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Abstract

In this paper, we review some fuzzy linear programming methods and techniques from a practical point of view. In the �rst
part, the general history and the approach of fuzzy mathematical programming are introduced. Using a numerical example,
some models of fuzzy linear programming are described. In the second part of the paper, fuzzy mathematical programming
approaches are compared to stochastic programming ones. The advantages and disadvantages of fuzzy mathematical program-
ming approaches are exempli�ed in the setting of an optimal portfolio selection problem. Finally, some newly developed ideas
and techniques in fuzzy mathematical programming are briey reviewed. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy mathematical programming; Fuzzy constraint; Fuzzy goal; Possibility measure; Necessity measure;
Simplex method; Stochastic programming; Portfolio selection

1. Introduction

The notion of fuzzy set is widely spread to various
�elds after a resounding success in the applications of
fuzzy logic controllers in late 1980s. The application
to mathematical programming has relatively long his-
tory (see [107]). In spite of the fact that there is no
big boom in applications of fuzzy sets theory to the
mathematical programming, the history of fuzzy math-
ematical programming is rich enough. This is the fruit
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of the continuous e�orts of the researchers in that
topic. Therefore, it is not easy to describe all of the
fuzzy mathematical programming techniques in one
paper.

In this paper, we restrict ourselves to describing
the essence of fuzzy mathematical programming,
especially possibilistic linear programming and to
demonstrating its characteristics by using concrete
examples, instead of introducing a lot of fuzzy math-
ematical programming techniques. The readers who
are interested in various fuzzy mathematical pro-
gramming techniques are referred to Slowinski [94],
Luhandjula [60], Inuiguchi et al. [33], Rommelfanger
[89], Sakawa [92] and Lai-Hwang [56,57].
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In the �rst part of the paper, we introduce an il-
lustrative realistic example in order to explain why
the fuzzy mathematical programming problem is de-
veloped. Here it is emphasized that two kinds of un-
certainty, ambiguity and vagueness are treated in the
fuzzy mathematical programming. A general fuzzy
mathematical programming approach is described.
After this general description, a fuzzy mathematical
programming technique is applied to a concrete real-
istic example in the succeeding sections. In this part,
the required knowledge for developing the method is
also explained; moreover, in order to emboss the char-
acteristics of the fuzzy mathematical programming
approach, the di�erence from the conventional math-
ematical programming approach is examined. In the
second part of the paper, as the fuzzy mathematical
programming approach is similar to the stochastic pro-
gramming approach, those approaches are compared
using the simple programming problem – portfolio
selection problem. The advantages and disadvantages
of the fuzzy mathematical programming approach
over the stochastic programming approach are high-
lighted. Finally, some new approaches are briey
overviewed.

Part I: Methods and Techniques

2. Fuzzy mathematical programming

2.1. Fuzzy mathematical programming problem

Let us consider the following production planning
problem (from Inuiguchi et al. [44]):

Example 1. There is a factory where two products P
and Q are manufactured by two processes M and N.
It takes about 2 min at Process M and about 6 min
at Process N for manufacturing a batch of Product P.
On the other hand, it takes about 3 min at Process
M and about 4 min at Process N for manufacturing
a batch of Product Q. It is desired that the working
time of Process M (resp. N) is substantially smaller
than 900 (resp. 1800) min per one term. The pro�t
rates ($/batch) of Products P and Q are about 7 and
about 9, respectively. The prices ($/batch) of Products
P and Q are about 60 and about 45, respectively. The
factory manager requires the gross sales substantially

larger than $22 000. Moreover, he wants to have the
possibility of pro�t substantially larger than $3400.
How many Products P and Q should be manufactured
under such circumstances?

This problem is not clearly described as it includes
uncertainty in the italic and slanted descriptions. As
pointed out by some researchers (see [10,54]), two
major di�erent kinds of uncertainties, ambiguity and
vagueness exist in the real life. While ambiguity is
associated with one-to-many relations, that is, situa-
tions in which the choice between two or more al-
ternatives is left unspeci�ed, vagueness is associated
with the di�culty of making sharp or precise distinc-
tions in the world; that is, some domain of interest is
vague if it cannot be delimited by sharp boundaries
(see [54]).

In the above example, the slanted uncertain descrip-
tions show the ambiguities of the true values, e.g.,
about 2min shows that one value around 2 is true but
not known exactly. On the other hand, the italic uncer-
tain descriptions show the vagueness of the aspiration
levels, e.g., substantially smaller than 900min does
not de�ne a sharp boundary of a set of satisfactory
values but shows that values around 900 and smaller
than 900 are to some extent and completely satisfac-
tory, respectively.

The fuzzy mathematical programming is developed
for treating such uncertainties in the setting of opti-
mization problems. The fuzzy mathematical program-
ming can be classi�ed into three categories in view of
the kinds of uncertainties treated in the method (see
[44]);
1. fuzzy mathematical programming with vagueness,
2. fuzzy mathematical programming with ambiguity,
3. fuzzy mathematical programming with vagueness

and ambiguity.
The fuzzy mathematical programming in the �rst

category was initially developed by Bellman and
Zadeh [1], Tanaka et al. [103] and Zimmermann
[109,110]. It treats decision making problem under
fuzzy goals and constraints. The fuzzy goals and con-
straints represent the exibility of the target values of
objective functions and the elasticity of constraints.
From this point of view, this type of fuzzy mathemat-
ical programming is called the exible programming.
Numerous papers were devoted to the development
of this method. Many of them were overviewed by
Zimmermann [111].
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The second category in fuzzy mathematical pro-
gramming treats ambiguous coe�cients of objective
functions and constraints but does not treat fuzzy
goals and constraints. Dubois and Prade [8] treated
systems of linear equations with ambiguous coe�-
cients suggesting the possible application to fuzzy
mathematical programming for the �rst time. Some
years later, Tanaka et al. [97,100], Orlovski [71,72]
and Ramik and �R�im�anek [83,84] independently pro-
posed treatments of linear programming problems
with fuzzy coe�cients. Since then, many approaches
to such kinds of problems have been developed. A
remarkable development is done by Dubois [5]. He
introduced four inequality indices between fuzzy
numbers [11] based on the possibility theory [108,14]
into mathematical programming problems with fuzzy
coe�cients. Since the fuzzy coe�cients can be re-
garded as possibility distributions on coe�cient val-
ues, this type of fuzzy mathematical programming is
usually called, the possibilistic programming.

The last type of fuzzy mathematical programming
treats ambiguous coe�cients as well as vague de-
cision maker’s preference. Negoita et al. [67] were
the �rst who formulated this type of fuzzy linear
programming problem. In this model, the vague de-
cision maker’s preference is represented by a fuzzy
satisfactory region and a fuzzy function value is re-
quired to be included in the given fuzzy satisfactory
region. In contrast to the exible programming, this
fuzzy mathematical programming is called the robust
programming (see [66]). Orlovski [70] formulated
a general mathematical programming problem with
fuzzy coe�cients based on his previously proposed
decision method [69] with fuzzy preference relation.
Luhandjula [58,61] introduced nested target values
into the objective function with fuzzy coe�cients
and the di�erences between left- and right-hand sides
of the constraints with fuzzy coe�cients. Inuiguchi
et al. [32,29] extended the exible programming into
fuzzy coe�cients case based on possibility theory.
Since this type of fuzzy mathematical programming
is the most generalized one, various formulations
are conceivable. Inuiguchi et al. [30,36] showed
that most of previous formulations including the
�rst and the third categories are encompassed in
the framework of modality constrained program-
ming problems based on the possibility theory and
the idea of chance constrained programming [64].

Similarly, Ramik et. al. [75,77–79,85,86] proposed
a uni�ed approach based on the fuzzy inequality
relations.

It would take a lot of space and time to introduce
all those formulations of fuzzy mathematical program-
ming. Thus, we will restrict ourselves to describing a
concise introduction to fuzzy mathematical program-
ming using simple examples and to showing the ad-
vantages and disadvantages of the fuzzy mathematical
programming approach compared with the stochas-
tic programming approach. Through this paper, the
fuzzy mathematical programming approach is inves-
tigated to reveal its properties from a practical point
of view.

2.2. Fuzzy mathematical programming approach

Before describing the simple examples, let us con-
sider the general fuzzy mathematical programming
approach.

Fuzzy programming approach is illustrated in
Fig. 1. As opposed to the conventional mathematical
programming approach, a real world problem is �rst
modeled using a fuzzy model (a mathematical pro-
gramming model including fuzzy parameters). This
fuzzy model represents an ill-posed problem, since it
includes uncertain parameters. In the �rst phase, the
fuzzy model is transformed to a usual mathematical
model managing the uncertainties based on various
interpretations of the problem. In the second phase,
the transformed mathematical model (usual mathe-
matical programming problem) is solved by an opti-
mization technique. The obtained solution is optimal
or e�cient to the transformed mathematical model,
however, it is not always reasonable (optimal or e�-
cient) to the original fuzzy model. Thus, in the third
phase, the optimality or e�ciency of the solution can
be examined. If the solution is improper, the fuzzy
model is rebuilt to a mathematical model based on
the improved interpretation and the same procedure
is iterated.

The di�erence between the fuzzy mathematical pro-
gramming approach and conventional mathematical
programming approach is in the point where a fuzzy
model exists between a real world optimization prob-
lem and usual mathematical model. The extra model
makes Phase 3, i.e., the validity check from the fuzzy
model, possible.
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Fig. 1. Fuzzy mathematical programming approach.

3. An example and conventional mathematical
programming approaches

3.1. The second example

Example 1 included ambiguous coe�cients and
vague aspirations. In this section, we consider a sim-
pler problem than Example 1, which includes only
ambiguous coe�cients.

Example 2. In a factory, the factory manager intends
to manufacture new products A and B. The total man-
ufacturing process is composed of three processes,
Processes 1, 2 and 3. The estimated processing times
for manufacturing a batch of Product A at each pro-
cess are the following: about 2 time units at Process 1,
about 4 time units at Process 2 and about 1 time unit
at Process 3. On the other hand, the processing times
for manufacturing a batch of Product B at each process
are as follows: about 3 time units at Process 1, about
2 time units at Process 2 and about 3 time units at
Process 3. The working time at Process 1 is restricted
by 240 time units, that at Process 2 is restricted by
400 time units and that at Process 3 is restricted by
210 time units. The pro�t rates (100$/batch) of Prod-

ucts A and B are about 5 and about 7, respectively.
How many Products A and B should be manufactured
in order to maximize the total pro�t?

This kind of description of the problem corresponds
to ‘the real world programming problem’ in the fuzzy
mathematical programming approach in Fig. 1.

3.2. Conventional mathematical programming
approaches

Let us see what solution we get by the conventional
crisp linear programming approach to Example 2.

Neglecting the ambiguity of the processing times
and the pro�t rates, the problem of Example 2 can be
formulated as

maximize 5x1 + 7x2;

subject to 2x1 + 3x26240;

4x1 + 2x26400;

x1 + 3x26210;

x1¿0; x2¿0;

(1)

where x1 and x2 corresponds to the amount of pro-
duction of Products A and B, respectively. Solving
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this problem, we obtain (x1; x2) = (90; 20). This so-
lution reaches the upper limits of the �rst two con-
straints without violating them. However, if the true
coe�cients of the �rst two constraints take more than
the estimated values, i.e., (2; 3) and (4; 2), this solu-
tion would violate those constraints. Thus, the solution
(x1; x2) = (90; 20) is risky in the sense of infeasibility.

Considering the ambiguity of estimated values, one
may make the right-hand values more restrictive. Re-
ducing the right-hand values to 83% of those, the prob-
lem can be formulated as

maximize 5x1 + 7x2;

subject to 2x1 + 3x26199:2;

4x1 + 2x26332;

x1 + 3x26174:3;

x1¿0; x2¿0;

(2)

where we adopt a 17% reduction because the feasible
region covers almost the same size of area as that
of the reduced problem obtained by the possibilistic
programming approach described in the next section
covers. Solving this linear programming problem, we
obtain (x1; x2) = (74:7; 16:6). Taking a ratio of x1 to x2

in this solution, we have x1=x2 = 9=2. This ratio is the
same as that in the optimal solution to Problem (1).
Generally speaking, even if we reduce the right-hand
values uniformly, the ratio of x1 to x2 in the optimal
solution does not change. It is always x1=x2 = 9=2, thus
the factory manufactures Product A 4.5 times as much
as Product B.

4. A possibilistic programming formulation and
preliminaries

4.1. A possibilistic programming formulation

To reect the ambiguity of estimated values in
Example 2, let us express them in terms of fuzzy
numbers. Interviewing the person in charge of process
control, the ambiguous processing time is expressed
as a fuzzy number. For example, the processing time
of Product A at Process 1 described with linguistic ex-
pression ‘about 2 time units’, say a1, can be restricted

Fig. 2. A symmetric triangular fuzzy number 〈2; 0:7〉:

by a fuzzy number A1 with the membership function,

�A1 (r) = max
(

0; 1 − |r − 2|
0:7

)
: (3)

The fuzzy number A1 is depicted in Fig. 2. As shown
in Fig. 2, ‘2’ is the most plausible value for a1 as it
takes the highest membership value. Fig. 2 also shows
that a1 is in the range (1:3; 2:7) as any membership
value outside this interval is zero. Moreover, the pos-
sibility of the event that a1 is more than ‘2’ and that of
the event that a1 is less than ‘2’ are the same and the
membership value (possibility degree) linearly de-
creases as the processing time departs from ‘2’. Thus,
the fuzzy number A1 is a symmetric triangular fuzzy
number. If the person in charge of the process control
section evaluates the processing time as the possibility
of the event that a1 is less than ‘2’ is higher than the
possibility of the event that a1 is more than ‘2’, the
fuzzy numberA1 may be represented by an asymmetric
fuzzy number as depicted by the broken line in Fig. 2.
In this paper, for the sake of simplicity, we deal with
symmetric triangular fuzzy numbers only. However,
the techniques described in what follows are the same
as those used in the case of asymmetric fuzzy numbers
(see, for example, [94,60,33,31,89,92]. A membership
function elicitation method is proposed in [45].

The symmetric triangular fuzzy number Ai in
Fig. 2 can be determined by a center ac

i and a spread
wai , it is represented as Ai = 〈ac

i ; wai〉. For example,
the symmetric triangular fuzzy number A1 in Fig. 2 is
represented as A1 = 〈2; 0:7〉. The membership value
of the fuzzy number A1, �A1 (r); shows the possibility
degree of the event that the processing time of Prod-
uct A at Process 1, a1 is r, i.e., a1 = r. In this sense,
�A1 can be considered as a possibility distribution of
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Table 1
Symmetric triangular fuzzy numbers

Product A B

Process 1 A1 = 〈2; 0:7〉 B1 = 〈3; 0:5〉
Process 2 A2 = 〈4; 1:5〉 B2 = 〈2; 0:3〉
Process 3 A3 = 〈1; 0:5〉 B3 = 〈3; 0:3〉
Pro�t rate C1 = 〈5; 1〉 C2 = 〈7; 0:7〉

the processing time of Product A at Process 1 and a1

can be regarded as a possibilistic variable restricted
by the possibility distribution �A1 .

The processing time of Product A at each of the
other processes, ai, and that of Product B at each
process, bi, are also assumed to be symmetric trian-
gular fuzzy numbers Ai = 〈ac

i ; wai〉 and Bi = 〈bc
i ; wbi〉,

respectively. Similarly, interviewing the person in
charge of the accountants’ section, the pro�t rate
(100$/batch) of each product, cj is estimated as a
symmetric triangular fuzzy number Cj = 〈cc

j ; wcj〉. As
a result, we obtain the symmetric triangular fuzzy
numbers in Table 1. From Table 1, we can see that the
spreads of the symmetric triangular fuzzy numbers of
the new product A are larger than those of Product B.

The problem of Example 2 can be formulated as the
following possibilistic linear programming problem;

maximize c1x1 + c2x2;

subject to a1x1 + b1x26240;

a2x1 + b2x26400;

a3x1 + b3x26210;

x1¿0; x2¿0;

(4)

where ai, bi, i= 1; 2; 3 and cj, j= 1; 2, are possibilistic
variables restricted by fuzzy numbers Ai, Bi, i= 1; 2; 3
and Cj, j= 1; 2, respectively.

4.2. Possibility distribution on a possibilistic linear
function value

Problem (4) includes linear functions of x1 and x2

whose coe�cients are possibilistic variables. Such
a function is called ‘a possibilistic linear function’.
Since the possibilistic variable coe�cients are am-
biguous parameters, the possibilistic linear function
value is also ambiguous. The range of the possi-
bilistic linear function value is restricted by a fuzzy

number since the possibilistic variable coe�cients
are restricted by fuzzy numbers. The fuzzy number
which restricts the possibilistic linear function value
is de�ned by the extension principle (see, for ex-
ample, [12]). Applying the extension principle, for
example, to the objective function of Problem (4),
f0(x1; x2) = c1x1 + c2x2, the fuzzy number F0(x1; x2)
which restricts f0(x1; x2) is de�ned by the following
membership function:

�F0(x1 ; x2)(r) = sup
p; q

r=px1+qx2

min(�C1 (p); �C2 (q)): (5)

Taking into consideration the fact that C1 and C2

are symmetric triangular fuzzy numbers 〈5; 1〉 and
〈7; 0:7〉, respectively, the fuzzy number F0(x1; x2) also
becomes a symmetric triangular fuzzy number, i.e.,

F0(x1; x2) = 〈5x1 + 7x2; |x1| + 0:7|x2|〉

= 〈5x1 + 7x2; x1 + 0:7x2〉; (6)

where the second equality is from the non-negativity
of xi’s of Problem (4). Generally, as is known in the
literature (see, for example, [12]), if possibilistic vari-
ables yj, j= 1; 2; : : : ; n; are all restricted by symmetric
triangular fuzzy numbers Yj = 〈yc

j ; wj〉, j= 1; 2; : : : ; n,
then the fuzzy number Z which restricts z=

∑n
j=1 kjyj

is also a symmetric triangular fuzzy number,

Z =

〈
n∑
j=1

kjyc
j ;

n∑
j=1

|kj|wj
〉
; (7)

where kj, j= 1; 2; : : : ; n; are real numbers.
Let Fi(x1; x2) be a fuzzy number which restricts

the left-hand side value of the ith constraint of (4),
fi(x1; x2) = aix1 + bix2. Since the fuzzy numbers Ai
and Bi which restrict ai and bi are symmetric fuzzy
numbers as shown in Table 1, Fi(x1; x2) is also a
symmetric triangular fuzzy number. Taking the non-
negativity of xi’s into account, we have

F1(x1; x2) = 〈2x1 + 3x2; 0:7x1 + 0:5x2〉; (8)

F2(x1; x2) = 〈4x1 + 2x2; 1:5x1 + 0:3x2〉; (9)

F3(x1; x2) = 〈x1 + 3x2; 0:5x1 + 0:3x2〉: (10)
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4.3. Indices de�ned by possibility and necessity
measures

A possibilistic linear function value cannot be deter-
mined uniquely since its coe�cients are ambiguous,
i.e., non-deterministic. Thus, the objective, maximiz-
ing a possibilistic function and the constraint that a
possibilistic linear function value is not greater than a
certain value do not speci�cally make sense. To make
them clear, we must introduce a speci�c interpreta-
tion, particularly, fuzzy inequality or ranking relations
�(A; B)∈ [0; 1], A and B being fuzzy sets. This be-
longs to Phase 1 of the fuzzy mathematical program-
ming approach. Some well-known interpretations are
reviewed and applied in the next section. In this sub-
section, as a basis of Phase 1, we introduce particular
relations �(A; B) called indices de�ned by possibility
and necessity measures.

Under a possibility distribution �A of a possibilistic
variable �, possibility and necessity measures of the
event that � is in a fuzzy set B are de�ned as follows
(see [108,14]):

�A(B) = sup
r

min(�A(r); �B(r)); (11)

NA(B) = inf
r

max(1 − �A(r); �B(r)); (12)

where �B is the membership function of the fuzzy set
B. �A(B) evaluates to what extent it is possible that
the possibilistic variable � restricted by the possibility
distribution �A is in the fuzzy set B. On the other
hand, NA(B) evaluates to what extent it is certain that
the possibilistic variable � restricted by the possibility
distribution �A is in the fuzzy set B.

Let � be a possibilistic variable. In context to the
above example, let B= (−∞; g], i.e., B be a crisp
(nonfuzzy) set of real numbers which is not greater
than g. Then we obtain the following indices by pos-
sibility and necessity measures de�ned by (11) and
(12):

Pos(�6g) =�A((−∞; g])

= sup{�A(r) | r6g}; (13)

Nes(�6g) =NA((−∞; g])

= 1 − sup{�A(r) | r¿g}: (14)

Fig. 3. Possibility and necessity degrees of �6g.

Pos(�6g) and Nes(�6g) show the possibility and
certainty degrees to what extent � is not greater than
g. Those indices are depicted in Fig. 3.

Similarly, letting B= [g;+∞), we obtain the fol-
lowing two indices;

Pos(�¿g) = �A([g;+∞))

= sup{�A(r) | r¿g}; (15)

Nes(�¿g) = NA([g;+∞))

= 1 − sup{�A(r) | r¡g}: (16)

Pos(�¿g) and Nes(�¿g) show the possibility and
certainty degrees to what extent � is not smaller than
g. Those indices are depicted in Fig. 4.

Since a possibilistic linear function value fi(x1; x2)
is a possibilistic variable restricted by Fi(x1; x2), we
can substitute fi(x1; x2) for � and Fi(x1; x2) for A in
(13)–(16). Thus, we can get the possibility and cer-
tainty degrees to what extent a possibilistic linear func-
tion value is not greater (smaller) than a given real
number.

5. Some formulations and the solutions

As described before, the meaning of maximizing
a possibilistic linear function value and the condition
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Fig. 4. Possibility and necessity degrees of �¿g.

that a possibilistic linear function value is not greater
than a given fuzzy number are unclear in the traditional
mathematical sense. Thus, Problem (4) is an ill-posed
problem. In this section, we give speci�c meanings of
maximizing a possibilistic linear function value and
the condition that a possibilistic linear function value
is not greater than a given fuzzy number, or, particu-
larly, a crisp number, so that the ill-posed problem can
be transformed to a traditional mathematical program-
ming problem. This process is Phase 1 of the fuzzy
mathematical programming approach.

Generally speaking, various interpretations are con-
ceivable for a given fuzzy mathematical programming
problem, see also e.g. [75,77–79,85,86]. Here, two
well-known models are introduced. How the model
can reect the decision maker’s intention is described
in what follows. Before introducing the models, the
treatment of the constraints, which is common to both
models is described.

5.1. Treatment of the constraints

Assume that each working time cannot be extended
for some reasons, e.g. for the limited workshop space
part-time workers cannot be employed. In such a case,
the constraints of Problem (4) should be satis�ed with
high certainty. If the decision maker feels that a cer-
tainty degree not less than 0.8 is high enough, the con-

Fig. 5. F1(x1; x2) and Nes(a1x1 + b1x26240).

straints of Problem (4) can be treated as follows:

Nes(a1x1 + b1x26240)¿0:8;

Nes(a2x1 + b2x26400)¿0:8;

Nes(a3x1 + b3x26210)¿0:8;

x1¿0; x2¿0:

(17)

Let us consider the equivalent conditions to
(17). To this end, we analyze the �rst constraint,
Nes(a1x1 + b1x26240)¿0:8. From (8), the fuzzy
number F1(x1; x2) restricting f1(x1; x2) = a1x1 +
b1x2 is a symmetric triangular fuzzy number
〈2x1 + 3x2; 0:7x1 + 0:5x2〉. This fuzzy number
and the index Nes(a1x1 + b1x26240) are depicted
in Fig. 5. As shown in Fig. 5, in order to satisfy
Nes(a1x1 + b1x26240)¿0:8, Point P should be un-
der Line l. This is equivalent to the fact that t is not
greater than 240. Since the isosceles triangles 4DEF
and 4DGH are similar, we obtain

t = (2x1 + 3x2) + 0:8(0:7x1 + 0:5x2)

= 2:56x1 + 3:4x2: (18)

Analyzing the equivalent conditions of the other
constraints of (17), we obtain the following constraints
to (17):

2:56x1 + 3:4x26240;

5:2x1 + 2:24x26400;

1:4x1 + 3:24x26210;

x1¿0; x2¿0:

(19)

For the purpose of comparison, the feasible region of
(19) and those of Problems (1) and (2) are depicted
in Fig. 6. As shown in Fig. 6, the size of feasible re-
gion of Problem (2) is almost equal to that of the con-
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Fig. 6. Feasible regions of (1), (2) and (19).

straints (19). The constraints (19) restricts x1 stronger,
x2 is, however, restricted weaker than the constraints
of Problem (2). Particularly, to ensure feasibility, (19)
more restricts the production amount of Product A
which includes more ambiguous factors.

5.2. Treatment of the objectives – fractile approach

A fractile approach corresponds to the Kataoka’s
model [51,64] of a stochastic programming problem.
Geo�rion [16] calls the Kataoka’s model the fractile
criterion approach. The fractile is de�ned in statistics
(see, for example, [21]). By de�nition, p-fractile is
the value u which satis�es

Prob(X6u) =p; (20)

where X is a random variable. In this de�nition,
p-fractile does not generally exist for all p∈ (0; 1).
That is why we de�ne p-fractile as the smallest value
up of u which satis�es

Prob(X6u)¿p: (21)

From the viewpoint of Dempster–Shafer theory
of evidence [4], it is known that Pos(X6u) and
Nes(X6u) can be regarded as the upper and lower
bounds of Prob(X6u) (see [13]). In this sense, we
de�ne p-possibility fractile as the smallest value of
u which satis�es

Pos(X6u)¿p; (22)

and p-necessity fractile as the smallest value of u
which satis�es

Nes(X6u)¿p: (23)

Fig. 7. The fractile optimization model.

Let us consider Example 2 again. Assume that the
decision maker has a great interest in the expected
pro�t with high certainty. Of course, the larger the
expected pro�t is, the more preferable is the solution.
If the decision maker feels the 0.8 certainty is high
enough, then maximization of the objective function
in Example 2 can be treated as

maximize u

subject to Nes(c1x1 + c2x2¿u)¿0:8;
(24)

which is equivalent to

minimize v

subject to Nes(−c1x1 − c2x26v)¿0:8:
(25)

Problem (25) is nothing but minimizing the 0.8-
necessity fractile of a possibilistic variable (−c1x1 −
c2x2). This kind of treatment is called the fractile
approach.

Problem (24) is illustrated in Fig. 7. As shown
in Fig. 7, u is maximized under the condition that
point P is under line l. By the same discussion as in
Section 5.1, Problem (24) is equivalent to

maximize u

subject to 4:2x1 + 6:44x2¿u:
(26)

Moreover, (26) is equivalent to

maximize 4:2x1 + 6:44x2: (27)

Finally, adding the constraints (19), Problem (4)
is formulated as the following linear programming
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problem:

maximize 4:2x1 + 6:44x2

subject to 2:56x1 + 3:4x26240;

5:2x1 + 2:24x26400;

1:4x1 + 3:24x26210;

x1¿0; x2¿0:

(28)

This problem can be solved by the simplex method.
The solution is obtained as (x1; x2) ≈ (18; 57).

5.3. Treatment of the objectives – modality
approach

A modality optimization model corresponds to
the minimum-risk approach [64] to a stochastic pro-
gramming problem. The minimum-risk approach is
also called the maximum probability approach, see
[52] or, the aspiration criterion approach by Geof-
frion [16]. A modality optimization approach is a
dual approach to the fractile optimization one. Here,
we assume that the decision maker puts more impor-
tance on the certainty degree comparing to the fractile
approach.

For Problem (4), let us assume that the decision
maker wants to maximize the certainty degree of the
event that the pro�t is not smaller than $45 000. This
intention of the decision maker can be modeled by

maximize Nes(c1x1 + c2x2¿450): (29)

This model can be rewritten as follows with an addi-
tional variable h;

maximize h

subject to Nes(c1x1 + c2x2¿450)¿h:
(30)

Problem (30) is illustrated in Fig. 8. As shown in
Fig. 8, h is maximized under the condition that point
P is under line l. By the same discussion as in Sec-
tion 5.1, Problem (30) is equivalent to

maximize h

subject to
5x1 + 7x2 − 450
x1 + 0:7x2

¿h:
(31)

Fig. 8. The modality optimization model.

Adding the constraints (19), Problem (4) is formulated
as

maximize
5x1 + 7x2 − 450
x1 + 0:7x2

subject to 2:56x1 + 3:4x26240;

5:2x1 + 2:24x26400;

1:4x1 + 3:24x26210;

x1¿0; x2¿0:

(32)

This is a linear fractional programming problem which
can be transformed to a linear programming problem
by the substitution

t=
1

x1 + 0:7x2
;

zi = xit; i= 1; 2;

as shown by Charnes and Cooper [3]. Solving the
linear programming problem,

maximize 5z1 + 7z2 − 450t

subject to 2:56z1 + 3:4z2 − 240t60;

5:2z1 + 2:24z2 − 400t60;

1:4z1 + 3:24z2 − 210t60;

z1 + 0:7z2 = 1;

z1¿0; z2¿0; t¿0;

(33)

we obtain e.g. by simplex method the optimal solu-
tion (z1; z2; t) ≈ (0:311; 0:985; 0:017). By the reverse
substitution, the optimal solution of the fractional pro-
gramming problem is (x1; x2) ≈ (18; 57) which hap-
pens to be the same as that of the fractile optimization
model. However, the solutions of fractile and modality
optimization problems need not be always the same.
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Fig. 9. Comparison between Problems (2) and (28) (or (32)).

5.4. Graphical representation of the solution and
reformulation

At Phase 3 of the fuzzy mathematical programming,
the obtained solution is checked whether the decision
maker’s intention is well-matched by the solution. In
this subsection, we check the solution by its graphi-
cal representation. Moreover, reformulating Problem
(4), we also describe how the fuzzy mathematical pro-
gramming approach proceeds.

The possibility distributions corresponding to the
solutions to Problem (2) and to Problem (28) (or (32))
are depicted in Fig. 9. From the possibility distribu-
tions with respect to the solution to Problem (2), we
can observe that the certainty degree of the satisfac-
tion of constraints on working time at Processes 1 and
2 is not high enough. Thus, we may regard the solu-
tion to Problem (2) as an ill-matched solution to the
decision maker’s intention.

Assume that the decision maker is not satis�ed with
the solution to Problem (28) (or (32)). If he=she re-
quires that the possibility degree of the event that the
pro�t is not smaller than $53 000 is as high as the ne-

cessity degree of the event that the pro�t is not smaller
than $45 000, we can reformulate the objective func-
tion of Problem (4) as

maximize min( Nes(c1x1 + c2x2¿450);

Pos(c1x1 + c2x2¿530)): (34)

This problem can be reduced to the following problem
of linear fractional programming and solved (applying
the above substitution) by the simplex method:

maximize h

subject to 5z1 + 7z2 − 450t − h¿0;

6z1 + 7:7z2 − 530t − h¿0;

2:56z1 + 3:4z2 − 240t60;

5:2z1 + 2:24z2 − 400t60;

1:4z1 + 3:24z2 − 210t60;

z1 + 0:7z2 = 1;

z1¿0; z2¿0; t¿0; h¿0:

(35)

The optimal solution after the reverse substitution
is (x1; x2) ≈ (64:68; 21:89) with h= 0:33. This solu-
tion is depicted in Fig. 10 together with the solution
to Problem (28) (or (32 )). As shown in Fig. 10, com-
pared to the solution of Problem (28), the solution
of Problem (35) makes the possibility degree of the
event that the pro�t is not smaller than $ 53 000 a lit-
tle bit higher but it makes the certainty degree of the
event that the pro�t is not smaller than $ 45 000 lower.
The decision maker may know that he cannot o�er a
higher requirement than the solution to Problems (28)
and (32).

Further, suppose that the decision maker wants to
have a higher possibility degree of the event that the
pro�t is not smaller than $ 53 000 even the certainty
degree of the event that the pro�t is not smaller than
$ 45 000 is smaller than that of the solution to Prob-
lems (29) and (33). He/She can accept a certainty de-
gree not less than 0.5. In such a case, we can refor-
mulate the objective function of Problem (4) as

maximize Pos(c1x1 + c2x2¿530))

subject to Nes(c1x1 + c2x2¿450)¿0:5:
(36)

By the same way, we obtain the optimal solution to
Problem (36) with the constraints (19) as (x1; x2) ≈
(38:28; 41:76). This optimal solution is “between” the
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Fig. 10. Comparison between Problems (28) (or (32)) and (35).

solutions to Problems (28) (or (32)) and (35). As
demonstrated above, various solutions can be obtained
depending on the decision maker’s intention in the
fuzzy mathematical programming approach. An inter-
active system can be useful during the iteration pro-
cess of Phases 1, 2 and 3. Through such a system, the
decision maker may understand how high requirement
one can ask.

Part II: Application to Portfolio Selection

6. Stochastic programming versus fuzzy
mathematical programming

In the preceding sections of Part I, we have de-
scribed the fuzzy mathematical programming ap-
proach through a concrete example, emphasizing
that various solutions can be obtained reecting the
decision maker’s intention.

Stochastic programming approaches are tradi-
tionally famous for optimization techniques under
uncertainty. Someone may question the di�erence be-

tween fuzzy mathematical programming and stochas-
tic programming or which is better. In this part,
we compare those approaches through a portfolio
selection problem in which the di�erences are con-
spicuous. Other comparison may be found e.g. in
[106,95,96,91,28,38,79,86].

Generally speaking, we have the following two dif-
ferences between stochastic and fuzzy mathematical
programming approaches (see [28]):
1. When the random vector obeys a multivariate nor-

mal distribution, a stochastic programming prob-
lem can be solved easily. For a general distribution,
a stochastic programming problem cannot usually
be solved easily. On the other hand, a fuzzy math-
ematical programming problem can be solved eas-
ily even when the possibilistic vector is restricted
by any unimodal distribution. In general, solving a
fuzzy mathematical programming problem can be
easier than a stochastic programming problem.

2. Suppose the uncertain variables are independent.
Then only a small number of decision variables
takes non-zero values in the optimal solution of the
fuzzy mathematical programming problem. On the
other hand, a large number of decision variables
takes non-zero values in the optimal solution of the
stochastic programming problem.
Now, let us look at those di�erences in a portfolio

selection problem.

7. Portfolio selection – stochastic programming
approach

7.1. Portfolio selection problem

Consider the decision problem of bond investment
rate when investing a certain capital in a market where
n bonds, say Sj’s, are dealt with. Let cj be the return
rate of the jth bond Sj. The problem can be formulated
to maximize the total return rate

∑n
j=1 cjxj as follows:

maximize
n∑
j=1

cjxj

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n;

(37)
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where xj is the decision variable which shows the in-
vestment rate to the jth bond Sj. In the real setting,
one can seldom obtain the return rate without any un-
certainty. Thus, the decision makers should make their
decisions under uncertainty.

Such an uncertain parameter cj has been treated
as a random variable so far. Usually, ci correlates
cj (i 6= j), but here we assume that ci is independent
of cj (i 6= j) for any (i; j), i 6= j, in order to make the
di�erences between stochastic and fuzzy mathemati-
cal programming approaches remarkable. Moreover,
we assume that the return rate cj obeys a normal dis-
tribution N(mj; �2

j ) with the mean mj and the variance
�2
j . Thus, the probability density function fcj (r) is de-

�ned by

fcj (r) =
1√

2��j
exp

(
− (r − mj)2

2�2
j

)
: (38)

7.2. E�ciency frontier

The usual decision maker will prefer the solution
which yields a large expected total return rate and a
small variance. The expected total return rate corre-
sponds to the return, while the variance corresponds
to the risk. From this point of view, the portfolio se-
lection problem can be formulated as the following
bi-objective mathematical programming problem:

maximize E


 n∑
j=1

cjxj


 =

n∑
j=1

mjxj

minimize V


 n∑
j=1

cjxj


 =

n∑
j=1

�2
j x

2
j

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(39)

Usually, we cannot obtain a complete optimal solu-
tion which optimizes both objective functions, i.e. the
expected total return rate and the variance, simulta-
neously in Problem (39). Thus, a Pareto optimal so-
lution, such that there is no feasible solution which
makes both objective function values better at the
same time, is calculated. Generally there exist a lot of
Pareto optimal solutions to Problem (39).

Fig. 11. Normal distributions.

Fig. 12. E�ciency frontier.

For example, the set of Pareto optimal solutions
are obtained as shown in Fig. 12 to Problem (39)
with 5 bonds whose return rates obey normal dis-
tributions indicated in Fig. 11. Strictly speaking, in
Fig. 12, the expected values and the standard devia-
tions of Pareto optimal solutions are plotted, where a
standard deviation is the square root of a variance.
Such a curve is called an e�ciency frontier. A large
expected value and a small standard deviation are
preferable. The left and upper region of the e�ciency
frontier is the infeasible region. Thus, the e�ciency
frontier is the border obtained by improving the ex-
pected value and the standard deviation (variance) in
the feasible region.

7.3. Markowitz model

The original model of the portfolio selection prob-
lem was proposed by Markowitz [62]. The model is
the so calledV-model [64] in stochastic programming.
To obtain a Pareto optimal solution to Problem (39),
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Fig. 13. Markowitz model.

he treated the problem so as to minimize the vari-
ance keeping the expected value at a given constant
�, i.e.,

minimize V


 n∑
j=1

cjxj


 =

n∑
j=1

�2
j x

2
j

subject to E


 n∑
j=1

cjxj


 =

n∑
j=1

mjxj = �

n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(40)

This problem is a quadratic programming problem.
Thus it can be solved easily (see, for example, [15]).

This model can be explained by using Fig. 13.
Namely, this model �nds the solution correspond-
ing to point P which minimizes the standard
deviation along line l on which the expected
value is constantly �. Applying this model with
�= 0:18 to the portfolio selection problem with
normal distributions depicted in Fig. 11, the op-
timal solution is obtained as (x1; x2; x3; x4; x5) ≈
(0:1767; 0:2325; 0:2109; 0:2350; 0:1449). A distribu-
tive investment solution is obtained so as to avert the
risk. The defect of this model is that a solution indi-
cating an improperly large investment in an ine�cient
bond with a small variance may be obtained on con-
dition that we select too small �. This follows from
the fact that a small variance does not imply a large
expected value. Indeed, the obtained solution with

respect to �= 0:18 indicates a 14.49% investment in
the �fth bond which may be regarded as inferior.

7.4. Kataoka’s model

We may apply the Kataoka’s model to Problem (37)
with random return rates. In this model, we maximize
z such that the probability of the event that the total
return rate is not smaller than z is at least 1 − �, i.e.,

maximize z

subject to Prob


 n∑
j=1

cjxj¿z


¿1 − �;

n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(41)

Since we assume that each return rate obeys a normal
distribution, Problem (41) can be reduced to the fol-
lowing mathematical programming problem (see, for
example, [64]):

maximize
n∑
j=1

mjxj + k�

√√√√ n∑
j=1

�2
j x

2
j

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n;

(42)

where k� is the �-fractile of the standard normal dis-
tribution N(0; 1), i.e., we have Pr(X6k�) = � (X ∼
N(0; 1)). Compared to Problem (40), solving Problem
(42) is much more di�cult. However, it is known that
Problem (42) can be solved by a repetitional use of
quadratic programming when �¡0:5 (see, for exam-
ple, [64]).

Problem (42) can be explained by Fig. 14. Namely,
the y-intercept z is maximized under the constraint
that the linear function �= −k��+z intersects the e�-
ciency frontier. Thus, we obtain a solution correspond-
ing to point Q. Applying this model with �= 0:05 to
the portfolio selection problem with normal distribu-
tions depicted in Fig. 11, we have (x1; x2; x3; x4; x5) ≈
(0:3103; 0:3429; 0:2613; 0:0855; 0). Even though we
set �= 0:05, a small number, we obtaine x5 = 0. From
this, we can be convinced that the �fth bond is inferior.
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Fig. 14. Kataoka’s model.

7.5. Minimum-risk model

We apply the minimum-risk model to Problem (37)
with random return rates. In contrast to Kataoka’s
model, we maximize the probability of the event that
the total return rate is not smaller than a predetermined
value z0 in this model, i.e.,

maximize Prob


 n∑

j=1

cjxj¿z0




subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(43)

Since we assume that each return rate obeys a normal
distribution, Problem (43) can be reduced to the fol-
lowing mathematical programming problem (see, for
example, [64]):

maximize

∑n
j=1 mjxj − z0√∑n

j=1 �
2
j x

2
j

;

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(44)

This problem can be solved by a repetitional use of
quadratic programming when there exists a feasible
solution such that

∑n
j=1mjxj¿z0 (see, for example,

[64]).
Problem (44) can be explained by Fig. 15. Namely,

the slope −k� is maximized under the constraint that
the linear function �= − k�� + z0 intersects the e�-

Fig. 15. Minimum-risk model.

ciency frontier. Thus, we obtain a solution correspond-
ing to point R. Applying this model with z0 = 0:18 to
the portfolio selection problem with normal distribu-
tions depicted in Fig. 11, we have (x1; x2; x3; x4; x5) ≈
(0:4380; 0:3750; 0:1870; 0; 0).

8. Portfolio selection – possibilistic programming
approach

8.1. Bi-objective programming problem

In the previous section, we assume that each return
rate cj is a random variable. In this section, we assume
that each return rate cj is a possibilistic variable. Cor-
responding to the normal distributions in Fig. 11, we
have normal fuzzy numbers Cj with the membership
functions de�ned by

�Cj (r) = exp

(
− (r − cc

j)
2

w2
j

)
; (45)

where cc
j is a center value of the normal fuzzy number

Cj and takes the same values as the mean mj of the
corresponding normal distribution. On the other hand,
wj is a spread of the normal fuzzy number and is
equal to

√
2�j; where �j is a standard deviation of the

corresponding normal distribution. The normal fuzzy
numbers corresponding to the normal distributions in
Fig. 11 are depicted in Fig. 16.

From now on, we assume that cj’s in Problem
(37) are mutually independent possibilistic vari-
ables restricted by normal fuzzy numbers Cj’s.
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Fig. 16. Normal fuzzy numbers.

Fig. 17. Pareto optimal face.

We apply a fuzzy mathematical programming ap-
proach to the portfolio selection problem in what
follows.

Since the center values and spreads correspond
to the means and variances (standard deviations),
respectively, the following bi-objective program-
ming problem is conceivable in analogy to Problem
(39):

maximize
n∑
j=1

cc
j xj

minimize
n∑
j=1

wjxj

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(46)

Problem (46) preserves the linearity of the original
problem (37) while Problem (39) does not preserve
it, i.e., Problem (39) is quadratic.

Pareto optimal solutions to Problem (46) with the
normal fuzzy numbers of Fig. 16 are obtained as
shown in Fig. 17. In Fig. 17, we can see that the
Pareto optimal solution set forms a polygonal line.
The vertices V1; V2; V3 and V4 correspond to con-
centrate investments in bonds S5; S4; S2 and S1,
respectively.

8.2. Spread minimization model

In analogy to Problem (40), we may have

minimize
n∑
j=1

wjxj

subject to
n∑
j=1

cc
j xj = �;

n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(47)

This problem is called the spread minimization model.
Whereas Problem (40) is a quadratic programming

problem, Problem (47) is a linear programming one.
Thus, Problem (47) can be solved easier than Prob-
lem (40). Problem (47) has only two constraints other
than non-negativity constraints on the decision vari-
ables. From the fundamental theorems of linear pro-
gramming (see, for example, [19]), usually only two
decision variables are positive at the optimal so-
lution to Problem (47) even if n is large. This
means that Problem (47) suggests an invest-
ment only in two bonds, i.e., a semi-concentrated
investment.

For example, applying this model with �= 0:18
to a portfolio selection with the normal fuzzy num-
bers of Fig. 16, we obtain (x1; x2; x3; x4; x5) ≈
(0; 0:4286; 0; 0:5714; 0). This solution shows an in-
vestment in bonds S2 and S4. In another way, using
Fig. 18, we can understand that the solution corre-
sponding to Point P on the line segment from Vertex
V2 to Vertex V3 is optimal. Since Vertices V2 and V3

correspond to the bonds S4 and S2, the solution means
an investment in bonds S4 and S2. As demonstrated
above, the solution of this model does not suggest a
distributive investment.
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Fig. 18. Spread minimization model.

8.3. Fractile approach

Applying the fractile approach to Problem (37) with
normal fuzzy number coe�cients, we have

maximize z

subject to Nes


 n∑

j=1

cjxj¿z


¿h0;

n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n;

(48)

where h0 ∈ (0; 1] is a predetermined value. This prob-
lem can be reduced to the following linear program-
ming problem:

maximize
n∑
j=1

cc
j xj −

√
− ln(1 − h0)

n∑
j=1

wjxj

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(49)

This linear programming problem corresponds to
the Kataoka’s model in stochastic programming ap-
proach. Whereas the Kataoka’s model is reduced to
a non-linear programming problem (42), the fractile
optimization model is reduced to a linear program-
ming problem. Consequently, the fractile optimiza-
tion model yields a simpler reduced problem than the
Kataoka’s model.

Problem (49) has only one constraint besides the
non-negativity constraints on the decision variables.

Fig. 19. Fractile optimization model.

From the fundamental theorem of linear programming,
usually, only one decision variable takes a positive
value at the optimal solution to Problem (49). Thus,
the solution suggests an investment only in a bond
Sj which has the largest objective function coe�cient
(cc
j −

√− ln(1 − h0)wj). For example, applying this
model with h0 = 0:9 to a portfolio selection problem
with the normal fuzzy numbers of Fig. 16, we obtain
(x1; x2; x3; x4; x5) ≈ (0; 1; 0; 0; 0). Namely, the solution
suggests an investment only in the bond S2. Fig. 19
shows how the solution is obtained. At vertex V3, the
y-intercept z of a line y=

√− ln(1 − h0)w+z is max-
imal. Vertex V3 corresponds to the bond S2.

Therefore, by the fractile approach of fuzzy mathe-
matical programming, a risky concentrated investment
solution is obtained.

8.4. Modality approach

Applying the Modality approach to Problem (37)
with the normal fuzzy numbers, we have

maximize Nes


 n∑

j=1

cjxj¿z0




subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n;

(50)

where z0 ∈ (0; 1] is a predetermined value. This prob-
lem can be reduced to the following linear fractional
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Fig. 20. Modality optimization model.

programming problem:

maximize

∑n
j=1 c

c
j xj − z0∑n

j=1 wjxj
;

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(51)

Again, this linear fractional programming problem
can be transformed to a linear programming problem
since the denominator of the objective function is
positive for any feasible solution. Indeed, de�ning
t= 1=

∑n
j=1 wjxj and yj = txj as shown in Section 5.3,

we can reduce Problem (51) to the following linear
programming problem:

maximize
n∑
j=1

cc
jyj − z0t

subject to
n∑
j=1

wjyj = 1;

n∑
j=1

yj = t;

t¿0; yj¿0; j= 1; 2; : : : ; n:

(52)

This model corresponds to the minimum-risk model
in stochastic programming. Whereas the minimum-
risk model is solved by a repetitional use of quadratic
programming, the modality optimization model is
solved by linear programming.

Problem (51) also yields a concentrated investment
solution. This can be explained in Fig. 20 by using an

example with normal fuzzy numbers of Fig. 16. We
assume z0 = 0:18. As shown in Fig. 20, Problem (51)
is equivalent to the problem of maximizing h under
the condition that a line y=

√− ln(1 − h)w + z0 in-
tersects the Pareto optimal face. Since maximizing h
is equivalent to maximizing the slope

√− ln(1 − h),
the maximum is attained at a vertex. In the current
model, the maximum h is obtained at vertex V4 which
corresponds to a concentrated investment in the
bond S1.

Analogously to the fractile approach, by the modal-
ity optimization model of fuzzy mathematical pro-
gramming approach, a risky concentrated investment
solution is obtained.

9. Possibilistic programming treats more uncertain
parameters

Inuiguchi and Sakawa [38] showed that a possi-
bilistic linear programming problem with a quadratic
membership function is equivalent to a stochastic pro-
gramming problem with a multivariate normal distri-
bution. In this section, we describe that a possibilistic
linear programming problem with independent possi-
bilistic variables is equivalent to a stochastic linear
programming problem with unknown correlation co-
e�cients between normal random variables.

Let �ij be the correlation coe�cient between normal
random variables ci and cj. The covariance matrix �
can be represented by

�=




�2
1 �12�1�2 · · · �1n�1�n

�12�1�2 �2
2 · · · �2n�2�n

...
...

. . .
...

�1n�1�n �2n�2�n · · · �2
n


: (53)

∑n
j=1 cjxj obeys a multivariate normal distribution

given by

N


 n∑

j=1

mjxj; xt�x


; (54)

where x= (x1; x2; : : : ; xn)t is a column vector.
In the current problem, we assume that �ij’s are

unknown elements from the interval [−1; 1] (see, for
example, [21]). In decision-making under uncertainty,
taking care of the worst case, it is important to avert the
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risk. Reecting this consideration, we may chose the
most uncertain probability distribution of

∑n
j=1 cjxj

among all possible probability distributions obtained
by changing every �ij in [−1; 1]. Because x is non-
negative, the probability distribution with respect to
�ij = 1; i¡j; is selected as the most uncertain one.
Particularly, we have the following equality for any x:

max
�ij∈[−1;1]; i¡j

xt�x=


 n∑

j=1

�jxj




2

: (55)

Let us consider a portfolio selection problem with
unknown correlation coe�cients between normal ran-
dom return rates. Taking care of the worst case, we
may have the following problem corresponding to
Problem (39):

maximize E


 n∑

j=1

cjxj


=

n∑
j=1

mjxj

minimize max
�ij∈[−1;1]; i¡j

V


 n∑

j=1

cjxj




=


 n∑

j=1

�jxj




2

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(56)

Problem (56) is equivalent to

maximize
n∑
j=1

mjxj

minimize
n∑
j=1

√
2�jxj

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(57)

From the correspondences between mj and cc
j and that

between
√

2�j and wj, Problem (57) is nothing but
Problem (46).

In the same way, applying Markowitz model,
Kataoka’s model and the minimum-risk model to the
portfolio selection problem with unknown correlation

coe�cients between normal random return rates, we
obtain the equivalent problems to Problems (47), (49)
and (51) under the equation k� =

√−2 ln(1 − h).
This is true even in a general linear programming
problem under uncertainty. Therefore, we can re-
gard a possibilistic linear programming problem with
independent possibilistic variables as a stochastic lin-
ear programming problem with unknown correlation
coe�cients between normal random variables.

As shown above, when we treat a stochastic
programming problem with unknown correlation co-
e�cients, we cannot always obtain a distributive
investment solution. This means that a distributive
investment solution is not obtained from the deci-
sion procedures of Markowitz, Kataoka’s and the
minimum-risk problems, but from a property of the
probability measure (the de�nition of probabilistic
independence). In the next section, we introduce a
decision procedure from which we can obtain a dis-
tributive investment solution to a portfolio selection
problem with normal fuzzy numbers (see [40]).

10. Minimax regret model

Now, we discuss why a distributive investment so-
lution under independent return rate assumption is pre-
ferred by a decision maker who has an uncertainty
(risk) averse attitude. We can observe at least the fol-
lowing two reasons:
(a) Property of a measure. Assume that we have

two bonds and the return rate of each bond obeys
the same marginal distribution. Consider the event
that the total return rate is not less than a certain
value. When the measure of the event under a dis-
tributive investment solution is greater than that
under a concentrated investment solution, the dis-
tributive investment solution should be preferable.

(b) The worst regret criterion. Suppose that the deci-
sion maker has invested his money in a bond ac-
cording to a concentrated investment solution. If
the return rate of another bond becomes better than
that of the invested bond, as a result, the decision
maker may feel a regret. At the decision making
stage, we cannot know the return rate determined
in the future. Thus, any concentrated investment
solution may bring a regret to the decision maker.
In this sense, if the decision maker is interested in
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minimizing the worst regret which may be under-
taken, a distributive investment solution must be
preferable.

As described in the preceding section, in stochas-
tic programming approaches, a distributive investment
solution is obtained. This is because of (a), i.e., the
Property of a measure. Indeed, we have

Prob(�X1 + (1 − �)X2¿k)¿Prob(Xi¿k);

∀�∈ (0; 1); i= 1; 2; (58)

when random variables X1 and X2 obey the same
marginal normal (probability) distribution, the corre-
lation coe�cient �12 is less than 1 and k is a constant
larger than the expected value. In fuzzy programming
approaches, we could not obtain a distributive invest-
ment solution since possibility and necessity measures
do not have the property mentioned in (a). For possi-
bility and necessity measures, we have

Pos(�X1 + (1 − �)X2¿k)

= Pos(Xi¿k); ∀�∈ [0; 1]; i= 1; 2;

Nes(�X1 + (1 − �)X2¿k)

= Nes(Xi¿k); ∀�∈ [0; 1]; i= 1; 2;

(59)

where X1 and X2 are mutually independent possibilis-
tic variables restricted by the same marginal possibil-
ity distribution.

Now let us introduce the worst regret criterion into
a portfolio selection problem with normal fuzzy num-
bers so that we can obtain a distributive investment
solution.

Suppose that a decision maker is informed about
the determined return rates c after he has invested his
money in bonds according to a feasible solution x to
Problem (37), he will have a regret r(x; c) which can
be quanti�ed as

r(x; c) = max{cty− ctx | ety= 1; y¿0}: (60)

Regret r(x; c) is the di�erence between the optimal
total return rate with respect to c and the obtained total
return rate ctx.

At the decision-making stage, the decision maker
cannot know the return rate c determined in the future
but a possibility distribution �C(c) is supposed to be
known. By the extension principle [12], a possibility

distribution �R(x) on regrets can be de�ned as

�R(x)(r) = sup {�C(c) | r= r(x; c);

c= (c1; c2; : : : ; cn)t}: (61)

We regard the portfolio selection problem with
fuzzy numbers as a problem of minimizing a regret
R(x) with a possibility distribution �R(x), i.e.,

minimize R(x)

subject to
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:
(62)

Since R(x) is a possibilistic variable restricted by a
possibility distribution �R(x), (62) is also a possibilistic
programming problem. We apply the fractile model
to Problem (62) so that, given h0, Problem (62) is
formulated as

minimize z

subject to NR(x)({r | r6z})¿h0;
n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(63)

Inuiguchi and Sakawa [40] showed that Problem (63)
is reduced to a linear programming problem. In the
case of normal fuzzy numbers, we have

minimize q

subject to

√
− ln(1 − h0)


wixi −

n∑
j=1
i 6=j

wjxj


+

n∑
j=1

cc
j xj + q

¿cc
i +

√
− ln(1 − h0)wi; i= 1; 2; : : : ; n;

n∑
j=1

xj = 1; xj¿0; j= 1; 2; : : : ; n:

(64)

Applying this model with h0 = 0:8 to the port-
folio selection problem with the normal fuzzy num-
bers of Fig. 16, we obtain (x1; x2; x3; x4; x5)≈ (0:4080;
0:3067; 0:2528; 0:0325; 0). Although the solution does
not suggest an investment in the bond S5, it is a
distributive investment solution on the bonds S1 to S4.
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Fig. 21. A band graph of the solutions.

The worst regret criterion can be introduced into a
stochastic programming problem, however, it is di�-
cult to solve the reduced problem. On the other hand,
in a fuzzy mathematical programming approach, in-
troduction of a new criterion is usually easier.

The solutions are compared by a band graph in
Fig. 21. The length of a rectangle with a variable
name, xj, shows the portion that the solution suggests
to invest in the corresponding bond Sj. As shown in
Fig. 21, the minimax regret solution takes a middle
position between Kataoka’s and minimum-risk mod-
els. Considering the e�ort to calculate the solution as
well as the convincibility of the solution, the mini-
max regret model would be the best among the seven
models.

11. New trends in fuzzy mathematical programming

As described in the previous sections, the fuzzy
mathematical programming approaches have some ad-
vantages in the tractability of the reduced problem
over the stochastic programming approaches. The ba-
sic developments of fuzzy mathematical programming
is almost done but there is still many topics to be inves-
tigated. Some of the new trends in fuzzy mathematical
programming are briey reviewed in what follows. As
can be seen from the literature, the fuzzy mathemati-
cal programming is still being developed widely and
deeply.

11.1. Optimality and e�ciency

An objective function with fuzzy coe�cients has
been treated based on a goal attainment criterion or

a ranking criterion between fuzzy numbers in many
papers, so far. There were not so many proposals to
treat the fuzzy objective function based on the opti-
mality concept. Luhandjula [59] �rst treated a fuzzy
vector objective function based on the optimality
(more exactly, e�ciency) concept. He proved several
theorems. [37,42] extended the optimality for a single
objective function and the e�ciency for multiple
objective functions based on the possibility theory.
They also presented optimality and e�ciency tests
for a given feasible solution.

Following Inuiguchi and Sakawa [37,42], two kinds
of optimality can be de�ned based on the possibil-
ity theory: the possibly and necessarily optimal solu-
tions. Briey speaking, the possibly optimal solution
is a solution which is optimal for at least one pos-
sible objective coe�cient vector. On the other hand,
the necessarily optimal solution is a solution which is
optimal for all possible objective coe�cient vectors.
A necessarily optimal solution does not always exist
but it seems to be the most reasonable solution. When
no necessarily optimal solution exists, there exist a lot
of possibly optimal solutions. In this case, we should
provide a selection method to chose from the possibly
optimal solutions.

The possible and necessary optimality tests will be
useful at Phase 3 of the fuzzy mathematical program-
ming approach. Some extension and other optimal and
e�ciency concepts are also conceivable (see, for ex-
ample, [35,34,27]).

11.2. Minimax regret model

In the preceding section, we described the minimax
regret model. This model has some interesting prop-
erty, i.e. a minimax regret solution is possibly optimal
and it is also necessarily optimal when a necessarily
optimal solution exists. From this good property, a
minimax regret criterion can be applied to linear pro-
gramming problems with interval and fuzzy objective
coe�cients and solution methods based on a relax-
ation procedure have been proposed (see [39,41]).

Another model which has the same property, called
the achievement rate approach, has also been devel-
oped (see [43]). Moreover, this model can be used
for fuzzy linear programming problems with recourse
(see [49] for stochastic programming problems with
recourse).
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11.3. Interactions among possibilistic variables

So far, most of fuzzy mathematical programming
techniques have been developed for non-interactive
(independent) fuzzy numbers. Recently, the re-
searchers have been trying to introduce the interaction
between fuzzy numbers. Four possible avenues to
treat the interaction were proposed.
Quadratic membership function: Originally, this

expression of a multivariate possibility distribution
was proposed for fuzzy linear regression methods by
Celmi �s [2], later on, it was developed by Tanaka and
Ishibuchi [101,102]. A quadratic membership function
is the one obtained by normalizing the mode of a mul-
tivariate normal distribution. A quadratic membership
function �C(c) is de�ned by

�C(c) =L((c − d)tU−1(c − d)); (65)

where d = (d1; : : : ; dn)t is the most conceivable vec-
tor for c, U is an n× n symmetrical positive-de�nite
matrix representing the interactions among objec-
tive coe�cients. U−1 is the inverse matrix of U ,
L :R→ [0; 1] is a reference function which is a non-
increasing function in the domain [0;+∞) such that
L(r) =L(−r) and L(0) = 1.

An introduction of the above approach to fuzzy
linear programming problems was done by Inuiguchi
[28] and Inuiguchi and Sakawa [38]. They showed
the equivalence between fuzzy linear programming
and stochastic linear programming with a multivari-
ate normal distribution. Ida [27] has also investigated
possible and necessary optimality tests for a fuzzy
linear programming problem with quadratic member-
ship functions. Tanaka and Guo [99] applied quadratic
membership functions to portfolio selection problems.

Since a quadratic membership function has similar
properties to a multivariate normal distribution, it can
be easily introduced to many kinds of problem. How-
ever, it cannot express any interaction between possi-
bilistic variables with high proximity.
T-norm based extension: In the independent possi-

bilistic variables case, a joint (multivariate) possibility
distribution can be obtained by taking the minimum
among the marginal possibility distributions. In the
t-norm-based extension, we replace the minimum op-
eration with a t-norm (see, for example, [10]). Thus, a
joint (multivariate) possibility distribution �C can be
expressed by

�C(c) =T (�C1 (c1); T (�C2 (c2); T (: : : ; �Cn(cn)) : : :);

(66)

where �Ci is a marginal possibility distribution of the
ith possibilistic variable.

The possibilistic variables restricted by the joint
possibility distribution are not totally (possibilistic)
independent but, in certain sense, independent. For
example, if the t-norm is a product, the possibility
variables are quite similar to independent random
variables. Moreover, a multivariate possibility dis-
tribution cannot be always expressed by marginal
possibility distributions. From such a viewpoint, pos-
sibilistic variables are said to be weakly independent
(non-interactive) if the joint possibility distribution
is decomposable to marginal possibility distributions
by a t-norm (see [10]). Rommelfanger et al. [90,88]
proposed the use of Yager’s parameterized t-norm for
solving fuzzy linear programming problems. By using
of Yager’s parameterized t-norm, the decision maker
can obtain a more exible instrument for expressing
his=her risk mentality.
Canonical fuzzy number: A canonical fuzzy num-

ber is de�ned formally by Nakamura [65] and Ram��k
and Nakamura [81,82]. A canonical fuzzy number C
can be de�ned by the following membership function
�C :

�C(c) = min
i=1;2;:::; n

L

(∑n
j=1dijcj − di0

�i

)
; (67)

where L is a reference function, dij is a real number
and �i is a positive real number.

When dii = 1, i= 1; 2; : : : ; n; and dij = 0, i 6= j,
i= 1; 2; : : : ; n, j= 1; 2; : : : ; n, a membership function
of a canonical fuzzy number is reduced to a possibil-
ity distribution of independent possibilistic variables.
Thus, a membership function of a canonical fuzzy
number can be considered as an extension of a pos-
sibility distribution of independent possibilistic vari-
ables but it can treat interactions among possibilistic
variables. Since the linearity is not lost in a canonical
fuzzy number, it is useful for modeling fuzzy linear
programming problems.
Scenario decomposition: Scenario decomposition is

originally introduced in stochastic programming (see,
for example, [49]). Ohta et al. [68] introduced this
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method into a fuzzy linear programming problem in
order to treat interactions among uncertain variables.

In this method, we �rst select a scenario variable,
s; which inuences to some uncertain variables. Then,
the possible realizations of the scenario variable s is
determined. To each possible realization of s, we as-
sign a possible range of each uncertain variable. Under
the realization of s, we assume that uncertain variables
are independent.

A multivariate distribution can be expressed by an
inference model such as ‘if s is ∼ then the range of
uncertain variable is ∼’. For each value of s, we can
treat a fuzzy mathematical programming problem in
the traditional way. That is why this model is useful
to treat interactive possibilistic variables.

Ohta et al. [68] and Katagiri and Ishii [50] treated a
scenario variable as a random variable. We can treat
it as a possibilistic variable, too.

11.4. Fuzzy combinatorial programming

The treatments of fuzzy mathematical programming
problems have been already well-developed. Such
developments were done mostly in fuzzy linear pro-
gramming problems. Thus, many researchers are
trying to extend the application area to fuzzy combi-
natorial programming problems.

Nowadays, meta-heuristic methods, such as genetic
algorithms [63], simulated annealing [55], tabu search
[17,18] and so on, are popular. Some researches are
applying meta-heuristic methods to fuzzy combinato-
rial programming problems, such as fuzzy schedul-
ing problems [46,47,104,23], fuzzy project selection
problems [93,53] and so forth. Using a meta-heuristic
method, one can obtain only approximate solutions
even to a complex problem.

On the other hand, other researchers are devel-
oping a theoretical approach to fuzzy combinato-
rial programming problems (see [48,22,24–26]).
Dubois et al. [6] treated such a combinatorial problem
in the framework of exible constraint satisfaction
problem [7].

11.5. Fuzzy solutions

A fuzzy mathematical programming problem in-
cludes the ambiguity of coe�cients and=or the vague-
ness of aspirations. In such an uncertain environment,

one may think how much we can make the uncertain
solution reect the uncertainty of the problem setting.
Such an uncertain solution is called the fuzzy solution.

Fuzzy solutions are initially investigated by
Verdegay [105] and Tanaka and Asai [98]. Verdegay
treated a mathematical programming problem under
fuzzy constraints. An element of the fuzzy solution
with membership degree h is the solution which op-
timizes the objective function under h-level set of
fuzzy constraints. On the other hand, Tanaka and
Asai treated a system of inequalities with fuzzy co-
e�cients. They calculated a fuzzy solution with the
widest spread such that the solution satisfy the system
of inequalities to a given degree.

Real world problems are not usually so easily for-
mulated as mathematical models or fuzzy models.
Sometimes qualitative constraints and=or objectives
are almost impossible to represent in mathematical
forms. In such a situation, a fuzzy solution satisfying
the given mathematically represented requirements are
very useful in a sense of weak focus in the feasible
area. The decision maker can select the �nal solution
from the fuzzy solution considering implicit and math-
ematically weak requirements.

The possibility and necessarily optimal (or e�cient)
solution sets can be considered as fuzzy solutions to a
fuzzy mathematical programming problem with fuzzy
coe�cients.

The fuzzy solutions have not yet been investigated
considerably. Recently, some researchers [80,20]
started to tackle the fuzzy solution problem. Several
advanced methods may emerge in the near future.
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