EL OSCILOSCOPIO


2.0. PARTES DE UN OSCILOSCOPIO.

Las partes principales de las que está formado todo osciloscopio son: el tubo de rayos catódicos, un amplificador para la señal vertical y otro para la horizontal, una fuente de alimentación, una base de tiempos y un sistema de sincronismo.

2.1. TUBO DE RAYOS CATÓDICOS.

El tubo de rayos catódicos (T.R.C.) es lo que comúnmente denominamos pantalla, aunque no solo está compuesto de ésta sino que en el interior tiene más partes. El fundamento de estos tubos es igual al que vimos al hablar de la televisión. Su principal función es que permite visualizar la señal que se está estudiando, utilizando para ello sustancias fluorescentes que proporcionan una luz normalmente verde.

En la pantalla aparecen un conjunto de líneas reticuladas que sirven como referencia para realizar las medidas. Dichas líneas están colocadas sobre la parte interna del cristal, estando así la traza dibujada por el haz de electrones y la cuadrícula en el mismo plano, lo cual evita muchos errores de apreciación. Según el modelo de osciloscopio la cuadrícula que se utiliza puede ser de un tamaño o de otro. Algunos de los más comunes son de 8 x 10, 10 x 10, 6 x 10, etc. Además de las divisiones principales representadas por la cuadrícula, normalmente suele haber otras subdivisiones que son utilizadas para realizar medidas más precisas.

2.2. BASE DE TIEMPOS.

Otra de las partes del osciloscopio es la base de tiempos. La función de este circuito es conseguir que la tensión aplicada aparezca en la pantalla como función del tiempo. El sistema de coordenadas está formado por el eje vertical y el horizontal, siendo en este último donde se suelen representar los tiempos. El circuito de base de tiempos debe conseguir que el punto luminoso se desplace periódicamente y con una velocidad constante en el eje horizontal sobre la pantalla de izquierda a derecha, volviendo luego rápidamente a la posición original y repitiendo todo el proceso. Para conseguir este proceso el circuito de base de tiempos debe proporcionar a las placas horizontales una tensión variable cuya forma debe ser la de diente de sierra.

La forma de estas ondas ya la conocemos, aumenta la tensión hasta un punto máximo, a partir del cual desciende rápidamente en lo que se denomina tiempo de retorno, ya que retorna al punto original (0 de tensión). El tiempo que se tarda en alcanzar el punto máximo de tensión es exactamente el mismo que se va a tardar en recorrer toda la pantalla de izquierda a derecha en el eje horizontal. El tiempo de retorno es lo que se tarda en volver al punto origen de la pantalla, es decir, a la izquierda de la misma. El tiempo en recorrer la pantalla de izquierda a derecha siempre va a ser mayor que el tiempo de retorno; de hecho, cuanto menor sea el tiempo de retorno mejor será la reproducción de la señal en la pantalla. Según sea la frecuencia de la tensión de diente de sierra, el punto luminoso se desplazará con mayor o menor rapidez por la pantalla. Por lo tanto, nos interesa que el circuito de base de tiempos proporcione una frecuencia variable, para que el rango de frecuencias que se puedan analizar sea muy grande y abarque desde las frecuencias muy cortas hasta las muy elevadas.

2.3. AMPLIFICADOR HORIZONTAL

El amplificador horizontal tiene como cometido amplificar las señales que entren por la entrada horizontal (X). Normalmente se emplea para amplificar las señales que son enviadas desde el circuito de base de tiempos. A dichas señales se les proporciona una amplitud suficiente para que se pueda producir el desvío del haz de electrones a lo ancho de toda la pantalla. Algunas veces no es necesario conectar las señales de la base de tiempos ya que estas tienen la amplitud necesaria. Por lo tanto, como ya hemos dicho, no solo se va a amplificar la señal de la base de tiempos sino que podemos amplificar cualquier señal y luego componerla con la señal procedente del sistema vertical para obtener la gráfica final que va a aparecer en la pantalla.

2.4. AMPLIFICADOR VERTICAL

El amplificador vertical es, como su nombre indica, el encargado de amplificar la señal que entre por la entrada vertical (Y). Para que el osciloscopio sea bueno debe ser capaz de analizar señales cuyos valores estén comprendidos en un rango lo más grande posible. Normalmente, los amplificadores verticales constan de tres partes: Amplificador, atenuador y seguidor catódico. El amplificador es el encargado de aumentar el valor de la señal. Está formado por un preamplificador que suele ser un transistor y es el encargado de amplificar la tensión. Después, tenemos unos filtros que son los encargados de que el ancho de banda de paso sea lo mayor posible, y pueden aumentar tanto la banda de bajas como de altas frecuencias. Por último, se pasa por el amplificador final que puede estar formado por uno o dos transistores.

Hay veces que la señal que llega es demasiado grande y necesitamos disminuirla, con este fin se utilizan los atenuadores, que son una parte de los amplificadores, aunque su función no es aumentar la señal sino todo lo contrario, disminuirla. Esta disminución de la señal es necesaria en algunos casos para que no se produzca distorsión, pudiendo disminuirse en 10, 100, etc., veces el valor de la amplitud inicial. Después de producirse la disminución de la señal suele ser necesario el uso de un seguidor catódico, cuya función consiste en adaptar las impedancias de entrada del osciloscopio a la salida del emisor del transistor.

2.5. SISTEMA DE SINCRONISMO.

El sistema de sincronismo es el encargado de que la imagen que vemos en el tubo de rayos catódicos sea estable. Para poder conseguir esto se utiliza una señal de barrido que tiene que ser igual o múltiplo de la frecuencia de la señal de entrada (vertical). Para sincronizar la señal vertical con la base de tiempos (o señal horizontal) se puede utilizar la denominada sincronización interna. Consiste en inyectar en el circuito base de tiempos la tensión que se obtiene del ánodo o del cátodo del amplificador vertical (dependiendo de cuál sea la más adecuada). Así se consigue que el principio de la oscilación de la base de tiempos coincida con el inicio del ciclo de la señal de entrada. Este tipo de sincronización no siempre es el más adecuado. Existen otros tipos de sincronización como la sincronización externa y la sincronización de red.

Por último, diremos que todo osciloscopio necesita una fuente de alimentación que va a ser la encargada de proporcionar las tensiones necesarias para alimentar las diferentes etapas que forman los circuitos de un osciloscopio.


Hosted by www.Geocities.ws
GridHoster Web Hosting
1