results {see text), ; experimental data from Horsdal
et al (1986), &.

probabilities calculated by Jakubassa-Amundsen. The spe model gives the approximate
size of the experimental probabilities but the shape of the measured data is not well
reproduced. Both theoretical curves appear slightly shifted in energy with respect to
the experimental ones. In the same figure we display the elastic scattering cross section
normalized to the Rutherford cross section. Figure 5 exposes the largest discrepancy
between experimental data, previous srs and present pia calculations. It refers to
protons on *Ne at 8,,, = 150° and shows the probabilities of charge exchange across
the 1.510 MeV elastic resonance. The ratio AE/T is in this case approximately 0.7 for
the K shell and therefore a large interference effect is expected. Experimental data
show a broad structure which is not reproduced by theoretical curves. It must be
remarked that our calculation does not include the energy spread of the proton beam
(2 keV wide). This could explain, in part, the larger structure of the piA curve compared
with the spe one, which has been corrected to take the spread into account (Baker
et al 1988). In the bottom part of the same figure we display the 150°/30° elastic nuclear
cross section ratio,

Despite the differences in the size of the Pia and spe probabilities it is apparent
by examination of figures 2-5 that there is a qualitative agreement between the
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Figure 5. (a) Electron capture probabilities at 8,,, = 150° for p+ 22Ne collisions across the
1.510 MeV resonance. Present Pia, ——; SPB, - - - -; experimental data from Baker et af
(1988), &. (b) The 150°/30° elastic scattering cross sections ratio for 75% of **Ne. Present
results (see text), ——; experimental data from Baker er af (1988), §.

calculations. The size of the probabilities is governed by the magnitude of the semi-
classical amplitudes so that the above size differences must be attributed to the particular
semiclassical description of the electron motion in the approximations. It is clear, in
our view, that the simple two-amplitude formula {30) is able to describe the gross
features of the experimental capture probability in the presence of a nuclear resonance,
We think that the first theoretical task necessary in order to remove the discrepancies
between theory and experiment is to improve the descriptions of the electron motion.
We know from Baker et al (1988) that this procedure cannot lead to agreement with
the experimental data for the *Ne(p, p)*’Ne resonance. In fact, these authors have
carried out unsuccessfully a model calculation based on expression (30). In this case
it is necessary to investigate the adequacy of the nuclear scattering amplitude phase

given by equation (32).

5. Conclusion

We have showed that the simple two-interference Blair-Anholt formula for ionization
in the presence of a nuclear resonance can be generalized to electron capture. This
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generalization has been obtained from a fully quantum mechanical treatment by
performing approximations which are the large-angle counterparts of those used to
obtain the forward semiclassical scattering amplitude. This leads to a two-amplitude
semiclassical formula for the electron capture probabilities which involves electronic
amplitudes that must be calculated for a prescribed broken straight line nuclear
trajectory. Application of this simple formula to different systems shows that it is able
to describe the gross features of the electron capture across a nuclear resonance. We
find a general agreement with previous spa calculations. The large discrepancy between
theory and experimental data for protons on **Ne at 1.510 MeV has not been removed.

Acknowledgments

We are very greatful to J N Scheurer for sending us unpublished data and to S Corchs
and A Bugacov for a critical reading of the manuscript,

References

Ajzenberg-Selove F 1981 Nucl Phys. A 360 table 15,23

Amundsen P A and Jakubassa-Amundsen D H 1984a Phys. Rev. Letr. §3 222-5

1984b J. Phys. B: At. Mol. Phys. 17 2671-86

Baker O K, Stoller C and Meyerhiof W E 1987 Nucl Instrum, Methods Phys. Res. B 24/25 89-93

Baker O K, Meyerhof W E, Spooner D W, Stoller Ch and Scheurer J N 1988 Phys. Rev. Lett. 60 913-6

Belkié Dz, Gayet R and Salin A 1979 Phys. Rep. 56 279-369

Blair J S and Anholt R 1982 Phys. Rev. A 25 907-20

Bloch R, Knellwolf T and Pixel R E 1969 Nucl Phys. A 123 129-46

Bransden B H and Coleman J P 1972 J. Phys. B: AL Mol. Phys. § 537-45

Clementi E and Roetti C 1974 At. Data Nucl Dara Tables 14 177-478

Flannery M R and McCann K J 1973 Phys. Rev. A 8 2915-21

Hagedorn F B, Mozer F 5, Webb T §, Fowler W A and Lauritsen C C 1957 Phys. Rev. 105 219-26

Horsdal E, Jensen B and Nielsen K O 1986 Phys. Rev. Lett. §7 675-8

Horsdal-Pedersen E 1987 Nucl. Instrum. Methods B 24/25 130-3

Horsdal-Pedersen E, Loftager P and Rasmussen J L 1982 J Phys. B: At. Mol. Phys. 15 4423-36

Jakubassa-Amundsen D H and Amundsen P A 1985 1. Phys. B: At. Mol Phys. 18 757-74

Keyworth G A, Wilhjelm P, Kyker G C, Newson H W and Bilpuch E G 1968 Phys. Rev. 176 1302-10

Kocbach L and Briggs J S 1984 J. Phys. B: At. Mol Phys. 17 3255-70

Maidagan J M 1988 J. Phys. B: At. Mol. Opt. Phys. 21 4177-84

Maidagan J M and Salin A 1987 Proc. 15th Int. Conf. on the Physics of Eleciranic and Atomic Collisions,
Brighton (Amsterdam: North-Holland) Abstracts p 581

Meyerhof W E and Chemin J F 1985 Adv. Ar. Mol Phys. 20 173-239

Milne E A 1954 Phys. Rev. 93 762-7

Olness J W, Vorona J and Lewis H W 1958 Phys. Rev, 112 475-80

Scheurer J N, Baker O K and Meyerhof W E 1985 J. Phys. B: At Mol. Phys. 18 L85-9

Wilets [ and Wallace S J 1968 Phys, Rev. 169 §4-91




