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Téchnop̂ole 2000, 57078 Metz Cedex 3, France

Received 9 December 1996, in final form 17 February 1997

Abstract. The electron capture process with the formation of positronium atoms in the ground
state in collisions of high-energy positrons impacting on hydrogenic ions also in the ground state
is studied theoretically. Contributions from double-step mechanisms in the collision process at
high impact energies are discussed. Scaling laws for the theoretical differential and total cross
sections valid at sufficiently high impact energies and nuclear charge of the target are obtained.

1. Introduction

During the last few years, a considerable amount of theoretical work has been devoted to
the study of positronium formation by positron impact motivated by measurements obtained
with the currently available high-intensity positron beams [1–8]. The theoretical work on
the subject reveals that the positronium formation mechanism is not as fully understood as
the charge transfer process by heavy projectiles. Only recently, positronium formation with
ionic targets has been studied theoretically in a few works [9–11]. In one of these papers
[11] (hereafter called I), the continuum distorted-wave final-state (CDW-FS) model was
introduced to study the charge transfer process from the K-shell of a hydrogenic target to
the K-shell of the positronium atom. In this model, distortions in the final channel related
to the Coulomb continuum states of the positron and the electron in the field of the residual
target are included. If no distortions are included in the final channel, the Coulomb Born
approximation (CBA) [9] is obtained. Differential and total cross sections at intermediate
impact energies for several hydrogenic targets have been obtained in I with the CDW-FS
model employing a partial-wave technique. Also, CBA cross sections have been given. In
this work, we focus on the impact of high-velocity positrons on hydrogenic targets. As the
earlier technique becomes more slowly convergent as the impact energy increases, a new
calculation scheme to evaluate the CDW-FS matrix elements is introduced. Following the
work of Chenet al [12] as well as ideas from Royet al [13] and Brauneret al [14], the
CDW-FS matrix element is reduced and computed by means of numerical quadratures.

Atomic units are used unless otherwise specified.
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2. Theory

2.1. CBA and CDW-FS models

In this section, the CDW-FS and CBA models are briefly described. Let us consider the
formation of positronium atoms in the ground state in a collision of a fast positron e+

with a hydrogenic targetT of nuclear chargeZT also in the ground state. The geometrical
parameters of the collision are given in figure 1.

Figure 1. Coordinates used in the text.

The initial and final non-perturbed wavefunctions are given by

8α = ϕi(r) F+kα (rα) (1)

8β = ϕf (ρ) exp(−ikβ · rβ) (2)

where ϕi and ϕf are the initial and final bound wavefunctions. The functionF+kα (rα)
introduced in equation (1) is an outgoing Coulomb continuum wavefunction representing
the positron moving in the field of an effective ion of charge(ZT − 1),

F+kα (rα) = N+ν ′α exp(ikα · rα) 1F1(−iν ′α; 1; ikαrα − ikα · rα) (3)

with

ν ′α = (ZT − 1)
µα

kα
= (ZT − 1)

v
(4)

N+ν ′α = 0(1+ iν ′α) exp
(− 1

2πν
′
α

)
. (5)

The prior version of the CDW-FS matrix element reads [11]

T
−,CDW-FS
αβ = N+ν ′α N

−∗
β+ N

−∗
β−

∫
dR dr exp

{
ikα ·R+ ikβ · rβ

}
ϕ∗f (ρ)

×
(

1

R
− 1

ρ

)
1F1(−iβ+; 1; ivβ ·R+ ivβR)

× 1F1(iβ−; 1; ivβ · r + ivβr) ϕi(r) 1F1(−iν ′α; 1; ikαR − ikα ·R) (6)
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where the approximationrα ' R has been made.kα andkβ are the wavevectors for the
reduced positron in the entry channel and for the reduced positronium in the final channel,
respectively. Moreover, we have defined

vβ = kβ
µβ

(7)

and

β+ ' β− ' β = ZT

vβ
(8)

N−β± = 0(1∓ iβ±) exp(∓ 1
2πβ±) . (9)

Settingβ+ = β− = β = 0 in the CDW-FS matrix element, the CBA [9] matrix element is
obtained.

Finally, DCS and TCS are obtained by using

dσ

d�
= 1

4π2

kβ

kα
µαµβ |Tαβ |2 (10)

and

σ =
∫

d�(dσ/d�) (11)

respectively.

2.2. Evaluation of the CDW-FS matrix element

In I, a partial-wave technique has been employed to evaluate the CDW-FS matrix element.
As the impact energy increases, higher values of angular orbital momenta are required and
more computer time is required to achieve convergence. As the aim of this work is to study
the impact of high-velocity positrons, a new calculation scheme which is more efficient than
the early one is introduced.

Let us consider the CDW-FS matrix element given by equation (6). Firstly, the confluent
hypergeometric function depending onν ′α is developed as [15]

1F1(−iν ′α; 1; ikαR − ikα ·R) = −(2π i)−1
∫ (0+)

1
du (−u)−iν ′α−1 (1− u)iν ′αei(kαR−ikα ·R)u .

(12)

Inserting the integral representation (12) in the CDW-FS matrix element given by
equation (6), we obtain

T
−,CDW-FS
αβ = −K(2π i)−1

∫ (0+)

1
du(−u)−iν ′α−1(1− u)iν ′αJ (u) (13)

with K

K = Z
3/2
T

2
√

2π
N+ν ′αN

−∗
β+ N

−∗
β− (14)

and whereJ (u) is given by

J (u) =
∫

dR dr exp{iM ·R+ ivuR}
(

1

R
− 1

ρ

)
× 1F1(−iβ+; 1; ivβ ·R+ ivβR) 1F1(iβ−; 1; ivβ · r + ivβr)

× exp(−ivβ · r − ZT r) exp(−ρ/2) (15)
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with

M = v(1− u)− vβ . (16)

In obtainingJ (u), the approximationkα ' v has been made.
Secondly, and using the technique described in [12], the CDW-FS matrix element may

be written as

T
−,CDW-FS
αβ = −K

{
J (u = 0)+ sinh(πν ′α)

π i

∫ 1

0
du

(
1− u
u

)iν ′α [J (u)− J (u = 0)]

u

}

= −K
{
J (u = 0)+ sinh(πν ′α)

π i

∫ +∞
−∞

dy
e(1+iν ′α)y

1+ ey
[J (u)− J (u = 0)]

}
(17)

with u = (1+ ey)−1.
Thirdly, the integralJ (u) is studied. This kind of integral has been analysed in [12]

and reduced to a two-dimensional integral with the aid of parametric derivatives. Then,
introducing the parametersλi with i = 1, 2, 3, the following integral is defined:

J (λ1, λ2, λ3,P1,P2,K1,K2; u) =
(

∂2

∂λ3 ∂λ2
− ∂2

∂λ1 ∂λ2

)∫
dR dr exp{−iP1 ·R} e−λ1R

R

× 1F1(−iβ+; 1; i[K1R −K1 ·R]) exp{−iP2 · r} e−λ2r

r

× 1F1(iβ−; 1; i[K2r −K2 · r])
e−λ3ρ

ρ
(18)

whereJ (u) is obtained by making

P1 = −M P2 = vβ (19)

K1 = −vβ K2 = −vβ (20)

and taking after derivation

λ1 = ε − iuv λ2 = ZT λ3 = 1
2 . (21)

At the end of the calculations,ε = 0 must be taken.
Using the results of Chen [12], one obtains

J (λ1, λ2, λ3,P1,P2,K1,K2; u)
= N(t = 0)+ sinh(πβ+)

π i

∫ +∞
−∞

dx
e(1+iβ+)x

1+ ex
[N(t)−N(t = 0)] (22)

with t = (1+ ex)−1. The functionN(t) reads

N(t) = 16π2
∫ ∞

0
ds

(
∂2

∂λ3 ∂λ2
− ∂2

∂λ1 ∂λ2

) [
1

ε0

(
1+ ε1

ε0

)−iβ−
]

(23)

where

ε0 =
{
(P1+ P2)

2+ (λ1+ λ2)
2+ 2[(P1+ P2) ·K1− i(λ1+ λ2)K1]t

}
×(s2+ 2λ3s)+ 2s[γ1(λ

2
3+ P 2

2 + λ2
2)+ λ2(λ

2
3+ q2

1 + γ 2
1 )]

+[(γ1+ λ3)
2+ q2

1] [(λ2+ λ3)
2+ P 2

2 ] (24)

ε1 = 2 [(P1+ P2) ·K2− i(λ1+ λ2)K2+ (K1 ·K2−K1K2) t ] (s
2+ 2λ3s)

+2s[2γ1(P2 ·K2− iλ2K2)− iK2(λ
2
3+ q2

1 + γ 2
1 )]

+2[(γ1+ λ3)
2+ q2

1][P2 ·K2− i(λ2+ λ3) K2] (25)
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with

q1 = P1+K1t γ1 = λ1−K1t . (26)

2.3. Scaling laws

In this section, scaling laws for the CDW-FS and CBA differential and total cross sections
are derived. These scaling laws are valid when the impact energy and the nuclear charge
of the target are sufficiently high.

Fourier transforming the positronium bound state and using relations between
coordinates, the CDW-FS matrix element may be expressed as

T
−,CDW-FS
αβ = N+ν ′αN

−∗
β+ N

−∗
β− NPs

∫
d�τ dτ

τ 2(
τ 2+ 1

4

)2

∫
dR dr I (R, r, τ ) (27)

with

I (R, r, τ ) = ei(kα− 1
2kβ+τ)·ρ K(R, r) NPs= 1

4π2
√

2π
(28)

and where

K(R, r) = ei(kα−kβ)·r
(

1

R
− 1

ρ

)
1F1(−iβ+; 1; ivβ ·R+ ivβR)

× 1F1(iβ−; 1; ivβ · r + ivβr)ϕi(r)

× 1F1(−iν ′α; 1; ikαR − ikα ·R) . (29)

In equation (27), the expressionτ 2(τ 2 + 1
4)
−2 is highly peaked aroundτ0 = 1

2. Therefore,
the most important contribution ofI (R, r, τ ) to the τ -integration comes from the region
aroundτ = τ0τ̂ with τ̂ = τ/|τ |. Then, ifkα andkβ are such that∣∣kα − 1

2kβ
∣∣� 1

2 (30)

it is valid to write

T
−,CDW-FS
αβ ' N+ν ′αN

−∗
β+ N

−∗
β− NPs

[∫
d�τ dτ

τ 2

(τ 2+ 1
4)

2

]

×
∫

dR dr exp
{
i
(
kα ·R+ kβ · rβ

)}
×
(

1

R
− 1

ρ

)
1F1(−iβ+; 1; ivβ ·R+ ivβR)

× 1F1(iβ−; 1; ivβ · r + ivβr)ϕi(r)

× 1F1(−iν ′α; 1; ikαR − ikα ·R) . (31)

Let us consider the following scaling in the impact energy:

E
(ZT2)

i =
(
ZT2

ZT1

)2

E
(ZT1)

i (32)

which is equivalent to

k
(ZT2)
α =

(
ZT2

ZT1

)
k
(ZT1)
α . (33)
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The upper indices indicate that the magnitudes involved are the ones corresponding to a
collision of a positron on a target of nuclear chargeZT . From the energy conservation law,
it follows that

k
(ZT2)

β = (ZT2/ZT1)

{
1− 1

4E
(ZT1)

i − 2Z2
T1
+ 1

[
1−

(
ZT1

ZT2

)2
]}1/2

k
(ZT1)

β (34)

where use has been made of the binding energy of a hydrogenic atom of chargeZT .
Equation (34) reveals that the scaling in final momenta is only approximately true. However,
asEi increases the scaling in momentumkβ becomes more and more valid.

The Sommerfeld parametersβ+ andβ− are almost invariant with respect to the scaling
in momenta, i.e.

β
(ZT1)

j ' β(ZT2)

j (35)

with j = +,−. In contrast, the Sommerfeld parameterν ′α does not behave like theβj
parameters. However, at a fixed impact energyE

(ZT )
i their scaling improves asZT increases.

For ZT fixed, the scaling improves asEi increases. A similar analysis leads to the same
conclusions with respect to the normalization constantsN−β+ , N−β− andN+ν ′α .

Let us now consider the following scaling for the independent coordinates:

r(ZT2) =
(
ZT1

ZT2

)
r(ZT1) (36)

R(ZT2) =
(
ZT1

ZT2

)
R(ZT1) . (37)

As a consequence, the coordinateρ transforms as

ρ(ZT2) =
(
ZT1

ZT2

)
ρ(ZT1) . (38)

Plane-wave functions, initial bound state and confluent hypergeometric functions
depending onβ+ andβ− all remain unaltered after the transformations. Of course, this is
only true in an approximate way for the hypergeometric function depending onν ′α according
to the facts already discussed. The higher the impact energy and the nuclear charge of the
target, the better the approximation.

Now by using the scaling in momenta and coordinates, the following relation:

T
−,CDW-FS
αβ (ZT2, E

(ZT2)

i ) '
(
ZT1

ZT2

)7/2

T
−,CDW-FS
αβ

(
ZT1, E

(ZT2)

i

(
ZT1

ZT2

)2)
(39)

holds for sufficiently high impact energy andZT . This is the scaling law for the CDW-FS
matrix elements. As the CBA matrix elements are easily obtained from the CDW-FS ones
by makingβ+ = β− = 0, the CBA matrix elements verify exactly the same scaling law.

According to equations (10) and (11), CDW-FS and CBA differential and total cross
sections verify the following relations:

dσ

d�
(ZT2, E

(ZT2)

i ) '
(
ZT1

ZT2

)7 dσ

d�

(
ZT1, E

(ZT2)

i

(
ZT1

ZT2

)2)
(40)

σ(ZT2, E
(ZT2)

i ) '
(
ZT1

ZT2

)7

σ

(
ZT1, E

(ZT2)

i

(
ZT1

ZT2

)2)
. (41)
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Moreover, as the scaling factor is the same for both the CDW-FS and CBA approximations,
the following relation also holds:

σ(ZT2, E
(ZT2)

i )CDW-FS

σ(ZT1, E
(ZT2)

i

(
ZT1/ZT2

)2
)CDW-FS

' σ(ZT2, E
(ZT2)

i )CBA

σ(ZT1, E
(ZT2)

i

(
ZT1/ZT2

)2
)CBA

. (42)

A similar relation for the differential cross sections is also valid. In general, CBA differential
and total cross sections are more easily computed than the corresponding CDW-FS ones.

3. Results

A discussion on the contribution of the Thomas two-step mechanisms to the cross section
has already been given in I. Here, the presence of the Thomas peak in the DCS is discussed
at intermediate and high impact energies. In figures 2(a) and (b), CBA and CDW-FS DCS
as a function of the ejection angle of the positronium atom for e+ + He+ at impact energy
Ei = 2 and 10 keV, respectively, are shown. In the last case, relativistic effects are not
taken into account despite their possible importance. In the CBA DCS no Thomas peak
is observed as expected from a first-order Born theory. In contrast, in the CDW-FS DCS

Figure 2. CDW-FS (——) and CBA (– – –) DCS for e++He+. (a) Impact energyEi = 2 keV.
(b) Ei = 10 keV.
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Figure 3. CDW-FS scaled DCS with respect to He+. ——, ZT = 2 andEi = 2 keV; . . . ,
ZT = 3 andEi = 4.5 keV; – – –,ZT = 4 andEi = 8 keV;←, ZT = 10 andEi = 50 keV at
θ = 180◦.

Table 1. Scaled TCS CDW-FS.x[y] represents×10y .

Ei (eV) He+ Li 2+ Be3+ B4+

500 5.4[−4] 5.7[−4] 5.9[−4] 6.2[−4]
1 000 2.0[−5] 2.0[−5] 2.0[−5] 2.0[−5]
2 000 5.7[−7] 6.2[−7] 6.3[−7] 6.1[−7]
5 000 3.5[−9] 3.6[−9] 3.7[−9] 3.8[−9]

10 000 6.5[−11] 6.9[−11] 7.2[−11] 7.6[−11]

a distinct peak is observed atθ ' 45◦, particularly at 10 keV. Present CDW-FS DCS at
2 keV agree with the previous ones given in I. However, the additional structures around
and beyond the Thomas’ peak have now disappeared. They may be attributed to a precision
problem in the partial-wave method employed in I. It may be verified that the contribution
of the peak to the total cross sections even at very high impact energy is not as important
as in the case of heavy ion impact. Finally, the differences between the CDW-FS and CBA
results over the entire angular domain give an indication of the contribution of the higher
orders of CDW-FS.
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Figure 4. Same as figure 3 but for CBA DCS.

Table 2. Same as table 1 but for CBA.

Ei (eV) He+ Li 2+ Be3+ B4+

500 9.8[−4] 1.2[−3] 1.3[−3] 1.4[−3]
1 000 4.0[−5] 4.0[−5] 4.0[−5] 4.6[−5]
2 000 9.3[−7] 1.0 [-6] 1.1[−6] 1.1[−6]
5 000 5.6[−9] 5.9 [-9] 6.0[−9] 6.1[−9]

10 000 1.0[−10] 1.1 [-10] 1.1[−10] 1.1[−10]

In figures 3 and 4, CDW-FS and CBA scaled differential cross sections (SDCS) with
respect to He+ for the system e++(ZT +e−) (ZT = 2, 3, 4) are shown. The arrow indicates
the SDCS value forZT = 10 andθ = 180◦. It can be seen that the scaling law is very
good. Small deviations from the scaling are observed at large scattering angles but asZT
increases the scaling improves. As the TCS are dominated by the small angular region, good
agreement is also expected for the scaled TCS (STCS). In tables 1 and 2, CDW-FS and
CBA STCS, respectively, with respect to He+ are shown for the systems already mentioned.
Again, the scaling law is very good.
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