
The Linux Kernel

Copyright c
 1996-1998 David A Rusling

david.rusling@digital.com
REVIEW, Version 0.8-2

March 21, 1998

This book is for Linux enthusiasts who want to know how the Linux kernel works. It is

not an internals manual. Rather it describes the principles and mechanisms that Linux

uses; how and why the Linux kernel works the way that it does. Linux is a moving tar-

get; this book is based upon the current, stable, 2.0.33 sources as those are what most

individuals and companies are now using.

This book is freely distributable, you may copy and redistribute it under certain conditions.

Please refer to the copyright and distribution statement.

For Gill, Esther and Stephen

Legal Notice

UNIX is a trademark of Univel.

Linux is a trademark of Linus Torvalds, and has no connection to UNIXTM or

Univel.

Copyright c
 1996,1997,1998 David A Rusling

3 Foxglove Close, Wokingham, Berkshire RG41 3NF, UK

david.rusling@digital.com

\The Linux Kernel" may be reproduced and distributed in whole or in part, subject

to the following conditions:

0. The copyright notice above and this permission notice must be preserved

complete on all complete or partial copies.

1. Any translation or derivative work of \The Linux Kernel" must be approved

by the author in writing before distribution.

2. If you distribute \The Linux Kernel" in part, instructions for obtaining the

complete version of \The Linux Kernel" must be included, and a means for

obtaining a complete version provided.

3. Small portions may be reproduced as illustrations for reviews or quotes in

other works without this permission notice if proper citation is given.

4. If you print and distribute \The Linux Kernel", you may not refer to it as

the \O�cial Printed Version".

5. The GNU General Public License referenced below may be reproduced under

the conditions given within it.

Exceptions to these rules may be granted for academic purposes: Write to David

Rusling at the above address, or email david.rusling@digital.com, and ask.

These restrictions are here to protect us as authors, not to restrict you as educators

and learners.

All source code in \The Linux Kernel" is placed under the GNU General Public

License. See appendix D for a copy of the GNU \GPL."

The author is not liable for any damages, direct or indirect, resulting from the use

of information provided in this document.

Preface

Linux is a phenomenon of the Internet. Born out of the hobby project of a student it

has grown to become more popular than any other freely available operating system.

To many Linux is an enigma. How can something that is free be worthwhile? In

a world dominated by a handful of large software corporations, how can something

that has been written by a bunch of \hackers" (sic) hope to compete? How can

software contributed to by many di�erent people in many di�erent countries around

the world have a hope of being stable and e�ective? Yet stable and e�ective it is

and compete it does. Many Universities and research establishments use it for their

everyday computing needs. People are running it on their home PCs and I would

wager that most companies are using it somewhere even if they do not always realize

that they do. Linux is used to browse the web, host web sites, write theses, send

electronic mail and, as always with computers, to play games. Linux is emphatically

not a toy; it is a fully developed and professionally written operating system used by

enthusiasts all over the world.

The roots of Linux can be traced back to the origins of UnixTM . In 1969, Ken

Thompson of the Research Group at Bell Laboratories began experimenting on a

multi-user, multi-tasking operating system using an otherwise idle PDP-7. He was

soon joined by Dennis Richie and the two of them, along with other members of the

Research Group produced the early versions of UnixTM. Richie was strongly in
uenced

by an earlier project, MULTICS and the name UnixTM is itself a pun on the name

MULTICS. Early versions were written in assembly code, but the third version was

rewritten in a new programming language, C. C was designed and written by Richie

expressly as a programming language for writing operating systems. This rewrite

allowed UnixTM to move onto the more powerful PDP-11/45 and 11/70 computers

then being produced by DIGITAL. The rest, as they say, is history. UnixTM moved

out of the laboratory and into mainstream computing and soon most major computer

manufacturers were producing their own versions.

Linux was the solution to a simple need. The only software that Linus Torvalds,

Linux's author and principle maintainer was able to a�ord was Minix. Minix is a

simple, UnixTM like, operating system widely used as a teaching aid. Linus was less

than impressed with its features, his solution was to write his own software. He took

UnixTM as his model as that was an operating system that he was familiar with in his

day to day student life. He started with an Intel 386 based PC and started to write.

Progress was rapid and, excited by this, Linus o�ered his e�orts to other students

via the emerging world wide computer networks, then mainly used by the academic

community. Others saw the software and started contributing. Much of this new

software was itself the solution to a problem that one of the contributors had. Before

long, Linux had become an operating system. It is important to note that Linux

iii

contains no UnixTM code, it is a rewrite based on published POSIX standards. Linux

is built with and uses a lot of the GNU (GNU's Not UnixTM) software produced by

the Free Software Foundation in Cambridge, Massachusetts.

Most people use Linux as a simple tool, often just installing one of the many good

CD ROM-based distributions. A lot of Linux users use it to write applications or

to run applications written by others. Many Linux users read the HOWTOs1 avidly

and feel both the thrill of success when some part of the system has been correctly

con�gured and the frustration of failure when it has not. A minority are bold enough

to write device drivers and o�er kernel patches to Linus Torvalds, the creator and

maintainer of the Linux kernel. Linus accepts additions and modi�cations to the

kernel sources from anyone, anywhere. This might sound like a recipe for anarchy

but Linus exercises strict quality control and merges all new code into the kernel

himself. At any one time though, there are only a handful of people contributing

sources to the Linux kernel.

The majority of Linux users do not look at how the operating system works, how

it �ts together. This is a shame because looking at Linux is a very good way to

learn more about how an operating system functions. Not only is it well written,

all the sources are freely available for you to look at. This is because although the

authors retain the copyrights to their software, they allow the sources to be freely

redistributable under the Free Software Foundation's GNU Public License. At �rst

glance though, the sources can be confusing; you will see directories called kernel,

mm and net but what do they contain and how does that code work? What is needed

is a broader understanding of the overall structure and aims of Linux. This, in

short, is the aim of this book: to promote a clear understanding of how Linux, the

operating system, works. To provide a mind model that allows you to picture what

is happening within the system as you copy a �le from one place to another or read

electronic mail. I well remember the excitement that I felt when I �rst realized just

how an operating system actually worked. It is that excitement that I want to pass

on to the readers of this book.

My involvement with Linux started late in 1994 when I visited Jim Paradis who was

working on a port of Linux to the Alpha AXP processor based systems. I have worked

for Digital Equipment Co. Limited since 1984, mostly in networks and communi-

cations and in 1992 I started working for the newly formed Digital Semiconductor

division. This division's goal was to enter fully into the merchant chip vendor market

and sell chips, and in particular the Alpha AXP range of microprocessors but also

Alpha AXP system boards outside of DIGITAL. When I �rst heard about Linux I

immediately saw an opportunity to sell more Alpha AXP hardware. Jim's enthusi-

asm was catching and I started to help on the port. As I worked on this, I began

more and more to appreciate not only the operating system but also the community

of engineers that produces it. They are, by any standards, a remarkable set of people

and my involvement with them and with the Linux kernel has been perhaps the most

satisfying period of my time in software development. People often ask me about

Linux at work and at home and I am only too happy to oblige. The more that I

use Linux in both my professional and personal life the more that I become a Linux

zealot. You may note that I use the term `zealot' and not `bigot'; I de�ne a Linux

zealot to be an enthusiast that recognizes that there are other operating systems

but prefers not to use them. As my wife, Gill, who uses Windows 95 once remarked

1A HOWTO is just what it sounds like, a document describing how to do something. Many have

been written for Linux and all are very useful.

\I never realized that we would have his and her operating systems". For me, as

an engineer, Linux suits my needs perfectly. It is a superb,
exible and adaptable

engineering tool. Mostly freely available software easily builds on Linux and I can

often simply download pre-built executable �les or install them from a CD ROM.

What else could I use to learn to program in C++, Perl or learn about Java for free?

Alpha AXP is only one of the many hardware platforms that Linux runs on. Most

Linux kernels are running on Intel processor based systems but a growing number

of non-Intel Linux systems are becoming more commonly available. Amongst these

are Alpha AXP, MIPS, Sparc and PowerPC. I could have written this book using

any one of those platforms but my background and technical experiences with Linux

are with Linux on the Alpha AXP and this is why this book sometimes uses that

hardware as an example to illustrate some key point. It must be noted that around

95% of the Linux kernel sources are common to all of the hardware platforms that it

runs on. Likewise, around 95% of this book is about the machine independent parts

of the Linux kernel.

Reader Pro�le

This book does not make any assumptions about the knowledge or experience of

the reader. I believe that interest in the subject matter will encourage a process of

self education where neccessary. That said, a degree of familiarity with computers,

preferably the PC will help the reader derive real bene�t from the material, as will

some knowledge of the C programming language.

Organisation of this Book

This book is not intended to be used as an internals manual for Linux. Instead

it is an introduction to operating systems in general and to Linux in particular.

The chapters each follow my rule of \working from the general to the particular".

They �rst give an overview of the kernel subsystem that they are describing before

launching into its gory details.

I have deliberately not described the kernel's algorithms, its methods of doing things,

in terms of routine X() calls routine Y() which increments the foo �eld of the bar

data structure. You can read the code to �nd these things out. Whenever I need to

understand a piece of code or describe it to someone else I often start with drawing

its data structures on the white-board. So, I have described many of the relevant

kernel data structures and their interrelationships in a fair amount of detail.

Each chapter is fairly independent, like the Linux kernel subsystem that they each

describe. Sometimes, though, there are linkages; for example you cannot describe a

process without understanding how virtual memory works.

The Hardware Basics chapter (Chapter 1) gives a brief introduction to the modern

PC. An operating system has to work closely with the hardware system that acts

as its foundations. The operating system needs certain services that can only be

provided by the hardware. In order to fully understand the Linux operating system,

you need to understand the basics of the underlying hardware.

The Software Basics chapter (Chapter 2) introduces basic software principles and

looks at assembly and C programing languages. It looks at the tools that are used

to build an operating system like Linux and it gives an overview of the aims and

functions of an operating system.

The Memory Management chapter (Chapter 3) describes the way that Linux handles

the physical and virtual memory in the system.

The Processes chapter (Chapter 4) describes what a process is and how the Linux

kernel creates, manages and deletes the processes in the system.

Processes communicate with each other and with the kernel to coordinate their activ-

ities. Linux supports a number of Inter-Process Communication (IPC) mechanisms.

Signals and pipes are two of them but Linux also supports the System V IPC mecha-

nisms named after the UnixTM release in which they �rst appeared. These interprocess

communications mechanisms are described in Chapter 5.

The Peripheral Component Interconnect (PCI) standard is now �rmly established

as the low cost, high performance data bus for PCs. The PCI chapter (Chapter 6)

describes how the Linux kernel initializes and uses PCI buses and devices in the

system.

The Interrupts and Interrupt Handling chapter (Chapter 7) looks at how the Linux

kernel handles interrupts. Whilst the kernel has generic mechanisms and interfaces

for handling interrupts, some of the interrupt handling details are hardware and

architecture speci�c.

One of Linux's strengths is its support for the many available hardware devices for

the modern PC. The Device Drivers chapter (Chapter 8) describes how the Linux

kernel controls the physical devices in the system.

The File system chapter (Chapter 9) describes how the Linux kernel maintains the

�les in the �le systems that it supports. It describes the Virtual File System (VFS)

and how the Linux kernel's real �le systems are supported.

Networking and Linux are terms that are almost synonymous. In a very real sense

Linux is a product of the Internet or World Wide Web (WWW). Its developers and

users use the web to exchange information ideas, code and Linux itself is often used

to support the networking needs of organizations. Chapter 10 describes how Linux

supports the network protocols known collectively as TCP/IP.

The Kernel Mechanisms chapter (Chapter 11) looks at some of the general tasks and

mechanisms that the Linux kernel needs to supply so that other parts of the kernel

work e�ectively together.

The Modules chapter (Chapter 12) describes how the Linux kernel can dynamically

load functions, for example �le systems, only when they are needed.

The Sources chapter (Chapter 13) describes where in the Linux kernel sources you

should start looking for particular kernel functions.

Conventions used in this Book

The following is a list of the typographical conventions used in this book.

serif font identi�es commands or other text that is to be typed

literally by the user.

type font refers to data structures or �elds

within data structures.

Throughout the text there references to pieces of code within the Linux kernel source

tree (for example the boxed margin note adjacent to this text). These are given
See foo() in

foo/bar.c
in case you wish to look at the source code itself and all of the �le references are

relative to /usr/src/linux. Taking foo/bar.c as an example, the full �lename

would be /usr/src/linux/foo/bar.c If you are running Linux (and you should),

then looking at the code is a worthwhile experience and you can use this book as an

aid to understanding the code and as a guide to its many data structures.

Trademarks

Caldera, OpenLinux and the \C" logo are trademarks of Caldera, Inc.

Caldera OpenDOS 1997 Caldera, Inc.

DEC is a trademark of Digital Equipment Corporation.

DIGITAL is a trademark of Digital Equipment Corporation.

Linux is a trademark of Linus Torvalds.

Motif is a trademark of The Open System Foundation, Inc.

MSDOS is a trademark of Microsoft Corporation.

Red Hat, glint and the Red Hat logo are trademarks of Red Hat Software, Inc.

UNIX is a registered trademark of X/Open.

XFree86 is a trademark of XFree86 Project, Inc.

X Window System is a trademark of the X Consortium and the Massachusetts In-

stitute of Technology.

Acknowledgements

I must thank the many people who have been kind enough to take the time to e-

mail me with comments about this book. I have attempted to incorporated those

comments in each new version that I have produced. Special thanks must go to John

Rigby and Michael Bauer who gave me full, detailed review notes of the whole book.

Not an easy task.

Contents

Preface iii

1 Hardware Basics 1

1.1 The CPU . 2

1.2 Memory . 4

1.3 Buses . 4

1.4 Controllers and Peripherals . 5

1.5 Address Spaces . 5

1.6 Timers . 6

2 Software Basics 7

2.1 Computer Languages . 7

2.1.1 Assembly Languages . 7

2.1.2 The C Programming Language and Compiler 8

2.1.3 Linkers . 9

2.2 What is an Operating System? . 9

2.2.1 Memory management . 10

2.2.2 Processes . 10

2.2.3 Device drivers . 11

2.2.4 The Filesystems . 11

2.3 Kernel Data Structures . 11

2.3.1 Linked Lists . 12

2.3.2 Hash Tables . 12

2.3.3 Abstract Interfaces . 13

3 Memory Management 15

3.1 An Abstract Model of Virtual Memory 16

3.1.1 Demand Paging . 18

3.1.2 Swapping . 18

3.1.3 Shared Virtual Memory . 19

3.1.4 Physical and Virtual Addressing Modes 19

3.1.5 Access Control . 20

ix

3.2 Caches . 21

3.3 Linux Page Tables . 22

3.4 Page Allocation and Deallocation . 23

3.4.1 Page Allocation . 24

3.4.2 Page Deallocation . 25

3.5 Memory Mapping . 25

3.6 Demand Paging . 25

3.7 The Linux Page Cache . 27

3.8 Swapping Out and Discarding Pages 28

3.8.1 Reducing the Size of the Page and Bu�er Caches 29

3.8.2 Swapping Out System V Shared Memory Pages 29

3.8.3 Swapping Out and Discarding Pages 30

3.9 The Swap Cache . 31

3.10 Swapping Pages In . 32

4 Processes 35

4.1 Linux Processes . 36

4.2 Identi�ers . 38

4.3 Scheduling . 39

4.3.1 Scheduling in Multiprocessor Systems 41

4.4 Files . 42

4.5 Virtual Memory . 43

4.6 Creating a Process . 45

4.7 Times and Timers . 46

4.8 Executing Programs . 47

4.8.1 ELF . 48

4.8.2 Script Files . 49

5 Interprocess Communication Mechanisms 51

5.1 Signals . 51

5.2 Pipes . 53

5.3 Sockets . 55

5.3.1 System V IPC Mechanisms . 55

5.3.2 Message Queues . 55

5.3.3 Semaphores . 56

5.3.4 Shared Memory . 58

6 PCI 61

6.1 PCI Address Spaces . 61

6.2 PCI Con�guration Headers . 62

6.3 PCI I/O and PCI Memory Addresses 64

6.4 PCI-ISA Bridges . 64

6.5 PCI-PCI Bridges . 65

6.5.1 PCI-PCI Bridges: PCI I/O and PCI Memory Windows 65

6.5.2 PCI-PCI Bridges: PCI Con�guration Cycles and PCI Bus

Numbering . 65

6.6 Linux PCI Initialization . 66

6.6.1 The Linux Kernel PCI Data Structures 67

6.6.2 The PCI Device Driver . 68

6.6.3 PCI BIOS Functions . 70

6.6.4 PCI Fixup . 72

7 Interrupts and Interrupt Handling 75

7.1 Programmable Interrupt Controllers 76

7.2 Initializing the Interrupt Handling Data Structures 77

7.3 Interrupt Handling . 79

8 Device Drivers 81

8.1 Polling and Interrupts . 82

8.2 Direct Memory Access (DMA) . 83

8.3 Memory . 84

8.4 Interfacing Device Drivers with the Kernel 85

8.4.1 Character Devices . 85

8.4.2 Block Devices . 86

8.5 Hard Disks . 88

8.5.1 IDE Disks . 90

8.5.2 Initializing the IDE Subsystem 90

8.5.3 SCSI Disks . 91

8.6 Network Devices . 94

8.6.1 Initializing Network Devices . 96

9 The File system 99

9.1 The Second Extended File system (EXT2) 101

9.1.1 The EXT2 Inode . 102

9.1.2 The EXT2 Superblock . 103

9.1.3 The EXT2 Group Descriptor 104

9.1.4 EXT2 Directories . 104

9.1.5 Finding a File in an EXT2 File System 105

9.1.6 Changing the Size of a File in an EXT2 File System 105

9.2 The Virtual File System (VFS) . 106

9.2.1 The VFS Superblock . 108

9.2.2 The VFS Inode . 109

9.2.3 Registering the File Systems 109

9.2.4 Mounting a File System . 110

9.2.5 Finding a File in the Virtual File System 112

9.2.6 Creating a File in the Virtual File System 112

9.2.7 Unmounting a File System . 112

9.2.8 The VFS Inode Cache . 112

9.2.9 The Directory Cache . 113

9.3 The Bu�er Cache . 114

9.3.1 The bdflush Kernel Daemon 115

9.3.2 The update Process . 116

9.4 The /proc File System . 116

9.5 Device Special Files . 116

10 Networks 119

10.1 An Overview of TCP/IP Networking 119

10.2 The Linux TCP/IP Networking Layers 122

10.3 The BSD Socket Interface . 122

10.4 The INET Socket Layer . 125

10.4.1 Creating a BSD Socket . 127

10.4.2 Binding an Address to an INET BSD Socket 127

10.4.3 Making a Connection on an INET BSD Socket 128

10.4.4 Listening on an INET BSD Socket 129

10.4.5 Accepting Connection Requests 129

10.5 The IP Layer . 130

10.5.1 Socket Bu�ers . 130

10.5.2 Receiving IP Packets . 131

10.5.3 Sending IP Packets . 132

10.5.4 Data Fragmentation . 133

10.6 The Address Resolution Protocol (ARP) 133

10.7 IP Routing . 135

10.7.1 The Route Cache . 135

10.7.2 The Forwarding Information Database 136

11 Kernel Mechanisms 139

11.1 Bottom Half Handling . 139

11.2 Task Queues . 140

11.3 Timers . 141

11.4 Wait Queues . 142

11.5 Buzz Locks . 143

11.6 Semaphores . 143

12 Modules 145

12.1 Loading a Module . 146

12.2 Unloading a Module . 148

13 The Linux Kernel Sources 151

A Linux Data Structures 157

B The Alpha AXP Processor 175

C Useful Web and FTP Sites 177

D The GNU General Public License 179

D.1 Preamble . 179

D.2 Terms and Conditions . 180

D.3 How to Apply These Terms . 184

Glossary 187

Bibliography 190

List of Figures

1.1 A typical PC motherboard. 2

3.1 Abstract model of Virtual to Physical address mapping 16

3.2 Alpha AXP Page Table Entry . 20

3.3 Three Level Page Tables . 22

3.4 The free area data structure . 24

3.5 Areas of Virtual Memory . 26

3.6 The Linux Page Cache . 27

4.1 A Process's Files . 42

4.2 A Process's Virtual Memory . 44

4.3 Registered Binary Formats . 47

4.4 ELF Executable File Format . 48

5.1 Pipes . 54

5.2 System V IPC Message Queues . 56

5.3 System V IPC Semaphores . 57

5.4 System V IPC Shared Memory . 59

6.1 Example PCI Based System . 62

6.2 The PCI Con�guration Header . 63

6.3 Type 0 PCI Con�guration Cycle . 65

6.4 Type 1 PCI Con�guration Cycle . 65

6.5 Linux Kernel PCI Data Structures . 67

6.6 Con�guring a PCI System: Part 1 . 69

6.7 Con�guring a PCI System: Part 2 . 70

6.8 Con�guring a PCI System: Part 3 . 71

6.9 Con�guring a PCI System: Part 4 . 71

6.10 PCI Con�guration Header: Base Address Registers 72

7.1 A Logical Diagram of Interrupt Routing 76

7.2 Linux Interrupt Handling Data Structures 78

8.1 Character Devices . 86

xv

8.2 Bu�er Cache Block Device Requests 87

8.3 Linked list of disks . 89

8.4 SCSI Data Structures . 93

9.1 Physical Layout of the EXT2 File system 101

9.2 EXT2 Inode . 102

9.3 EXT2 Directory . 104

9.4 A Logical Diagram of the Virtual File System 107

9.5 Registered File Systems . 110

9.6 A Mounted File System . 111

9.7 The Bu�er Cache . 114

10.1 TCP/IP Protocol Layers . 121

10.2 Linux Networking Layers . 123

10.3 Linux BSD Socket Data Structures . 126

10.4 The Socket Bu�er (sk bu�) . 130

10.5 The Forwarding Information Database 136

11.1 Bottom Half Handling Data Structures 139

11.2 A Task Queue . 140

11.3 System Timers . 142

11.4 Wait Queue . 142

12.1 The List of Kernel Modules . 147

Chapter 1

Hardware Basics

An operating system has to work closely with the hardware system that

acts as its foundations. The operating system needs certain services that

can only be provided by the hardware. In order to fully understand

the Linux operating system, you need to understand the basics of the

underlying hardware. This chapter gives a brief introduction to that

hardware: the modern PC.

When the \Popular Electronics" magazine for January 1975 was printed with an

illustration of the Altair 8080 on its front cover, a revolution started. The Altair

8080, named after the destination of an early Star Trek episode, could be assembled

by home electronics enthusiasts for a mere $397. With its Intel 8080 processor and

256 bytes of memory but no screen or keyboard it was puny by today's standards.

Its inventor, Ed Roberts, coined the term \personal computer" to describe his new

invention, but the term PC is now used to refer to almost any computer that you

can pick up without needing help. By this de�nition, even some of the very powerful

Alpha AXP systems are PCs.

Enthusiastic hackers saw the Altair's potential and started to write software and

build hardware for it. To these early pioneers it represented freedom; the freedom

from huge batch processing mainframe systems run and guarded by an elite priest-

hood. Overnight fortunes were made by college dropouts fascinated by this new

phenomenon, a computer that you could have at home on your kitchen table. A lot

of hardware appeared, all di�erent to some degree and software hackers were happy

to write software for these new machines. Paradoxically it was IBM who �rmly cast

the mould of the modern PC by announcing the IBM PC in 1981 and shipping it to

customers early in 1982. With its Intel 8088 processor, 64K of memory (expandable

to 256K), two
oppy disks and an 80 character by 25 lines Colour Graphics Adapter

(CGA) it was not very powerful by today's standards but it sold well. It was fol-

lowed, in 1983, by the IBM PC-XT which had the luxury of a 10Mbyte hard drive.

It was not long before IBM PC clones were being produced by a host of companies

such as Compaq and the architecture of the PC became a de-facto standard. This

de-facto standard helped a multitude of hardware companies to compete together in

a growing market which, happily for consumers, kept prices low. Many of the system

architectural features of these early PCs have carried over into the modern PC. For

example, even the most powerful Intel Pentium Pro based system starts running in

the Intel 8086's addressing mode. When Linus Torvalds started writing what was

to become Linux, he picked the most plentiful and reasonably priced hardware, an

1

p

CPU
parallel port

COM1 COM2

power power

ISA Slots

Memory SIMM Slots

PCI Slots

Figure 1.1: A typical PC motherboard.

Intel 80386 PC.

Looking at a PC from the outside, the most obvious components are a system box,

a keyboard, a mouse and a video monitor. On the front of the system box are some

buttons, a little display showing some numbers and a
oppy drive. Most systems

these days have a CD ROM and if you feel that you have to protect your data, then

there will also be a tape drive for backups. These devices are collectively known as

the peripherals.

Although the CPU is in overall control of the system, it is not the only intelligent

device. All of the peripheral controllers, for example the IDE controller, have some

level of intelligence. Inside the PC (Figure 1.1) you will see a motherboard containing

the CPU or microprocessor, the memory and a number of slots for the ISA or PCI

peripheral controllers. Some of the controllers, for example the IDE disk controller

may be built directly onto the system board.

1.1 The CPU

The CPU, or rather microprocessor, is the heart of any computer system. The micro-

processor calculates, performs logical operations and manages data
ows by reading

instructions from memory and then executing them. In the early days of comput-

ing the functional components of the microprocessor were separate (and physically

large) units. This is when the term Central Processing Unit was coined. The modern

microprocessor combines these components onto an integrated circuit etched onto

a very small piece of silicon. The terms CPU, microprocessor and processor are all

used interchangeably in this book.

Microprocessors operate on binary data; that is data composed of ones and zeros.

These ones and zeros correspond to electrical switches being either on or o�. Just

as 42 is a decimal number meaning \4 10s and 2 units", a binary number is a series

of binary digits each one representing a power of 2. In this context, a power means

the number of times that a number is multiplied by itself. 10 to the power 1 (101)

is 10, 10 to the power 2 (102) is 10x10, 103 is 10x10x10 and so on. Binary 0001 is

decimal 1, binary 0010 is decimal 2, binary 0011 is 3, binary 0100 is 4 and so on. So,

42 decimal is 101010 binary or (2+8+32 or 21+23+25). Rather than using binary

to represent numbers in computer programs, another base, hexadecimal is usually

used. In this base, each digital represents a power of 16. As decimal numbers only

go from 0 to 9 the numbers 10 to 15 are represented as a single digit by the letters

A, B, C, D, E and F. For example, hexadecimal E is decimal 14 and hexadecimal 2A

is decimal 42 (two 16s) + 10). Using the C programming language notation (as I do

throughout this book) hexadecimal numbers are prefaced by \0x"; hexadecimal 2A

is written as 0x2A .

Microprocessors can perform arithmetic operations such as add, multiply and divide

and logical operations such as \is X greater than Y?".

The processor's execution is governed by an external clock. This clock, the system

clock, generates regular clock pulses to the processor and, at each clock pulse, the

processor does some work. For example, a processor could execute an instruction

every clock pulse. A processor's speed is described in terms of the rate of the system

clock ticks. A 100Mhz processor will receive 100,000,000 clock ticks every second. It

is misleading to describe the power of a CPU by its clock rate as di�erent processors

perform di�erent amounts of work per clock tick. However, all things being equal, a

faster clock speed means a more powerful processor. The instructions executed by the

processor are very simple; for example \read the contents of memory at location X

into register Y". Registers are the microprocessor's internal storage, used for storing

data and performing operations on it. The operations performed may cause the

processor to stop what it is doing and jump to another instruction somewhere else in

memory. These tiny building blocks give the modern microprocessor almost limitless

power as it can execute millions or even billions of instructions a second.

The instructions have to be fetched from memory as they are executed. Instructions

may themselves reference data within memory and that data must be fetched from

memory and saved there when appropriate.

The size, number and type of register within a microprocessor is entirely dependent

on its type. An Intel 4086 processor has a di�erent register set to an Alpha AXP

processor; for a start, the Intel's are 32 bits wide and the Alpha AXP's are 64 bits

wide. In general, though, any given processor will have a number of general purpose

registers and a smaller number of dedicated registers. Most processors have the

following special purpose, dedicated, registers:

Program Counter (PC) This register contains the address of the next instruction

to be executed. The contents of the PC are automatically incremented each

time an instruction is fetched,

Stack Pointer (SP) Processors have to have access to large amounts of external

read/write random access memory (RAM) which facilitates temporary storage

of data. The stack is a way of easily saving and restoring temporary values in

external memory. Usually, processors have special instructions which allow you

to push values onto the stack and to pop them o� again later. The stack works

p

on a last in �rst out (LIFO) basis. In other words, if you push two values, x

and y, onto a stack and then pop a value o� of the stack then you will get back

the value of y.

Some processor's stacks grow upwards towards the top of memory whilst others

grow downwards towards the bottom, or base, of memory. Some processor's

support both types, for example ARM.

Processor Status (PS) Instructions may yield results; for example \is the content

of register X greater than the content of register Y?" will yield true or false as

a result. The PS register holds this and other information about the current

state of the processor. For example, most processors have at least two modes

of operation, kernel (or supervisor) and user. The PS register would hold

information identifying the current mode.

1.2 Memory

All systems have a memory hierarchy with memory at di�erent speeds and sizes at

di�erent points in the hierarchy. The fastest memory is known as cache memory and

is what it sounds like - memory that is used to temporarily hold, or cache, contents

of the main memory. This sort of memory is very fast but expensive, therefore most

processors have a small amount of on-chip cache memory and more system based (on-

board) cache memory. Some processors have one cache to contain both instructions

and data, but others have two, one for instructions and the other for data. The

Alpha AXP processor has two internal memory caches; one for data (the D-Cache)

and one for instructions (the I-Cache). The external cache (or B-Cache) mixes the

two together. Finally there is the main memory which relative to the external cache

memory is very slow. Relative to the on-CPU cache, main memory is positively

crawling.

The cache and main memories must be kept in step (coherent). In other words, if

a word of main memory is held in one or more locations in cache, then the system

must make sure that the contents of cache and memory are the same. The job of

cache coherency is done partially by the hardware and partially by the operating

system. This is also true for a number of major system tasks where the hardware

and software must cooperate closely to achieve their aims.

1.3 Buses

The individual components of the system board are interconnected by multiple con-

nection systems known as buses. The system bus is divided into three logical func-

tions; the address bus, the data bus and the control bus. The address bus speci�es

the memory locations (addresses) for the data transfers. The data bus holds the data

transfered. The data bus is bidirectional; it allows data to be read into the CPU and

written from the CPU. The control bus contains various lines used to route timing

and control signals throughout the system. Many
avours of bus exist, for example

ISA and PCI buses are popular ways of connecting peripherals to the system.

p

1.4 Controllers and Peripherals

Peripherals are real devices, such as graphics cards or disks controlled by controller

chips on the system board or on cards plugged into it. The IDE disks are controlled

by the IDE controller chip and the SCSI disks by the SCSI disk controller chips and

so on. These controllers are connected to the CPU and to each other by a variety

of buses. Most systems built now use PCI and ISA buses to connect together the

main system components. The controllers are processors like the CPU itself, they

can be viewed as intelligent helpers to the CPU. The CPU is in overall control of the

system.

All controllers are di�erent, but they usually have registers which control them.

Software running on the CPU must be able to read and write those controlling

registers. One register might contain status describing an error. Another might be

used for control purposes; changing the mode of the controller. Each controller on

a bus can be individually addressed by the CPU, this is so that the software device

driver can write to its registers and thus control it. The IDE ribbon is a good example,

as it gives you the ability to access each drive on the bus separately. Another good

example is the PCI bus which allows each device (for example a graphics card) to be

accessed independently.

1.5 Address Spaces

The system bus connects the CPU with the main memory and is separate from the

buses connecting the CPU with the system's hardware peripherals. Collectively the

memory space that the hardware peripherals exist in is known as I/O space. I/O

space may itself be further subdivided, but we will not worry too much about that

for the moment. The CPU can access both the system space memory and the I/O

space memory, whereas the controllers themselves can only access system memory

indirectly and then only with the help of the CPU. From the point of view of the

device, say the
oppy disk controller, it will see only the address space that its

control registers are in (ISA), and not the system memory. Typically a CPU will

have separate instructions for accessing the memory and I/O space. For example,

there might be an instruction that means \read a byte from I/O address 0x3f0 into

register X". This is exactly how the CPU controls the system's hardware peripherals,

by reading and writing to their registers in I/O space. Where in I/O space the

common peripherals (IDE controller, serial port,
oppy disk controller and so on)

have their registers has been set by convention over the years as the PC architecture

has developed. The I/O space address 0x3f0 just happens to be the address of one

of the serial port's (COM1) control registers.

There are times when controllers need to read or write large amounts of data directly

to or from system memory. For example when user data is being written to the

hard disk. In this case, Direct Memory Access (DMA) controllers are used to allow

hardware peripherals to directly access system memory but this access is under strict

control and supervision of the CPU.

p

1.6 Timers

All operating systems need to know the time and so the modern PC includes a special

peripheral called the Real Time Clock (RTC). This provides two things: a reliable

time of day and an accurate timing interval. The RTC has its own battery so that

it continues to run even when the PC is not powered on, this is how your PC always

\knows" the correct date and time. The interval timer allows the operating system

to accurately schedule essential work.

Chapter 2

Software Basics

A program is a set of computer instructions that perform a particular task.

That program can be written in assembler, a very low level computer

language, or in a high level, machine independent language such as the

C programming language. An operating system is a special program

which allows the user to run applications such as spreadsheets and word

processors. This chapter introduces basic programming principles and

gives an overview of the aims and functions of an operating system.

2.1 Computer Languages

2.1.1 Assembly Languages

The instructions that a CPU fetches from memory and executes are not at all un-

derstandable to human beings. They are machine codes which tell the computer

precisely what to do. The hexadecimal number 0x89E5 is an Intel 80486 instruction

which copies the contents of the ESP register to the EBP register. One of the �rst

software tools invented for the earliest computers was an assembler, a program which

takes a human readable source �le and assembles it into machine code. Assembly

languages explicitly handle registers and operations on data and they are speci�c to

a particular microprocessor. The assembly language for an Intel X86 microprocessor

is very di�erent to the assembly language for an Alpha AXP microprocessor. The

following Alpha AXP assembly code shows the sort of operations that a program can

perform:

ldr r16, (r15) ; Line 1

ldr r17, 4(r15) ; Line 2

beq r16,r17,100 ; Line 3

str r17, (r15) ; Line 4

100: ; Line 5

The �rst statement (on line 1) loads register 16 from the address held in register

15. The next instruction loads register 17 from the next location in memory. Line 3

compares the contents of register 16 with that of register 17 and, if they are equal,

branches to label 100. If the registers do not contain the same value then the program

7

p

continues to line 4 where the contents of r17 are saved into memory. If the registers

do contain the same value then no data needs to be saved. Assembly level programs

are tedious and tricky to write and prone to errors. Very little of the Linux kernel is

written in assembly language and those parts that are are written only for e�ciency

and they are speci�c to particular microprocessors.

2.1.2 The C Programming Language and Compiler

Writing large programs in assembly language is a di�cult and time consuming task.

It is prone to error and the resulting program is not portable, being tied to one

particular processor family. It is far better to use a machine independent language

like C[7, The C Programming Language]. C allows you to describe programs in terms

of their logical algorithms and the data that they operate on. Special programs called

compilers read the C program and translate it into assembly language, generating

machine speci�c code from it. A good compiler can generate assembly instructions

that are very nearly as e�cient as those written by a good assembly programmer.

Most of the Linux kernel is written in the C language. The following C fragment:

if (x != y)

x = y ;

performs exactly the same operations as the previous example assembly code. If the

contents of the variable x are not the same as the contents of variable y then the

contents of y will be copied to x. C code is organized into routines, each of which

perform a task. Routines may return any value or data type supported by C. Large

programs like the Linux kernel comprise many separate C source modules each with

its own routines and data structures. These C source code modules group together

logical functions such as �lesystem handling code.

C supports many types of variables, a variable is a location in memory which can be

referenced by a symbolic name. In the above C fragment x and y refer to locations

in memory. The programmer does not care where in memory the variables are put,

it is the linker (see below) that has to worry about that. Some variables contain

di�erent sorts of data, integer and
oating point and others are pointers.

Pointers are variables that contain the address, the location in memory of other

data. Consider a variable called x, it might live in memory at address 0x80010000.

You could have a pointer, called px, which points at x. px might live at address

0x80010030. The value of px would be 0x80010000: the address of the variable x.

C allows you to bundle together related variables into data structures. For example,

struct {

int i ;

char b ;

} my_struct ;

is a data structure called my struct which contains two elements, an integer (32 bits

of data storage) called i and a character (8 bits of data) called b.

p g y

2.1.3 Linkers

Linkers are programs that link together several object modules and libraries to form

a single, coherent, program. Object modules are the machine code output from an

assembler or compiler and contain executable machine code and data together with

information that allows the linker to combine the modules together to form a pro-

gram. For example one module might contain all of a program's database functions

and another module its command line argument handling functions. Linkers �x up

references between these object modules, where a routine or data structure refer-

enced in one module actually exists in another module. The Linux kernel is a single,

large program linked together from its many constituent object modules.

2.2 What is an Operating System?

Without software a computer is just a pile of electronics that gives o� heat. If the

hardware is the heart of a computer then the software is its soul. An operating system

is a collection of system programs which allow the user to run application software.

The operating system abstracts the real hardware of the system and presents the

system's users and its applications with a virtual machine. In a very real sense

the software provides the character of the system. Most PCs can run one or more

operating systems and each one can have a very di�erent look and feel. Linux is

made up of a number of functionally separate pieces that, together, comprise the

operating system. One obvious part of Linux is the kernel itself; but even that would

be useless without libraries or shells.

In order to start understanding what an operating system is, consider what happens

when you type an apparently simple command:

$ ls

Mail c images perl

docs tcl

$

The $ is a prompt put out by a login shell (in this case bash). This means that it

is waiting for you, the user, to type some command. Typing ls causes the keyboard

driver to recognize that characters have been typed. The keyboard driver passes

them to the shell which processes that command by looking for an executable image

of the same name. It �nds that image, in /bin/ls. Kernel services are called to pull

the ls executable image into virtual memory and start executing it. The ls image

makes calls to the �le subsystem of the kernel to �nd out what �les are available.

The �lesystem might make use of cached �lesystem information or use the disk

device driver to read this information from the disk. It might even cause a network

driver to exchange information with a remote machine to �nd out details of remote

�les that this system has access to (�lesystems can be remotely mounted via the

Networked File System or NFS). Whichever way the information is located, ls writes

that information out and the video driver displays it on the screen.

All of the above seems rather complicated but it shows that even most simple com-

mands reveal that an operating system is in fact a co-operating set of functions that

p

together give you, the user, a coherent view of the system.

2.2.1 Memory management

With in�nite resources, for example memory, many of the things that an operating

system has to do would be redundant. One of the basic tricks of any operating

system is the ability to make a small amount of physical memory behave like rather

more memory. This apparently large memory is known as virtual memory. The idea

is that the software running in the system is fooled into believing that it is running

in a lot of memory. The system divides the memory into easily handled pages and

swaps these pages onto a hard disk as the system runs. The software does not notice

because of another trick, multi-processing.

2.2.2 Processes

A process could be thought of as a program in action, each process is a separate

entity that is running a particular program. If you look at the processes on your

Linux system, you will see that there are rather a lot. For example, typing ps shows

the following processes on my system:

$ ps

PID TTY STAT TIME COMMAND

158 pRe 1 0:00 -bash

174 pRe 1 0:00 sh /usr/X11R6/bin/startx

175 pRe 1 0:00 xinit /usr/X11R6/lib/X11/xinit/xinitrc --

178 pRe 1 N 0:00 bowman

182 pRe 1 N 0:01 rxvt -geometry 120x35 -fg white -bg black

184 pRe 1 < 0:00 xclock -bg grey -geometry -1500-1500 -padding 0

185 pRe 1 < 0:00 xload -bg grey -geometry -0-0 -label xload

187 pp6 1 9:26 /bin/bash

202 pRe 1 N 0:00 rxvt -geometry 120x35 -fg white -bg black

203 ppc 2 0:00 /bin/bash

1796 pRe 1 N 0:00 rxvt -geometry 120x35 -fg white -bg black

1797 v06 1 0:00 /bin/bash

3056 pp6 3 < 0:02 emacs intro/introduction.tex

3270 pp6 3 0:00 ps

$

If my system had many CPUs then each process could (theoretically at least) run

on a di�erent CPU. Unfortunately, there is only one so again the operating system

resorts to trickery by running each process in turn for a short period. This period of

time is known as a time-slice. This trick is known as multi-processing or scheduling

and it fools each process into thinking that it is the only process. Processes are

protected from one another so that if one process crashes or malfunctions then it will

not a�ect any others. The operating system achieves this by giving each process a

separate address space which only they have access to.

2.2.3 Device drivers

Device drivers make up the major part of the Linux kernel. Like other parts of the

operating system, they operate in a highly privileged environment and can cause

disaster if they get things wrong. Device drivers control the interaction between the

operating system and the hardware device that they are controlling. For example,

the �lesystem makes use of a general block device interface when writing blocks to

an IDE disk. The driver takes care of the details and makes device speci�c things

happen. Device drivers are speci�c to the controller chip that they are driving which

is why, for example, you need the NCR810 SCSI driver if your system has an NCR810

SCSI controller.

2.2.4 The Filesystems

In Linux, as it is for UnixTM , the separate �lesystems that the system may use

are not accessed by device identi�ers (such as a drive number or a drive name) but

instead they are combined into a single hierarchical tree structure that represents the

�lesystem as a single entity. Linux adds each new �lesystem into this single �lesystem

tree as they are mounted onto a mount directory, for example /mnt/cdrom. One of

the most important features of Linux is its support for many di�erent �lesystems.

This makes it very
exible and well able to coexist with other operating systems. The

most popular �lesystem for Linux is the EXT2 �lesystem and this is the �lesystem

supported by most of the Linux distributions.

A �lesystem gives the user a sensible view of �les and directories held on the hard

disks of the system regardless of the �lesystem type or the characteristics of the

underlying physical device. Linux transparently supports many di�erent �lesystems

(for example MS-DOS and EXT2) and presents all of the mounted �les and �lesystems

as one integrated virtual �lesystem. So, in general, users and processes do not need

to know what sort of �lesystem that any �le is part of, they just use them.

The block device drivers hide the di�erences between the physical block device types

(for example, IDE and SCSI) and, so far as each �lesystem is concerned, the physical

devices are just linear collections of blocks of data. The block sizes may vary between

devices, for example 512 bytes is common for
oppy devices whereas 1024 bytes is

common for IDE devices and, again, this is hidden from the users of the system. An

EXT2 �lesystem looks the same no matter what device holds it.

2.3 Kernel Data Structures

The operating system must keep a lot of information about the current state of the

system. As things happen within the system these data structures must be changed

to re
ect the current reality. For example, a new process might be created when

a user logs onto the system. The kernel must create a data structure representing

the new process and link it with the data structures representing all of the other

processes in the system.

Mostly these data structures exist in physical memory and are accessible only by

the kernel and its subsystems. Data structures contain data and pointers; addresses

of other data structures or the addresses of routines. Taken all together, the data

structures used by the Linux kernel can look very confusing. Every data structure

p

has a purpose and although some are used by several kernel subsystems, they are

more simple than they appear at �rst sight.

Understanding the Linux kernel hinges on understanding its data structures and the

use that the various functions within the Linux kernel makes of them. This book

bases its description of the Linux kernel on its data structures. It talks about each

kernel subsystem in terms of its algorithms, its methods of getting things done, and

their usage of the kernel's data structures.

2.3.1 Linked Lists

Linux uses a number of software engineering techniques to link together its data

structures. On a lot of occasions it uses linked or chained data structures. If each

data structure describes a single instance or occurance of something, for example a

process or a network device, the kernel must be able to �nd all of the instances. In a

linked list a root pointer contains the address of the �rst data structure, or element,

in the list and each data structure contains a pointer to the next element in the list.

The last element's next pointer would be 0 or NULL to show that it is the end of the

list. In a doubly linked list each element contains both a pointer to the next element

in the list but also a pointer to the previous element in the list. Using doubly linked

lists makes it easier to add or remove elements from the middle of list although you

do need more memory accesses. This is a typical operating system trade o�: memory

accesses versus CPU cycles.

2.3.2 Hash Tables

Linked lists are handy ways of tying data structures together but navigating linked

lists can be ine�cient. If you were searching for a particular element, you might

easily have to look at the whole list before you �nd the one that you need. Linux

uses another technique, hashing to get around this restriction. A hash table is an

array or vector of pointers. An array, or vector, is simply a set of things coming one

after another in memory. A bookshelf could be said to be an array of books. Arrays

are accessed by an index, the index is an o�set into the array. Taking the bookshelf

analogy a little further, you could describe each book by its position on the shelf;

you might ask for the 5th book.

A hash table is an array of pointers to data structures and its index is derived

from information in those data structures. If you had data structures describing

the population of a village then you could use a person's age as an index. To �nd

a particular person's data you could use their age as an index into the population

hash table and then follow the pointer to the data structure containing the person's

details. Unfortunately many people in the village are likely to have the same age

and so the hash table pointer becomes a pointer to a chain or list of data structures

each describing people of the same age. However, searching these shorter chains is

still faster than searching all of the data structures.

As a hash table speeds up access to commonly used data structures, Linux often

uses hash tables to implement caches. Caches are handy information that needs to

be accessed quickly and are usually a subset of the full set of information available.

Data structures are put into a cache and kept there because the kernel often accesses

them. There is a drawback to caches in that they are more complex to use and

maintain than simple linked lists or hash tables. If the data structure can be found

in the cache (this is known as a cache hit, then all well and good. If it cannot then

all of the relevant data structures must be searched and, if the data structure exists

at all, it must be added into the cache. In adding new data structures into the cache

an old cache entry may need discarding. Linux must decide which one to discard,

the danger being that the discarded data structure may be the next one that Linux

needs.

2.3.3 Abstract Interfaces

The Linux kernel often abstracts its interfaces. An interface is a collection of routines

and data structures which operate in a particular way. For example all network

device drivers have to provide certain routines in which particular data structures

are operated on. This way there can be generic layers of code using the services

(interfaces) of lower layers of speci�c code. The network layer is generic and it is

supported by device speci�c code that conforms to a standard interface.

Often these lower layers register themselves with the upper layer at boot time. This

registration usually involves adding a data structure to a linked list. For example

each �lesystem built into the kernel registers itself with the kernel at boot time

or, if you are using modules, when the �lesystem is �rst used. You can see which

�lesystems have registered themselves by looking at the �le /proc/filesystems.

The registration data structure often includes pointers to functions. These are the

addresses of software functions that perform particular tasks. Again, using �lesystem

registration as an example, the data structure that each �lesystem passes to the Linux

kernel as it registers includes the address of a �lesystem spec�c routine which must

be called whenever that �lesystem is mounted.

p

Chapter 3

Memory Management

The memory management subsystem is one of the most important parts of

the operating system. Since the early days of computing, there has been

a need for more memory than exists physically in a system. Strategies

have been developed to overcome this limitation and the most successful

of these is virtual memory. Virtual memory makes the system appear to

have more memory than it actually has by sharing it between competing

processes as they need it.

Virtual memory does more than just make your computer's memory go further. The

memory management subsystem provides:

Large Address Spaces The operating system makes the system appear as if it has

a larger amount of memory than it actually has. The virtual memory can be

many times larger than the physical memory in the system,

Protection Each process in the system has its own virtual address space. These

virtual address spaces are completely separate from each other and so a process

running one application cannot a�ect another. Also, the hardware virtual

memory mechanisms allow areas of memory to be protected against writing.

This protects code and data from being overwritten by rogue applications.

Memory Mapping Memory mapping is used to map image and data �les into a

processes address space. In memory mapping, the contents of a �le are linked

directly into the virtual address space of a process.

Fair Physical Memory Allocation The memory management subsystem allows

each running process in the system a fair share of the physical memory of the

system,

Shared Virtual Memory Although virtual memory allows processes to have sep-

arate (virtual) address spaces, there are times when you need processes to share

memory. For example there could be several processes in the system running

the bash command shell. Rather than have several copies of bash, one in each

processes virtual address space, it is better to have only one copy in physical

memory and all of the processes running bash share it. Dynamic libraries are

another common example of executing code shared between several processes.

Shared memory can also be used as an Inter Process Communication (IPC)

mechanism, with two or more processes exchanging information via memory

15

p y g

VPFN 0

VPFN 1

VPFN 2

VPFN 3

VPFN 4

VPFN 5

VPFN 6

VPFN 7

VIRTUAL MEMORY

Process X

VPFN 0

VPFN 1

VPFN 2

VPFN 3

VPFN 4

VPFN 5

VPFN 6

VPFN 7

Process Y

VIRTUAL MEMORY

Process X
Page Tables

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PHYSICAL MEMORY

Page Tables
Process Y

Figure 3.1: Abstract model of Virtual to Physical address mapping

common to all of them. Linux supports the UnixTM System V shared memory

IPC.

3.1 An Abstract Model of Virtual Memory

Before considering the methods that Linux uses to support virtual memory it is

useful to consider an abstract model that is not cluttered by too much detail.

As the processor executes a program it reads an instruction from memory and decodes

it. In decoding the instruction it may need to fetch or store the contents of a location

in memory. The processor then executes the instruction and moves onto the next

instruction in the program. In this way the processor is always accessing memory

either to fetch instructions or to fetch and store data.

In a virtual memory system all of these addresses are virtual addresses and not

physical addresses. These virtual addresses are converted into physical addresses by

the processor based on information held in a set of tables maintained by the operating

system.

To make this translation easier, virtual and physical memory are divided into handy

sized chunks called pages. These pages are all the same size, they need not be but if

they were not, the system would be very hard to administer. Linux on Alpha AXP

systems uses 8 Kbyte pages and on Intel x86 systems it uses 4 Kbyte pages. Each

of these pages is given a unique number; the page frame number (PFN). In this

paged model, a virtual address is composed of two parts; an o�set and a virtual page

frame number. If the page size is 4 Kbytes, bits 11:0 of the virtual address contain

the o�set and bits 12 and above are the virtual page frame number. Each time the

processor encounters a virtual address it must extract the o�set and the virtual page

frame number. The processor must translate the virtual page frame number into

a physical one and then access the location at the correct o�set into that physical

page. To do this the processor uses page tables.

Figure 3.1 shows the virtual address spaces of two processes, process X and process

y

Y, each with their own page tables. These page tables map each processes virtual

pages into physical pages in memory. This shows that process X's virtual page frame

number 0 is mapped into memory in physical page frame number 1 and that process

Y's virtual page frame number 1 is mapped into physical page frame number 4. Each

entry in the theoretical page table contains the following information:

� Valid
ag. This indicates if this page table entry is valid,

� The physical page frame number that this entry is describing,

� Access control information. This describes how the page may be used. Can it

be written to? Does it contain executable code?

The page table is accessed using the virtual page frame number as an o�set. Virtual

page frame 5 would be the 6th element of the table (0 is the �rst element).

To translate a virtual address into a physical one, the processor must �rst work out

the virtual addresses page frame number and the o�set within that virtual page. By

making the page size a power of 2 this can be easily done by masking and shifting.

Looking again at Figures 3.1 and assuming a page size of 0x2000 bytes (which is

decimal 8192) and an address of 0x2194 in process Y's virtual address space then

the processor would translate that address into o�set 0x194 into virtual page frame

number 1.

The processor uses the virtual page frame number as an index into the processes

page table to retrieve its page table entry. If the page table entry at that o�set is

valid, the processor takes the physical page frame number from this entry. If the

entry is invalid, the process has accessed a non-existent area of its virtual memory.

In this case, the processor cannot resolve the address and must pass control to the

operating system so that it can �x things up.

Just how the processor noti�es the operating system that the correct process has

attempted to access a virtual address for which there is no valid translation is speci�c

to the processor. However the processor delivers it, this is known as a page fault and

the operating system is noti�ed of the faulting virtual address and the reason for the

page fault.

Assuming that this is a valid page table entry, the processor takes that physical page

frame number and multiplies it by the page size to get the address of the base of the

page in physical memory. Finally, the processor adds in the o�set to the instruction

or data that it needs.

Using the above example again, process Y's virtual page frame number 1 is mapped

to physical page frame number 4 which starts at 0x8000 (4 x 0x2000). Adding in the

0x194 byte o�set gives us a �nal physical address of 0x8194.

By mapping virtual to physical addresses this way, the virtual memory can be

mapped into the system's physical pages in any order. For example, in Figure 3.1

process X's virtual page frame number 0 is mapped to physical page frame number

1 whereas virtual page frame number 7 is mapped to physical page frame number

0 even though it is higher in virtual memory than virtual page frame number 0.

This demonstrates an interesting byproduct of virtual memory; the pages of virtual

memory do not have to be present in physical memory in any particular order.

p y g

3.1.1 Demand Paging

As there is much less physical memory than virtual memory the operating system

must be careful that it does not use the physical memory ine�ciently. One way to

save physical memory is to only load virtual pages that are currently being used by

the executing program. For example, a database program may be run to query a

database. In this case not all of the database needs to be loaded into memory, just

those data records that are being examined. If the database query is a search query

then it does not make sense to load the code from the database program that deals

with adding new records. This technique of only loading virtual pages into memory

as they are accessed is known as demand paging.

When a process attempts to access a virtual address that is not currently in memory

the processor cannot �nd a page table entry for the virtual page referenced. For

example, in Figure 3.1 there is no entry in process X's page table for virtual page

frame number 2 and so if process X attempts to read from an address within virtual

page frame number 2 the processor cannot translate the address into a physical

one. At this point the processor noti�es the operating system that a page fault has

occurred.

If the faulting virtual address is invalid this means that the process has attempted

to access a virtual address that it should not have. Maybe the application has gone

wrong in some way, for example writing to random addresses in memory. In this case

the operating system will terminate it, protecting the other processes in the system

from this rogue process.

If the faulting virtual address was valid but the page that it refers to is not currently

in memory, the operating system must bring the appropriate page into memory from

the image on disk. Disk access takes a long time, relatively speaking, and so the

process must wait quite a while until the page has been fetched. If there are other

processes that could run then the operating system will select one of them to run.

The fetched page is written into a free physical page frame and an entry for the

virtual page frame number is added to the processes page table. The process is then

restarted at the machine instruction where the memory fault occurred. This time

the virtual memory access is made, the processor can make the virtual to physical

address translation and so the process continues to run.

Linux uses demand paging to load executable images into a processes virtual memory.

Whenever a command is executed, the �le containing it is opened and its contents

are mapped into the processes virtual memory. This is done by modifying the data

structures describing this processes memory map and is known as memory mapping.

However, only the �rst part of the image is actually brought into physical memory.

The rest of the image is left on disk. As the image executes, it generates page faults

and Linux uses the processes memory map in order to determine which parts of the

image to bring into memory for execution.

3.1.2 Swapping

If a process needs to bring a virtual page into physical memory and there are no

free physical pages available, the operating system must make room for this page by

discarding another page from physical memory.

If the page to be discarded from physical memory came from an image or data �le

y

and has not been written to then the page does not need to be saved. Instead it can

be discarded and if the process needs that page again it can be brought back into

memory from the image or data �le.

However, if the page has been modi�ed, the operating system must preserve the

contents of that page so that it can be accessed at a later time. This type of page is

known as a dirty page and when it is removed from memory it is saved in a special

sort of �le called the swap �le. Accesses to the swap �le are very long relative to the

speed of the processor and physical memory and the operating system must juggle

the need to write pages to disk with the need to retain them in memory to be used

again.

If the algorithm used to decide which pages to discard or swap (the swap algorithm

is not e�cient then a condition known as thrashing occurs. In this case, pages are

constantly being written to disk and then being read back and the operating system

is too busy to allow much real work to be performed. If, for example, physical

page frame number 1 in Figure 3.1 is being regularly accessed then it is not a good

candidate for swapping to hard disk. The set of pages that a process is currently

using is called the working set. An e�cient swap scheme would make sure that all

processes have their working set in physical memory.

Linux uses a Least Recently Used (LRU) page aging technique to fairly choose pages

which might be removed from the system. This scheme involves every page in the

system having an age which changes as the page is accessed. The more that a page

is accessed, the younger it is; the less that it is accessed the older and more stale it

becomes. Old pages are good candidates for swapping.

3.1.3 Shared Virtual Memory

Virtual memory makes it easy for several processes to share memory. All memory

access are made via page tables and each process has its own separate page table.

For two processes sharing a physical page of memory, its physical page frame number

must appear in a page table entry in both of their page tables.

Figure 3.1 shows two processes that each share physical page frame number 4. For

process X this is virtual page frame number 4 whereas for process Y this is virtual

page frame number 6. This illustrates an interesting point about sharing pages: the

shared physical page does not have to exist at the same place in virtual memory for

any or all of the processes sharing it.

3.1.4 Physical and Virtual Addressing Modes

It does not make much sense for the operating system itself to run in virtual memory.

This would be a nightmare situation where the operating system must maintain page

tables for itself. Most multi-purpose processors support the notion of a physical

address mode as well as a virtual address mode. Physical addressing mode requires no

page tables and the processor does not attempt to perform any address translations

in this mode. The Linux kernel is linked to run in physical address space.

The Alpha AXP processor does not have a special physical addressing mode. Instead,

it divides up the memory space into several areas and designates two of them as

physically mapped addresses. This kernel address space is known as KSEG address

space and it encompasses all addresses upwards from 0x��fc0000000000. In order to

p y g

A
S
M

F
O
E

F
O
W

F
O
R

K
R
E

K
W
E

U
R
E

H
GU

W
E

3263

31 1315 14 12 11 10 9 8

PFN

2 07 6 5 4 3 1

__PAGE_ACCESSED
__PAGE_DIRTY

V

Figure 3.2: Alpha AXP Page Table Entry

execute from code linked in KSEG (by de�nition, kernel code) or access data there,

the code must be executing in kernel mode. The Linux kernel on Alpha is linked to

execute from address 0x��fc0000310000.

3.1.5 Access Control

The page table entries also contain access control information. As the processor is

already using the page table entry to map a processes virtual address to a physical

one, it can easily use the access control information to check that the process is not

accessing memory in a way that it should not.

There are many reasons why you would want to restrict access to areas of memory.

Some memory, such as that containing executable code, is naturally read only mem-

ory; the operating system should not allow a process to write data over its executable

code. By contrast, pages containing data can be written to but attempts to execute

that memory as instructions should fail. Most processors have at least two modes

of execution: kernel and user. You would not want kernel code executing by a user

or kernel data structures to be accessible except when the processor is running in

kernel mode.

The access control information is held in the PTE and is processor speci�c; �gure 3.2

shows the PTE for Alpha AXP. The bit �elds have the following meanings:

V Valid, if set this PTE is valid,

FOE \Fault on Execute", Whenever an attempt to execute instructions in this page

occurs, the processor reports a page fault and passes control to the operating

system,

FOW \Fault on Write", as above but page fault on an attempt to write to this

page,

FOR \Fault on Read", as above but page fault on an attempt to read from this

page,

ASM Address Space Match. This is used when the operating system wishes to clear

only some of the entries from the Translation Bu�er,

KRE Code running in kernel mode can read this page,

URE Code running in user mode can read this page,

GH Granularity hint used when mapping an entire block with a single Translation

Bu�er entry rather than many,

KWE Code running in kernel mode can write to this page,

UWE Code running in user mode can write to this page,

page frame number For PTEs with the V bit set, this �eld contains the physical

Page Frame Number (page frame number) for this PTE. For invalid PTEs, if

this �eld is not zero, it contains information about where the page is in the

swap �le.

The following two bits are de�ned and used by Linux:

PAGE DIRTY if set, the page needs to be written out to the swap �le,

PAGE ACCESSED Used by Linux to mark a page as having been accessed.

3.2 Caches

If you were to implement a system using the above theoretical model then it would

work, but not particularly e�ciently. Both operating system and processor designers

try hard to extract more performance from the system. Apart from making the

processors, memory and so on faster the best approach is to maintain caches of

useful information and data that make some operations faster. Linux uses a number

of memory management related caches:

Bu�er Cache The bu�er cache contains data bu�ers that are used by the block

device drivers. These bu�ers are of �xed sizes (for example 512 bytes) and See fs/buffer.c

contain blocks of information that have either been read from a block device

or are being written to it. A block device is one that can only be accessed by

reading and writing �xed sized blocks of data. All hard disks are block devices.

The bu�er cache is indexed via the device identi�er and the desired block

number and is used to quickly �nd a block of data. Block devices are only ever

accessed via the bu�er cache. If data can be found in the bu�er cache then it

does not need to be read from the physical block device, for example a hard

disk, and access to it is much faster.

Page Cache This is used to speed up access to images and data on disk. It is used
See

mm/filemap.c

to cache the logical contents of a �le a page at a time and is accessed via the

�le and o�set within the �le. As pages are read into memory from disk, they

are cached in the page cache.

Swap Cache Only modi�ed (or dirty) pages are saved in the swap �le. So long
See swap.h,

mm/swap state.c

mm/swapfile.cas these pages are not modi�ed after they have been written to the swap �le

then the next time the page is swapped out there is no need to write it to the

swap �le as the page is already in the swap �le. Instead the page can simply

be discarded. In a heavily swapping system this saves many unnecessary and

costly disk operations.

p y g

Level 2

Page Table Page Table

Level 3

Level 2 Level 3 Byte within pageLevel 1

PGD

VIRTUAL ADDRESS

Page Table

Level 1

PFN PFN PFN

Physical Page

Figure 3.3: Three Level Page Tables

Hardware Caches One commonly implemented hardware cache is in the processor;

a cache of Page Table Entries. In this case, the processor does not always read

the page table directly but instead caches translations for pages as it needs

them. These are the Translation Look-aside Bu�ers and contain cached copies

of the page table entries from one or more processes in the system.

When the reference to the virtual address is made, the processor will attempt to

�nd a matching TLB entry. If it �nds one, it can directly translate the virtual

address into a physical one and perform the correct operation on the data. If

the processor cannot �nd a matching TLB entry then it must get the operating

system to help. It does this by signalling the operating system that a TLB miss

has occurred. A system speci�c mechanism is used to deliver that exception

to the operating system code that can �x things up. The operating system

generates a new TLB entry for the address mapping. When the exception has

been cleared, the processor will make another attempt to translate the virtual

address. This time it will work because there is now a valid entry in the TLB

for that address.

The drawback of using caches, hardware or otherwise, is that in order to save e�ort

Linux must use more time and space maintaining these caches and, if the caches

become corrupted, the system will crash.

3.3 Linux Page Tables

Linux assumes that there are three levels of page tables. Each Page Table accessed

contains the page frame number of the next level of Page Table. Figure 3.3 shows

how a virtual address can be broken into a number of �elds; each �eld providing an

o�set into a particular Page Table. To translate a virtual address into a physical

one, the processor must take the contents of each level �eld, convert it into an o�set

into the physical page containing the Page Table and read the page frame number

g

of the next level of Page Table. This is repeated three times until the page frame

number of the physical page containing the virtual address is found. Now the �nal

�eld in the virtual address, the byte o�set, is used to �nd the data inside the page.

Each platform that Linux runs on must provide translation macros that allow the

kernel to traverse the page tables for a particular process. This way, the kernel does

not need to know the format of the page table entries or how they are arranged. This
See include/-

asm/pgtable.h

is so successful that Linux uses the same page table manipulation code for the Alpha

processor, which has three levels of page tables, and for Intel x86 processors, which

have two levels of page tables.

3.4 Page Allocation and Deallocation

There are many demands on the physical pages in the system. For example, when

an image is loaded into memory the operating system needs to allocate pages. These

will be freed when the image has �nished executing and is unloaded. Another use

for physical pages is to hold kernel speci�c data structures such as the page tables

themselves. The mechanisms and data structures used for page allocation and deal-

location are perhaps the most critical in maintaining the e�ciency of the virtual

memory subsystem.

All of the physical pages in the system are described by the mem map data structure

which is a list of mem map t 1 structures which is initialized at boot time. Each
See include/-

linux/mm.h
mem map t describes a single physical page in the system. Important �elds (so far as

memory management is concerned) are:

count This is a count of the number of users of this page. The count is greater than

one when the page is shared between many processes,

age This �eld describes the age of the page and is used to decide if the page is a

good candidate for discarding or swapping,

map nr This is the physical page frame number that this mem map t describes.

The free area vector is used by the page allocation code to �nd and free pages.

The whole bu�er management scheme is supported by this mechanism and so far as

the code is concerned, the size of the page and physical paging mechanisms used by

the processor are irrelevant.

Each element of free area contains information about blocks of pages. The �rst

element in the array describes single pages, the next blocks of 2 pages, the next

blocks of 4 pages and so on upwards in powers of two. The list element is used as a

queue head and has pointers to the page data structures in the mem map array. Free

blocks of pages are queued here. map is a pointer to a bitmap which keeps track of

allocated groups of pages of this size. Bit N of the bitmap is set if the Nth block of

pages is free.

Figure 3.4 shows the free area structure. Element 0 has one free page (page frame

number 0) and element 2 has 2 free blocks of 4 pages, the �rst starting at page frame

number 4 and the second at page frame number 56.

1Confusingly the structure is also known as the page structure.

p y g

1

2

3

4

5

6

7

8

0 PFN

PHYSICAL MEMORY

�
�
�

�
�
�

4

0

56

mem_map_t mem_map_t

mem_map_t

free_area

3

4

5

1

0

2

Free PFN

map

map

map

map

Figure 3.4: The free area data structure

3.4.1 Page Allocation

Linux uses the Buddy algorithm 2 to e�ectively allocate and deallocate blocks of

pages. The page allocation code attempts to allocate a block of one or more physical

See

get free pages()

in

mm/page alloc.c pages. Pages are allocated in blocks which are powers of 2 in size. That means that

it can allocate a block 1 page, 2 pages, 4 pages and so on. So long as there are enough

free pages in the system to grant this request (nr free pages > min free pages) the

allocation code will search the free area for a block of pages of the size requested.

Each element of the free area has a map of the allocated and free blocks of pages

for that sized block. For example, element 2 of the array has a memory map that

describes free and allocated blocks each of 4 pages long.

The allocation algorithm �rst searches for blocks of pages of the size requested. It

follows the chain of free pages that is queued on the list element of the free area

data structure. If no blocks of pages of the requested size are free, blocks of the next

size (which is twice that of the size requested) are looked for. This process continues

until all of the free area has been searched or until a block of pages has been found.

If the block of pages found is larger than that requested it must be broken down until

there is a block of the right size. Because the blocks are each a power of 2 pages big

then this breaking down process is easy as you simply break the blocks in half. The

free blocks are queued on the appropriate queue and the allocated block of pages is

returned to the caller.

For example, in Figure 3.4 if a block of 2 pages was requested, the �rst block of 4

pages (starting at page frame number 4) would be broken into two 2 page blocks.

The �rst, starting at page frame number 4 would be returned to the caller as the

allocated pages and the second block, starting at page frame number 6 would be

queued as a free block of 2 pages onto element 1 of the free area array.

2Bibliography reference here

y pp g

3.4.2 Page Deallocation

Allocating blocks of pages tends to fragment memory with larger blocks of free pages

being broken down into smaller ones. The page deallocation code recombines pages
See

free pages() in

mm/page alloc.cinto larger blocks of free pages whenever it can. In fact the page block size is

important as it allows for easy combination of blocks into larger blocks.

Whenever a block of pages is freed, the adjacent or buddy block of the same size is

checked to see if it is free. If it is, then it is combined with the newly freed block

of pages to form a new free block of pages for the next size block of pages. Each

time two blocks of pages are recombined into a bigger block of free pages the page

deallocation code attempts to recombine that block into a yet larger one. In this way

the blocks of free pages are as large as memory usage will allow.

For example, in Figure 3.4, if page frame number 1 were to be freed, then that would

be combined with the already free page frame number 0 and queued onto element 1

of the free area as a free block of size 2 pages.

3.5 Memory Mapping

When an image is executed, the contents of the executable image must be brought

into the processes virtual address space. The same is also true of any shared libraries

that the executable image has been linked to use. The executable �le is not actually

brought into physical memory, instead it is merely linked into the processes virtual

memory. Then, as the parts of the program are referenced by the running application,

the image is brought into memory from the executable image. This linking of an

image into a processes virtual address space is known as memory mapping.

Every processes virtual memory is represented by an mm struct data structure. This

contains information about the image that it is currently executing (for example

bash) and also has pointers to a number of vm area struct data structures. Each

vm area struct data structure describes the start and end of the area of virtual

memory, the processes access rights to that memory and a set of operations for

that memory. These operations are a set of routines that Linux must use when

manipulating this area of virtual memory. For example, one of the virtual memory

operations performs the correct actions when the process has attempted to access

this virtual memory but �nds (via a page fault) that the memory is not actually in

physical memory. This operation is the nopage operation. The nopage operation is

used when Linux demand pages the pages of an executable image into memory.

When an executable image is mapped into a processes virtual address a set of

vm area struct data structures is generated. Each vm area struct data struc-

ture represents a part of the executable image; the executable code, initialized data

(variables), unitialized data and so on. Linux supports a number of standard vir-

tual memory operations and as the vm area struct data structures are created, the

correct set of virtual memory operations are associated with them.

3.6 Demand Paging

Once an executable image has been memory mapped into a processes virtual memory

it can start to execute. As only the very start of the image is physically pulled into

p y g

vm_area_struct

vm_next

vm_flags

vm_inode

vm_ops

vm_end
vm_start

Virtual Area

Processes Virtual Memory

unmap()
protect()
sync()
advise()

swapin()

open()
close()

nopage()
wppage()
swapout()

Virtual Memory
Operations

Figure 3.5: Areas of Virtual Memory

memory it will soon access an area of virtual memory that is not yet in physical

memory. When a process accesses a virtual address that does not have a valid page

table entry, the processor will report a page fault to Linux. The page fault describes
See

handle mm fault()

in mm/memory.c the virtual address where the page fault occurred and the type of memory access

that caused.

Linux must �nd the vm area struct that represents the area of memory that the

page fault occurred in. As searching through the vm area struct data structures is

critical to the e�cient handling of page faults, these are linked together in an AVL

(Adelson-Velskii and Landis) tree structure. If there is no vm area struct data

structure for this faulting virtual address, this process has accessed an illegal virtual

address. Linux will signal the process, sending a SIGSEGV signal, and if the process

does not have a handler for that signal it will be terminated.

Linux next checks the type of page fault that occurred against the types of accesses

allowed for this area of virtual memory. If the process is accessing the memory in

an illegal way, say writing to an area that it is only allowed to read from, it is also

signalled with a memory error.

Now that Linux has determined that the page fault is legal, it must deal with it.

Linux must di�erentiate between pages that are in the swap �le and those that are
See

do no page() in

mm/memory.c part of an executable image on a disk somewhere. It does this by using the page

table entry for this faulting virtual address.

If the page's page table entry is invalid but not empty, the page fault is for a page

currently being held in the swap �le. For Alpha AXP page table entries, these are

entries which do not have their valid bit set but which have a non-zero value in their

g

offset

next_hash
prev_hash

inode

mem_map_t

offset

next_hash
prev_hash

inode

mem_map_t

12
0x2000

12
0x8000

:
:
:

page_hash_table

Figure 3.6: The Linux Page Cache

PFN �eld. In this case the PFN �eld holds information about where in the swap

(and which swap �le) the page is being held. How pages in the swap �le are handled

is described later in this chapter.

Not all vm area struct data structures have a set of virtual memory operations and

even those that do may not have a nopage operation. This is because by default

Linux will �x up the access by allocating a new physical page and creating a valid

page table entry for it. If there is a nopage operation for this area of virtual memory,

Linux will use it.

The generic Linux nopage operation is used for memory mapped executable images
See

filemap nopage()

in mm/filemap.cand it uses the page cache to bring the required image page into physical memory.

However the required page is brought into physical memory, the processes page tables

are updated. It may be necessary for hardware speci�c actions to update those

entries, particularly if the processor uses translation look aside bu�ers. Now that

the page fault has been handled it can be dismissed and the process is restarted at

the instruction that made the faulting virtual memory access.

3.7 The Linux Page Cache

The role of the Linux page cache is to speed up access to �les on disk. Memory

mapped �les are read a page at a time and these pages are stored in the page cache.

Figure 3.6 shows that the page cache consists of the page hash table, a vector of

pointers to mem map t data structures. Each �le in Linux is identi�ed by a VFS
See include/-

linux/pagemap.h

inode data structure (described in Chapter 9) and each VFS inode is unique and

fully describes one and only one �le. The index into the page table is derived from

the �le's VFS inode and the o�set into the �le.

Whenever a page is read from a memory mapped �le, for example when it needs

to be brought back into memory during demand paging, the page is read through

the page cache. If the page is present in the cache, a pointer to the mem map t data

structure representing it is returned to the page fault handling code. Otherwise the

page must be brought into memory from the �le system that holds the image. Linux

p y g

allocates a physical page and reads the page from the �le on disk.

If it is possible, Linux will initiate a read of the next page in the �le. This single

page read ahead means that if the process is accessing the pages in the �le serially,

the next page will be waiting in memory for the process.

Over time the page cache grows as images are read and executed. Pages will be

removed from the cache as they are no longer needed, say as an image is no longer

being used by any process. As Linux uses memory it can start to run low on physical

pages. In this case Linux will reduce the size of the page cache.

3.8 Swapping Out and Discarding Pages

When physical memory becomes scarce the Linux memory management subsystem

must attempt to free physical pages. This task falls to the kernel swap daemon

(kswapd). The kernel swap daemon is a special type of process, a kernel thread.

Kernel threads are processes have no virtual memory, instead they run in kernel

mode in the physical address space. The kernel swap daemon is slightly misnamed

in that it does more than merely swap pages out to the system's swap �les. Its role

is make sure that there are enough free pages in the system to keep the memory

management system operating e�ciently.

The Kernel swap daemon (kswapd) is started by the kernel init process at startup

time and sits waiting for the kernel swap timer to periodically expire. Every time
See kswapd() in

mm/vmscan.c
the timer expires, the swap daemon looks to see if the number of free pages in the

system is getting too low. It uses two variables, free pages high and free pages low to

decide if it should free some pages. So long as the number of free pages in the system

remains above free pages high, the kernel swap daemon does nothing; it sleeps again

until its timer next expires. For the purposes of this check the kernel swap daemon

takes into account the number of pages currently being written out to the swap �le.

It keeps a count of these in nr async pages ; this is incremented each time a page is

queued waiting to be written out to the swap �le and decremented when the write to

the swap device has completed. free pages low and free pages high are set at system

startup time and are related to the number of physical pages in the system. If the

number of free pages in the system has fallen below free pages high or worse still

free pages low, the kernel swap daemon will try three ways to reduce the number of

physical pages being used by the system:

Reducing the size of the bu�er and page caches,

Swapping out System V shared memory pages,

Swapping out and discarding pages.

If the number of free pages in the system has fallen below free pages low, the kernel

swap daemon will try to free 6 pages before it next runs. Otherwise it will try to

free 3 pages. Each of the above methods are tried in turn until enough pages have

been freed. The kernel swap daemon remembers which method it was using the last

time that it attempted to free physical pages. Each time it runs it will start trying

to free pages using this last successful method.

After it has free su�cient pages, the swap daemon sleeps again until its timer expires.

If the reason that the kernel swap daemon freed pages was that the number of free

pp g g g

pages in the system had fallen below free pages low, it only sleeps for half its usual

time. Once the number of free pages is more than free pages low the kernel swap

daemon goes back to sleeping longer between checks.

3.8.1 Reducing the Size of the Page and Bu�er Caches

The pages held in the page and bu�er caches are good candidates for being freed into

the free area vector. The Page Cache, which contains pages of memory mapped

�les, may contain unneccessary pages that are �lling up the system's memory. Like-

wise the Bu�er Cache, which contains bu�ers read from or being written to physical

devices, may also contain unneeded bu�ers. When the physical pages in the system

start to run out, discarding pages from these caches is relatively easy as it requires

no writing to physical devices (unlike swapping pages out of memory). Discarding

these pages does not have too many harmful side e�ects other than making access

to physical devices and memory mapped �les slower. However, if the discarding of

pages from these caches is done fairly, all processes will su�er equally.

Every time the Kernel swap daemon tries to shrink these caches it examines a block
See

shrink mmap() in

mm/filemap.cof pages in the mem map page vector to see if any can be discarded from physical

memory. The size of the block of pages examined is higher if the kernel swap daemon

is intensively swapping; that is if the number of free pages in the system has fallen

dangerously low. The blocks of pages are examined in a cyclical manner; a di�erent

block of pages is examined each time an attempt is made to shrink the memory map.

This is known as the clock algorithm as, rather like the minute hand of a clock, the

whole mem map page vector is examined a few pages at a time.

Each page being examined is checked to see if it is cached in either the page cache or

the bu�er cache. You should note that shared pages are not considered for discarding

at this time and that a page cannot be in both caches at the same time. If the page

is not in either cache then the next page in the mem map page vector is examined.

Pages are cached in the bu�er cache (or rather the bu�ers within the pages are

cached) to make bu�er allocation and deallocation more e�cient. The memory map

shrinking code tries to free the bu�ers that are contained within the page being

examined. If all the bu�ers are freed, then the pages that contain them are also be
See try to

free buffer() in

fs/buffer.cfreed. If the examined page is in the Linux page cache, it is removed from the page

cache and freed.

When enough pages have been freed on this attempt then the kernel swap daemon

will wait until the next time it is periodically woken. As none of the freed pages

were part of any process's virtual memory (they were cached pages), then no page

tables need updating. If there were not enough cached pages discarded then the swap

daemon will try to swap out some shared pages.

3.8.2 Swapping Out System V Shared Memory Pages

System V shared memory is an inter-process communication mechanism which al-

lows two or more processes to share virtual memory in order to pass information

amongst themselves. How processes share memory in this way is described in

more detail in Chapter 5. For now it is enough to say that each area of Sys-

tem V shared memory is described by a shmid ds data structure. This contains

a pointer to a list of vm area struct data structures, one for each process sharing

p y g

this area of virtual memory. The vm area struct data structures describe where

in each processes virtual memory this area of System V shared memory goes. Each

vm area struct data structure for this System V shared memory is linked together

using the vm next shared and vm prev shared pointers. Each shmid ds data struc-

ture also contains a list of page table entries each of which describes the physical

page that a shared virtual page maps to.

The kernel swap daemon also uses a clock algorithm when swapping out System V

shared memory pages. . Each time it runs it remembers which page of which shared
See shm swap()

in ipc/shm.c

virtual memory area it last swapped out. It does this by keeping two indices, the

�rst is an index into the set of shmid ds data structures, the second into the list of

page table entries for this area of System V shared memory. This makes sure that it

fairly victimizes the areas of System V shared memory.

As the physical page frame number for a given virtual page of System V shared

memory is contained in the page tables of all of the processes sharing this area of

virtual memory, the kernel swap daemon must modify all of these page tables to

show that the page is no longer in memory but is now held in the swap �le. For

each shared page it is swapping out, the kernel swap daemon �nds the page table

entry in each of the sharing processes page tables (by following a pointer from each

vm area struct data structure). If this processes page table entry for this page of

System V shared memory is valid, it converts it into an invalid but swapped out

page table entry and reduces this (shared) page's count of users by one. The format

of a swapped out System V shared page table entry contains an index into the set

of shmid ds data structures and an index into the page table entries for this area of

System V shared memory.

If the page's count is zero after the page tables of the sharing processes have all been

modi�ed, the shared page can be written out to the swap �le. The page table entry

in the list pointed at by the shmid ds data structure for this area of System V shared

memory is replaced by a swapped out page table entry. A swapped out page table

entry is invalid but contains an index into the set of open swap �les and the o�set

in that �le where the swapped out page can be found. This information will be used

when the page has to be brought back into physical memory.

3.8.3 Swapping Out and Discarding Pages

The swap daemon looks at each process in the system in turn to see if it is a good

candidate for swapping. Good candidates are processes that can be swapped (some
See swap out()

in mm/vmscan.c
cannot) and that have one or more pages which can be swapped or discarded from

memory. Pages are swapped out of physical memory into the system's swap �les only

if the data in them cannot be retrieved another way.

A lot of the contents of an executable image come from the image's �le and can easily

be re-read from that �le. For example, the executable instructions of an image will

never be modi�ed by the image and so will never be written to the swap �le. These

pages can simply be discarded; when they are again referenced by the process, they

will be brought back into memory from the executable image.

Once the process to swap has been located, the swap daemon looks through all of its

virtual memory regions looking for areas which are not shared or locked. Linux does

To do this it

follows the

vm next pointer

along the list of

vm area struct

structures

queued on the

mm struct for the

process.

not swap out all of the swappable pages of the process that it has selected; instead

it removes only a small number of pages. Pages cannot be swapped or discarded if

See

swap out vma()

in mm/vmscan.c

p

they are locked in memory.

The Linux swap algorithm uses page aging. Each page has a counter (held in the

mem map t data structure) that gives the Kernel swap daemon some idea whether or

not a page is worth swapping. Pages age when they are unused and rejuvinate on

access; the swap daemon only swaps out old pages. The default action when a page

is �rst allocated, is to give it an initial age of 3. Each time it is touched, it's age is

increased by 3 to a maximum of 20. Every time the Kernel swap daemon runs it ages

pages, decrementing their age by 1. These default actions can be changed and for

this reason they (and other swap related information) are stored in the swap control

data structure.

If the page is old (age = 0), the swap daemon will process it further. Dirty pages are

pages which can be swapped out. Linux uses an architecture speci�c bit in the PTE to

describe pages this way (see Figure 3.2). However, not all dirty pages are necessarily

written to the swap �le. Every virtual memory region of a process may have its own

swap operation (pointed at by the vm ops pointer in the vm area struct) and that

method is used. Otherwise, the swap daemon will allocate a page in the swap �le

and write the page out to that device.

The page's page table entry is replaced by one which is marked as invalid but which

contains information about where the page is in the swap �le. This is an o�set into

the swap �le where the page is held and an indication of which swap �le is being used.

Whatever the swap method used, the original physical page is made free by putting

it back into the free area. Clean (or rather not dirty) pages can be discarded and

put back into the free area for re-use.

If enough of the swappable processes pages have been swapped out or discarded,

the swap daemon will again sleep. The next time it wakes it will consider the next

process in the system. In this way, the swap daemon nibbles away at each processes

physical pages until the system is again in balance. This is much fairer than swapping

out whole processes.

3.9 The Swap Cache

When swapping pages out to the swap �les, Linux avoids writing pages if it does not

have to. There are times when a page is both in a swap �le and in physical memory.

This happens when a page that was swapped out of memory was then brought back

into memory when it was again accessed by a process. So long as the page in memory

is not written to, the copy in the swap �le remains valid.

Linux uses the swap cache to track these pages. The swap cache is a list of page

table entries, one per physical page in the system. This is a page table entry for a

swapped out page and describes which swap �le the page is being held in together

with its location in the swap �le. If a swap cache entry is non-zero, it represents

a page which is being held in a swap �le that has not been modi�ed. If the page

is subsequently modi�ed (by being written to), its entry is removed from the swap

cache.

When Linux needs to swap a physical page out to a swap �le it consults the swap

cache and, if there is a valid entry for this page, it does not need to write the page

out to the swap �le. This is because the page in memory has not been modi�ed since

it was last read from the swap �le.

p y g

The entries in the swap cache are page table entries for swapped out pages. They

are marked as invalid but contain information which allow Linux to �nd the right

swap �le and the right page within that swap �le.

3.10 Swapping Pages In

The dirty pages saved in the swap �les may be needed again, for example when

an application writes to an area of virtual memory whose contents are held in a

swapped out physical page. Accessing a page of virtual memory that is not held

in physical memory causes a page fault to occur. The page fault is the processor

signalling the operating system that it cannot translate a virtual address into a

physical one. In this case this is because the page table entry describing this page

of virtual memory was marked as invalid when the page was swapped out. The

processor cannot handle the virtual to physical address translation and so hands

control back to the operating system describing as it does so the virtual address that

faulted and the reason for the fault. The format of this information and how the

processor passes control to the operating system is processor speci�c. The processor

See

do page fault()

in arch/i386/-

mm/fault.c speci�c page fault handling code must locate the vm area struct data structure that

describes the area of virtual memory that contains the faulting virtual address. It

does this by searching the vm area struct data structures for this process until it

�nds the one containing the faulting virtual address. This is very time critical code

and a processes vm area struct data structures are so arranged as to make this

search take as little time as possible.

Having carried out the appropriate processor speci�c actions and found that the

faulting virtual address is for a valid area of virtual memory, the page fault processing

becomes generic and applicable to all processors that Linux runs on. The generic
See

do no page() in

mm/memory.c page fault handling code looks for the page table entry for the faulting virtual address.

If the page table entry it �nds is for a swapped out page, Linux must swap the page

back into physical memory. The format of the page table entry for a swapped out

page is processor speci�c but all processors mark these pages as invalid and put the

information neccessary to locate the page within the swap �le into the page table

entry. Linux needs this information in order to bring the page back into physical

memory.

At this point, Linux knows the faulting virtual address and has a page table
See

do swap page()

in mm/memory.c entry containing information about where this page has been swapped to. The

vm area struct data structure may contain a pointer to a routine which will swap

any page of the area of virtual memory that it describes back into physical memory.

This is its swapin operation. If there is a swapin operation for this area of virtual

memory then Linux will use it. This is, in fact, how swapped out System V shared
See

shm swap in() in

ipc/shm.c memory pages are handled as it requires special handling because the format of a

swapped out System V shared page is a little di�erent from that of an ordinairy

swapped out page. There may not be a swapin operation, in which case Linux will

assume that this is an ordinairy page that does not need to be specially handled. It
See swap in() in

mm/page alloc.c

allocates a free physical page and reads the swapped out page back from the swap

�le. Information telling it where in the swap �le (and which swap �le) is taken from

the the invalid page table entry.

If the access that caused the page fault was not a write access then the page is left

in the swap cache and its page table entry is not marked as writable. If the page is

pp g g

subsequently written to, another page fault will occur and, at that point, the page

is marked as dirty and its entry is removed from the swap cache. If the page is not

written to and it needs to be swapped out again, Linux can avoid the write of the

page to its swap �le because the page is already in the swap �le.

If the access that caused the page to be brought in from the swap �le was a write

operation, this page is removed from the swap cache and its page table entry is

marked as both dirty and writable.

p y g

Chapter 4

Processes

This chapter describes what a process is and how the Linux kernel creates,

manages and deletes the processes in the system.

Processes carry out tasks within the operating system. A program is a set of machine

code instructions and data stored in an executable image on disk and is, as such, a

passive entity; a process can be thought of as a computer program in action. It is a

dynamic entity, constantly changing as the machine code instructions are executed

by the processor. As well as the program's instructions and data, the process also

includes the program counter and all of the CPU's registers as well as the process

stacks containing temporary data such as routine parameters, return addresses and

saved variables. The current executing program, or process, includes all of the cur-

rent activity in the microprocessor. Linux is a multiprocessing operating system.

Processes are separate tasks each with their own rights and responsibilities. If one

process crashes it will not cause another process in the system to crash. Each indi-

vidual process runs in its own virtual address space and is not capable of interacting

with another process except through secure, kernel managed mechanisms.

During the lifetime of a process it will use many system resources. It will use the

CPUs in the system to run its instructions and the system's physical memory to hold

it and its data. It will open and use �les within the �lesystems and may directly

or indirectly use the physical devices in the system. Linux must keep track of the

process itself and of the system resources that it has so that it can manage it and

the other processes in the system fairly. It would not be fair to the other processes

in the system if one process monopolized most of the system's physical memory or

its CPUs.

The most precious resource in the system is the CPU, usually there is only one. Linux

is a multiprocessing operating system, its objective is to have a process running on

each CPU in the system at all times, to maximize CPU utilization. If there are more

processes than CPUs (and there usually are), the rest of the processes must wait

before a CPU becomes free until they can be run. Multiprocessing is a simple idea; a

process is executed until it must wait, usually for some system resource; when it has

this resource, it may run again. In a uniprocessing system, for example DOS, the CPU

would simply sit idle and the waiting time would be wasted. In a multiprocessing

system many processes are kept in memory at the same time. Whenever a process

has to wait the operating system takes the CPU away from that process and gives

it to another, more deserving process. It is the scheduler which chooses which is

35

p

the most appropriate process to run next and Linux uses a number of scheduling

strategies to ensure fairness.

Linux supports a number of di�erent executable �le formats, ELF is one, Java is

another and these must be managed transparently as must the processes use of the

system's shared libraries.

4.1 Linux Processes

So that Linux can manage the processes in the system, each process is represented

by a task struct data structure (task and process are terms that Linux uses in-

terchangeably). The task vector is an array of pointers to every task struct data

structure in the system. This means that the maximum number of processes in the
See include/-

linux/sched.h
system is limited by the size of the task vector; by default it has 512 entries. As pro-

cesses are created, a new task struct is allocated from system memory and added

into the task vector. To make it easy to �nd, the current, running, process is pointed

to by the current pointer.

As well as the normal type of process, Linux supports real time processes. These

processes have to react very quickly to external events (hence the term \real time")

and they are treated di�erently from normal user processes by the scheduler. Al-

though the task struct data structure is quite large and complex, but its �elds can

be divided into a number of functional areas:

State As a process executes it changes state according to its circumstances. Linux

processes have the following states: 1

Running The process is either running (it is the current process in the system)

or it is ready to run (it is waiting to be assigned to one of the system's

CPUs).

Waiting The process is waiting for an event or for a resource. Linux di�eren-

tiates between two types of waiting process; interruptible and uninterrupt-

ible. Interruptible waiting processes can be interrupted by signals whereas

uninterruptible waiting processes are waiting directly on hardware condi-

tions and cannot be interrupted under any circumstances.

Stopped The process has been stopped, usually by receiving a signal. A

process that is being debugged can be in a stopped state.

Zombie This is a halted process which, for some reason, still has a task struct

data structure in the task vector. It is what it sounds like, a dead process.

Scheduling Information The scheduler needs this information in order to fairly

decide which process in the system most deserves to run,

Identi�ers Every process in the system has a process identi�er. The process iden-

ti�er is not an index into the task vector, it is simply a number. Each process

also has User and group identi�ers, these are used to control this processes

access to the �les and devices in the system,

Inter-Process Communication Linux supports the classic UnixTM IPC mecha-

nisms of signals, pipes and semaphores and also the System V IPC mechanisms

1
REVIEW NOTE: I left out SWAPPING because it does not appear to be used.

of shared memory, semaphores and message queues. The IPC mechanisms sup-

ported by Linux are described in Chapter 5.

Links In a Linux system no process is independent of any other process. Every

process in the system, except the initial process has a parent process. New

processes are not created, they are copied, or rather cloned from previous pro-

cesses. Every task struct representing a process keeps pointers to its parent

process and to its siblings (those processes with the same parent process) as

well as to its own child processes. You can see the family relationship between

the running processes in a Linux system using the pstree command:

init(1)-+-crond(98)

|-emacs(387)

|-gpm(146)

|-inetd(110)

|-kerneld(18)

|-kflushd(2)

|-klogd(87)

|-kswapd(3)

|-login(160)---bash(192)---emacs(225)

|-lpd(121)

|-mingetty(161)

|-mingetty(162)

|-mingetty(163)

|-mingetty(164)

|-login(403)---bash(404)---pstree(594)

|-sendmail(134)

|-syslogd(78)

`-update(166)

Additionally all of the processes in the system are held in a doubly linked list

whose root is the init processes task struct data structure. This list allows

the Linux kernel to look at every process in the system. It needs to do this to

provide support for commands such as ps or kill.

Times and Timers The kernel keeps track of a processes creation time as well as

the CPU time that it consumes during its lifetime. Each clock tick, the kernel

updates the amount of time in jiffies that the current process has spent in

system and in user mode. Linux also supports process speci�c interval timers,

processes can use system calls to set up timers to send signals to themselves

when the timers expire. These timers can be single-shot or periodic timers.

File system Processes can open and close �les as they wish and the processes

task struct contains pointers to descriptors for each open �le as well as point-

ers to two VFS inodes. Each VFS inode uniquely describes a �le or directory

within a �le system and also provides a uniform interface to the underlying

�le systems. How �le systems are supported under Linux is described in Chap-

ter 9. The �rst is to the root of the process (its home directory) and the second

is to its current or pwd directory. pwd is derived from the UnixTM command

p

pwd, print working directory. These two VFS inodes have their count �elds

incremented to show that one or more processes are referencing them. This is

why you cannot delete the directory that a process has as its pwd directory set

to, or for that matter one of its sub-directories.

Virtual memory Most processes have some virtual memory (kernel threads and

daemons do not) and the Linux kernel must track how that virtual memory is

mapped onto the system's physical memory.

Processor Speci�c Context A process could be thought of as the sum total of the

system's current state. Whenever a process is running it is using the processor's

registers, stacks and so on. This is the processes context and, when a process is

suspended, all of that CPU speci�c context must be saved in the task struct

for the process. When a process is restarted by the scheduler its context is

restored from here.

4.2 Identi�ers

Linux, like all UnixTM uses user and group identi�ers to check for access rights to

�les and images in the system. All of the �les in a Linux system have ownerships

and permissions, these permissions describe what access the system's users have to

that �le or directory. Basic permissions are read, write and execute and are assigned

to three classes of user; the owner of the �le, processes belonging to a particular

group and all of the processes in the system. Each class of user can have di�erent

permissions, for example a �le could have permissions which allow its owner to read

and write it, the �le's group to read it and for all other processes in the system to

have no access at all.

REVIEW NOTE: Expand and give the bit assignments (777).

Groups are Linux's way of assigning privileges to �les and directories for a group

of users rather than to a single user or to all processes in the system. You might,

for example, create a group for all of the users in a software project and arrange it

so that only they could read and write the source code for the project. A process

can belong to several groups (a maximum of 32 is the default) and these are held in

the groups vector in the task struct for each process. So long as a �le has access

rights for one of the groups that a process belongs to then that process will have

appropriate group access rights to that �le.

There are four pairs of process and group identi�ers held in a processes task struct:

uid, gid The user identi�er and group identi�er of the user that the process is

running on behalf of,

e�ective uid and gid There are some programs which change the uid and gid from

that of the executing process into their own (held as attributes in the VFS

inode describing the executable image). These programs are known as setuid

programs and they are useful because it is a way of restricting accesses to

services, particularly those that run on behalf of someone else, for example a

network daemon. The e�ective uid and gid are those from the setuid program

and the uid and gid remain as they were. The kernel checks the e�ective uid

and gid whenever it checks for privilege rights.

g

�le system uid and gid These are normally the same as the e�ective uid and gid

and are used when checking �le system access rights. They are needed for NFS

mounted �lesystems where the user mode NFS server needs to access �les as if

it were a particular process. In this case only the �le system uid and gid are

changed (not the e�ective uid and gid). This avoids a situation where malicious

users could send a kill signal to the NFS server. Kill signals are delivered to

processes with a particular e�ective uid and gid.

saved uid and gid These are mandated by the POSIX standard and are used by

programs which change the processes uid and gid via system calls. They are

used to save the real uid and gid during the time that the original uid and gid

have been changed.

4.3 Scheduling

All processes run partially in user mode and partially in system mode. How these

modes are supported by the underlying hardware di�ers but generally there is a

secure mechanism for getting from user mode into system mode and back again.

User mode has far less privileges than system mode. Each time a process makes a

system call it swaps from user mode to system mode and continues executing. At

this point the kernel is executing on behalf of the process. In Linux, processes do

not preempt the current, running process, they cannot stop it from running so that

they can run. Each process decides to relinquish the CPU that it is running on when

it has to wait for some system event. For example, a process may have to wait for

a character to be read from a �le. This waiting happens within the system call, in

system mode; the process used a library function to open and read the �le and it,

in turn made system calls to read bytes from the open �le. In this case the waiting

process will be suspended and another, more deserving process will be chosen to run.

Processes are always making system calls and so may often need to wait. Even so, if

a process executes until it waits then it still might use a disproportionate amount of

CPU time and so Linux uses pre-emptive scheduling. In this scheme, each process is

allowed to run for a small amount of time, 200ms, and, when this time has expired

another process is selected to run and the original process is made to wait for a little

while until it can run again. This small amount of time is known as a time-slice.

It is the scheduler that must select the most deserving process to run out of all of

the runnable processes in the system. A runnable process is one which is waiting
See schedule()

in

kernel/sched.conly for a CPU to run on. Linux uses a reasonably simple priority based scheduling

algorithm to choose between the current processes in the system. When it has chosen

a new process to run it saves the state of the current process, the processor speci�c

registers and other context being saved in the processes task struct data structure.

It then restores the state of the new process (again this is processor speci�c) to run

and gives control of the system to that process. For the scheduler to fairly allocate

CPU time between the runnable processes in the system it keeps information in the

task struct for each process:

policy This is the scheduling policy that will be applied to this process. There are

two types of Linux process, normal and real time. Real time processes have a

higher priority than all of the other processes. If there is a real time process

ready to run, it will always run �rst. Real time processes may have two types

p

of policy, round robin and �rst in �rst out. In round robin scheduling, each

runnable real time process is run in turn and in �rst in, �rst out scheduling

each runnable process is run in the order that it is in on the run queue and

that order is never changed.

priority This is the priority that the scheduler will give to this process. It is also the

amount of time (in jiffies) that this process will run for when it is allowed

to run. You can alter the priority of a process by means of system calls and

the renice command.

rt priority Linux supports real time processes and these are scheduled to have a

higher priority than all of the other non-real time processes in system. This

�eld allows the scheduler to give each real time process a relative priority. The

priority of a real time processes can be altered using system calls.

counter This is the amount of time (in jiffies) that this process is allowed to run

for. It is set to priority when the process is �rst run and is decremented each

clock tick.

The scheduler is run from several places within the kernel. It is run after putting the

current process onto a wait queue and it may also be run at the end of a system call,

just before a process is returned to process mode from system mode. One reason that

it might need to run is because the system timer has just set the current processes

counter to zero. Each time the scheduler is run it does the following:
See schedule()

in

kernel/sched.c

kernel work The scheduler runs the bottom half handlers and processes the sched-

uler task queue. These lightweight kernel threads are described in detail in

chapter 11.

Current process The current process must be processed before another process

can be selected to run.

If the scheduling policy of the current processes is round robin then it is put

onto the back of the run queue.

If the task is INTERRUPTIBLE and it has received a signal since the last time it

was scheduled then its state becomes RUNNING.

If the current process has timed out, then its state becomes RUNNING.

If the current process is RUNNING then it will remain in that state.

Processes that were neither RUNNING nor INTERRUPTIBLE are removed from the

run queue. This means that they will not be considered for running when the

scheduler looks for the most deserving process to run.

Process selection The scheduler looks through the processes on the run queue

looking for the most deserving process to run. If there are any real time pro-

cesses (those with a real time scheduling policy) then those will get a higher

weighting than ordinary processes. The weight for a normal process is its

counter but for a real time process it is counter plus 1000. This means that if

there are any runnable real time processes in the system then these will always

be run before any normal runnable processes. The current process, which has

consumed some of its time-slice (its counter has been decremented) is at a dis-

advantage if there are other processes with equal priority in the system; that

is as it should be. If several processes have the same priority, the one nearest

g

the front of the run queue is chosen. The current process will get put onto the

back of the run queue. In a balanced system with many processes of the same

priority, each one will run in turn. This is known as Round Robin scheduling.

However, as processes wait for resources, their run order tends to get moved

around.

Swap processes If the most deserving process to run is not the current process,

then the current process must be suspended and the new one made to run.

When a process is running it is using the registers and physical memory of the

CPU and of the system. Each time it calls a routine it passes its arguments

in registers and may stack saved values such as the address to return to in the

calling routine. So, when the scheduler is running it is running in the context

of the current process. It will be in a privileged mode, kernel mode, but it

is still the current process that is running. When that process comes to be

suspended, all of its machine state, including the program counter (PC) and

all of the processor's registers, must be saved in the processes task struct

data structure. Then, all of the machine state for the new process must be

loaded. This is a system dependent operation, no CPUs do this in quite the

same way but there is usually some hardware assistance for this act.

This swapping of process context takes place at the end of the scheduler. The

saved context for the previous process is, therefore, a snapshot of the hardware

context of the system as it was for this process at the end of the scheduler.

Equally, when the context of the new process is loaded, it too will be a snapshot

of the way things were at the end of the scheduler, including this processes

program counter and register contents.

If the previous process or the new current process uses virtual memory then

the system's page table entries may need to be updated. Again, this action

is architecture speci�c. Processors like the Alpha AXP, which use Translation

Look-aside Tables or cached Page Table Entries, must
ush those cached table

entries that belonged to the previous process.

4.3.1 Scheduling in Multiprocessor Systems

Systems with multiple CPUs are reasonably rare in the Linux world but a lot of

work has already gone into making Linux an SMP (Symmetric Multi-Processing)

operating system. That is, one that is capable of evenly balancing work between the

CPUs in the system. Nowhere is this balancing of work more apparent than in the

scheduler.

In a multiprocessor system, hopefully, all of the processors are busily running pro-

cesses. Each will run the scheduler separately as its current process exhausts its

time-slice or has to wait for a system resource. The �rst thing to notice about an

SMP system is that there is not just one idle process in the system. In a single

processor system the idle process is the �rst task in the task vector, in an SMP

system there is one idle process per CPU, and you could have more than one idle

CPU. Additionally there is one current process per CPU, so SMP systems must keep

track of the current and idle processes for each processor.

In an SMP system each process's task struct contains the number of the processor

that it is currently running on (processor) and its processor number of the last

processor that it ran on (last processor). There is no reason why a process should

p

fs_struct

count

umask

*root

*pwd

inode

inode

file

f_mode

f_pos

f_flags

f_count

f_owner

f_inode

f_op

f_version

inode

file operation
routines

fs

files

task_struct

files_struct

count

close_on_exec

open_fs

fd[0]

fd[1]

fd[255]

0x022

Figure 4.1: A Process's Files

not run on a di�erent CPU each time it is selected to run but Linux can restrict a

process to one or more processors in the system using the processor mask. If bit N

is set, then this process can run on processor N. When the scheduler is choosing a

new process to run it will not consider one that does not have the appropriate bit set

for the current processor's number in its processor mask. The scheduler also gives

a slight advantage to a process that last ran on the current processor because there

is often a performance overhead when moving a process to a di�erent processor.

4.4 Files

Figure 4.1 shows that there are two data structures that describe �le system speci�c

information for each process in the system. The �rst, the fs struct contains pointers
See include/-

linux/sched.h
to this process's VFS inodes and its umask. The umask is the default mode that new

�les will be created in, and it can be changed via system calls.

The second data structure, the files struct, contains information about all of the

�les that this process is currently using. Programs read from standard input and write

to standard output. Any error messages should go to standard error. These may be

�les, terminal input/output or a real device but so far as the program is concerned

they are all treated as �les. Every �le has its own descriptor and the files struct

contains pointers to up to 256 file data structures, each one describing a �le being

used by this process. The f mode �eld describes what mode the �le has been created

in; read only, read and write or write only. f pos holds the position in the �le

where the next read or write operation will occur. f inode points at the VFS inode

y

describing the �le and f ops is a pointer to a vector of routine addresses; one for

each function that you might wish to perform on a �le. There is, for example, a write

data function. This abstraction of the interface is very powerful and allows Linux

to support a wide variety of �le types. In Linux, pipes are implemented using this

mechanism as we shall see later.

Every time a �le is opened, one of the free file pointers in the files struct is used

to point to the new file structure. Linux processes expect three �le descriptors to

be open when they start. These are known as standard input, standard output and

standard error and they are usually inherited from the creating parent process. All

accesses to �les are via standard system calls which pass or return �le descriptors.

These descriptors are indices into the process's fd vector, so standard input, standard

output and standard error have �le descriptors 0, 1 and 2. Each access to the �le

uses the file data structure's �le operation routines to together with the VFS inode

to achieve its needs.

4.5 Virtual Memory

A process's virtual memory contains executable code and data from many sources.

First there is the program image that is loaded; for example a command like ls.

This command, like all executable images, is composed of both executable code and

data. The image �le contains all of the information neccessary to load the executable

code and associated program data into the virtual memory of the process. Secondly,

processses can allocate (virtual) memory to use during their processing, say to hold

the contents of �les that it is reading. This newly allocated, virtual, memory needs to

be linked into the process's existing virtual memory so that it can be used. Thirdly,

Linux processes use libraries of commonly useful code, for example �le handling

routines. It does not make sense that each process has its own copy of the library,

Linux uses shared libraries that can be used by several running processes at the same

time. The code and the data from these shared libraries must be linked into this

process's virtual address space and also into the virtual address space of the other

processes sharing the library.

In any given time period a process will not have used all of the code and data

contained within its virtual memory. It could contain code that is only used during

certain situations, such as during initialization or to process a particular event. It

may only have used some of the routines from its shared libraries. It would be

wasteful to load all of this code and data into physical memory where it would lie

unused. Multiply this wastage by the number of processes in the system and the

system would run very ine�ciently. Instead, Linux uses a technique called demand

paging where the virtual memory of a process is brought into physical memory only

when a process attempts to use it. So, instead of loading the code and data into

physical memory straight away, the Linux kernel alters the process's page table,

marking the virtual areas as existing but not in memory. When the process attempts

to acccess the code or data the system hardware will generate a page fault and

hand control to the Linux kernel to �x things up. Therefore, for every area of

virtual memory in the process's address space Linux needs to know where that virtual

memory comes from and how to get it into memory so that it can �x up these page

faults.

The Linux kernel needs to manage all of these areas of virtual memory and the con-

p

count

mmap_avl

mm_struct

mmap_sem

mmap

pgd

vm_area_struct

vm_next

vm_flags

vm_inode

vm_ops

vm_end
vm_start

task_struct

mm

Processes Virtual Memory

vm_area_struct

vm_next

vm_flags

vm_inode

vm_ops

vm_end
vm_start

0x8059BB8

0x8048000

0x0000000

Data

Code

Figure 4.2: A Process's Virtual Memory

tents of each process's virtual memory is described by a mm struct data structure

pointed at from its task struct. The process's mm struct data structure also con-

tains information about the loaded executable image and a pointer to the process's

page tables. It contains pointers to a list of vm area struct data structures, each

representing an area of virtual memory within this process.

This linked list is in ascending virtual memory order, �gure 4.2 shows the layout in

virtual memory of a simple process together with the kernel data structures managing

it. As those areas of virtual memory are from several sources, Linux abstracts the

interface by having the vm area struct point to a set of virtual memory handling

routines (via vm ops). This way all of the process's virtual memory can be handled

in a consistent way no matter how the underlying services managing that memory

di�er. For example there is a routine that will be called when the process attempts

to access the memory and it does not exist, this is how page faults are handled.

The process's set of vm area struct data structures is accessed repeatedly by the

Linux kernel as it creates new areas of virtual memory for the process and as it �xes

up references to virtual memory not in the system's physical memory. This makes

the time that it takes to �nd the correct vm area struct critical to the performance

of the system. To speed up this access, Linux also arranges the vm area struct data

structures into an AVL (Adelson-Velskii and Landis) tree. This tree is arranged so

that each vm area struct (or node) has a left and a right pointer to its neighbouring

vm area struct structure. The left pointer points to node with a lower starting

virtual address and the right pointer points to a node with a higher starting virtual

address. To �nd the correct node, Linux goes to the root of the tree and follows

each node's left and right pointers until it �nds the right vm area struct. Of course,

g

nothing is for free and inserting a new vm area struct into this tree takes additional

processing time.

When a process allocates virtual memory, Linux does not actually reserve physical

memory for the process. Instead, it describes the virtual memory by creating a

new vm area struct data structure. This is linked into the process's list of virtual

memory. When the process attempts to write to a virtual address within that new

virtual memory region then the system will page fault. The processor will attempt

to decode the virtual address, but as there are no Page Table Entries for any of this

memory, it will give up and raise a page fault exception, leaving the Linux kernel to

�x things up. Linux looks to see if the virtual address referenced is in the current

process's virtual address space. If it is, Linux creates the appropriate PTEs and

allocates a physical page of memory for this process. The code or data may need to

be brought into that physical page from the �lesystem or from the swap disk. The

process can then be restarted at the instruction that caused the page fault and, this

time as the memory physically exists, it may continue.

4.6 Creating a Process

When the system starts up it is running in kernel mode and there is, in a sense, only

one process, the initial process. Like all processes, the initial process has a machine

state represented by stacks, registers and so on. These will be saved in the initial

process's task struct data structure when other processes in the system are created

and run. At the end of system initialization, the initial process starts up a kernel

thread (called init) and then sits in an idle loop doing nothing. Whenever there

is nothing else to do the scheduler will run this, idle, process. The idle process's

task struct is the only one that is not dynamically allocated, it is statically de�ned

at kernel build time and is, rather confusingly, called init task.

The init kernel thread or process has a process identi�er of 1 as it is the system's

�rst real process. It does some initial setting up of the system (such as opening the

system console and mounting the root �le system) and then executes the system ini-

tialization program. This is one of /etc/init, /bin/init or /sbin/init depending

on your system. The init program uses /etc/inittab as a script �le to create new

processes within the system. These new processes may themselves go on to create

new processes. For example the getty process may create a login process when a

user attempts to login. All of the processes in the system are descended from the

init kernel thread.

New processes are created by cloning old processes, or rather by cloning the current

process. A new task is created by a system call (fork or clone) and the cloning
See do fork() in

kernel/fork.c
happens within the kernel in kernel mode. At the end of the system call there is a

new process waiting to run once the scheduler chooses it. A new task struct data

structure is allocated from the system's physical memory with one or more physical

pages for the cloned process's stacks (user and kernel). A new process identi�er may

be created, one that is unique within the set of process identi�ers in the system.

However, it is perfectly reasonable for the cloned process to keep its parents process

identi�er. The new task struct is entered into the task vector and the contents of

the old (current) process's task struct are copied into the cloned task struct.

When cloning processes Linux allows the two processes to share resources rather

than have two separate copies. This applies to the process's �les, signal handlers and

p

virtual memory. When the resources are to be shared their respective count �elds

are incremented so that Linux will not deallocate these resources until both processes

have �nished using them. So, for example, if the cloned process is to share virtual

memory, its task struct will contain a pointer to the mm struct of the original

process and that mm struct has its count �eld incremented to show the number of

current processes sharing it.

Cloning a process's virtual memory is rather tricky. A new set of vm area struct

data structures must be generated together with their owning mm struct data struc-

ture and the cloned process's page tables. None of the process's virtual memory is

copied at this point. That would be a rather di�cult and lengthy task for some

of that virtual memory would be in physical memory, some in the executable im-

age that the process is currently executing and possibly some would be in the swap

�le. Instead Linux uses a technique called \copy on write" which means that virtual

memory will only be copied when one of the two processes tries to write to it. Any

virtual memory that is not written to, even if it can be, will be shared between the

two processes without any harm occuring. The read only memory, for example the

executable code, will always be shared. For \copy on write" to work, the writeable

areas have their page table entries marked as read only and the vm area struct

data structures describing them are marked as \copy on write". When one of the

processes attempts to write to this virtual memory a page fault will occur. It is at

this point that Linux will make a copy of the memory and �x up the two processes'

page tables and virtual memory data structures.

4.7 Times and Timers

The kernel keeps track of a process's creation time as well as the CPU time that it

consumes during its lifetime. Each clock tick, the kernel updates the amount of time

in jiffies that the current process has spent in system and in user mode.

In addition to these accounting timers, Linux supports process speci�c interval

timers. A process can use these timers to send itself various signals each time that
See

kernel/itimer.c
they expire. Three sorts of interval timers are supported:

Real the timer ticks in real time, and when the timer has expired, the process is

sent a SIGALRM signal.

Virtual This timer only ticks when the process is running and when it expires it

sends a SIGVTALRM signal.

Pro�le This timer ticks both when the process is running and when the system is

executing on behalf of the process itself. SIGPROF is signalled when it expires.

One or all of the interval timers may be running and Linux keeps all of the neccessary

information in the process's task struct data structure. System calls can be made

to set up these interval timers and to start them, stop them and read their current

values. The virtual and pro�le timers are handled the same way. Every clock tick

See

do it virtual()

in

kernel/sched.c

See

do it prof() in

kernel/sched.c

the current process's interval timers are decremented and, if they have expired, the

appropriate signal is sent.

Real time interval timers are a little di�erent and for these Linux uses the timer

mechanism described in Chapter 11. Each process has its own timer list data

g g

*load_shlib()

linux_binfmt

next

use_count

*load_binary()

*core_dump()

*load_shlib()

linux_binfmt

next

use_count

*load_binary()

*core_dump()

*load_shlib()

linux_binfmt

next

use_count

*load_binary()

*core_dump()

formats

Figure 4.3: Registered Binary Formats

structure and, when the real interval timer is running, this is queued on the system

timer list. When the timer expires the timer bottom half handler removes it from

the queue and calls the interval timer handler. This generates the SIGALRM signal
See

it real fn() in

kernel/itimer.cand restarts the interval timer, adding it back into the system timer queue.

4.8 Executing Programs

In Linux, as in UnixTM, programs and commands are normally executed by a com-

mand interpreter. A command interpreter is a user process like any other process

and is called a shell 2. There are many shells in Linux, some of the most popular

are sh, bash and tcsh. With the exception of a few built in commands, such as cd

and pwd, a command is an executable binary �le. For each command entered, the

shell searches the directories in the process's search path, held in the PATH environ-

ment variable, for an executable image with a matching name. If the �le is found it

is loaded and executed. The shell clones itself using the fork mechanism described

above and then the new child process replaces the binary image that it was execut-

ing, the shell, with the contents of the executable image �le just found. Normally

the shell waits for the command to complete, or rather for the child process to exit.

You can cause the shell to run again by pushing the child process to the background

by typing control-Z, which causes a SIGSTOP signal to be sent to the child process,

stopping it. You then use the shell command bg to push it into a background, the

shell sends it a SIGCONT signal to restart it, where it will stay until either it ends or

it needs to do terminal input or output.

An executable �le can have many formats or even be a script �le. Script �les have

to be recognized and the appropriate interpreter run to handle them; for example

/bin/sh interprets shell scripts. Executable object �les contain executable code and

data together with enough information to allow the operating system to load them

into memory and execute them. The most commonly used object �le format used

by Linux is ELF but, in theory, Linux is
exible enough to handle almost any object

�le format.

As with �le systems, the binary formats supported by Linux are either built into the

kernel at kernel build time or available to be loaded as modules. The kernel keeps

a list of supported binary formats (see �gure 4.3) and when an attempt is made

to execute a �le, each binary format is tried in turn until one works. Commonly
See do execve()

in fs/exec.c
supported Linux binary formats are a.out and ELF. Executable �les do not have to

be read completely into memory, a technique known as demand loading is used. As

each part of the executable image is used by a process it is brought into memory.

2Think of a nut the kernel is the edible bit in the middle and the shell goes around it, providing

an interface.

p

ELF Executable Image

68536
PT_LOAD

PF_R, PF_W

2200

4248

0x8059BB8

p_type
p_offset
p_vaddr
p_filesz
p_memsz
p_flags

Data

Code

Physical Header

Physical Header

68532

68532

0x8048000
0
PT_LOAD

PF_R, PF_X

’E’ ’L’ ’F’
0x8048090
52
32
2

p_type
p_offset
p_vaddr
p_filesz
p_memsz
p_flags

e_ident
e_entry
e_phoff
e_phentsize
e_phnum

Figure 4.4: ELF Executable File Format

Unused parts of the image may be discarded from memory.

4.8.1 ELF

The ELF (Executable and Linkable Format) object �le format, designed by the Unix

System Laboratories, is now �rmly established as the most commonly used format

in Linux. Whilst there is a slight performance overhead when compared with other

object �le formats such as ECOFF and a.out, ELF is felt to be more
exible. ELF

executable �les contain executable code, sometimes refered to as text, and data.

Tables within the executable image describe how the program should be placed into

the process's virtual memory. Statically linked images are built by the linker (ld),

or link editor, into one single image containing all of the code and data needed to

run this image. The image also speci�es the layout in memory of this image and the

address in the image of the �rst code to execute.

Figure 4.4 shows the layout of a statically linked ELF executable image. It is a simple
See include/-

linux/elf.h
C program that prints \hello world" and then exits. The header describes it as an

ELF image with two physical headers (e phnum is 2) starting 52 bytes (e phoff) from

the start of the image �le. The �rst physical header describes the executable code in

the image. It goes at virtual address 0x8048000 and there is 65532 bytes of it. This

is because it is a statically linked image which contains all of the library code for

the printf() call to output \hello world". The entry point for the image, the �rst

instruction for the program, is not at the start of the image but at virtual address

0x8048090 (e entry). The code starts immediately after the second physical header.

This physical header describes the data for the program and is to be loaded into

g g

virtual memory at address 0x8059BB8. This data is both readable and writeable.

You will notice that the size of the data in the �le is 2200 bytes (p filesz) whereas

its size in memory is 4248 bytes. This because the �rst 2200 bytes contain pre-

initialized data and the next 2048 bytes contain data that will be initialized by the

executing code.

When Linux loads an ELF executable image into the process's virtual address space,

it does not actually load the image. It sets up the virtual memory data structures,
See do load

elf binary() in

fs/binfmt elf.cthe process's vm area struct tree and its page tables. When the program is exe-

cuted page faults will cause the program's code and data to be fetched into physical

memory. Unused portions of the program will never be loaded into memory. Once

the ELF binary format loader is satis�ed that the image is a valid ELF executable

image it
ushes the process's current executable image from its virtual memory. As

this process is a cloned image (all processes are) this, old, image is the program that

the parent process was executing, for example the command interpreter shell such

as bash. This
ushing of the old executable image discards the old virtual memory

data structures and resets the process's page tables. It also clears away any signal

handlers that were set up and closes any �les that are open. At the end of the
ush

the process is ready for the new executable image. No matter what format the exe-

cutable image is, the same information gets set up in the process's mm struct. There

are pointers to the start and end of the image's code and data. These values are

found as the ELF executable images physical headers are read and the sections of

the program that they describe are mapped into the process's virtual address space.

That is also when the vm area struct data structures are set up and the process's

page tables are modi�ed. The mm struct data structure also contains pointers to the

parameters to be passed to the program and to this process's environment variables.

ELF Shared Libraries

A dynamically linked image, on the other hand, does not contain all of the code and

data required to run. Some of it is held in shared libraries that are linked into the

image at run time. The ELF shared library's tables are also used by the dynamic

linker when the shared library is linked into the image at run time. Linux uses several

dynamic linkers, ld.so.1, libc.so.1 and ld-linux.so.1, all to be found in /lib.

The libraries contain commonly used code such as language subroutines. Without

dynamic linking, all programs would need their own copy of the these libraries and

would need far more disk space and virtual memory. In dynamic linking, information

is included in the ELF image's tables for every library routine referenced. The

information indicates to the dynamic linker how to locate the library routine and

link it into the program's address space.

REVIEW NOTE: Do I need more detail here, worked example?

4.8.2 Script Files

Script �les are executables that need an interpreter to run them. There are a wide

variety of interpreters available for Linux; for example wish, perl and command shells

such as tcsh. Linux uses the standard UnuxTM convention of having the �rst line of

a script �le contain the name of the interpreter. So, a typical script �le would start:

#!/usr/bin/wish

p

The script binary loader tries to �nd the intepreter for the script. It does this bySee

do load script()

in fs/-

binfmt script.c

attempting to open the executable �le that is named in the �rst line of the script.

If it can open it, it has a pointer to its VFS inode and it can go ahead and have

it interpret the script �le. The name of the script �le becomes argument zero (the

�rst argument) and all of the other arguments move up one place (the original �rst

argument becomes the new second argument and so on). Loading the interpreter

is done in the same way as Linux loads all of its executable �les. Linux tries each

binary format in turn until one works. This means that you could in theory stack

several interpreters and binary formats making the Linux binary format handler a

very
exible piece of software.

Chapter 5

Interprocess Communication

Mechanisms

Processes communicate with each other and with the kernel to coordinate

their activities. Linux supports a number of Inter-Process Communica-

tion (IPC) mechanisms. Signals and pipes are two of them but Linux also

supports the System V IPC mechanisms named after the UnixTM release

in which they �rst appeared.

5.1 Signals

Signals are one of the oldest inter-process communication methods used by UnixTM

systems. They are used to signal asynchronous events to one or more processes. A

signal could be generated by a keyboard interrupt or an error condition such as the

process attempting to access a non-existent location in its virtual memory. Signals

are also used by the shells to signal job control commands to their child processes.

There are a set of de�ned signals that the kernel can generate or that can be generated

by other processes in the system, provided that they have the correct privileges. You

can list a system's set of signals using the kill command (kill -l), on my Intel Linux

box this gives:

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE

9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD

18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN

22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO

30) SIGPWR

The numbers are di�erent for an Alpha AXP Linux box. Processes can choose to

ignore most of the signals that are generated, with two notable exceptions: neither

the SIGSTOP signal which causes a process to halt its execution nor the SIGKILL

signal which causes a process to exit can be ignored. Otherwise though, a process

can choose just how it wants to handle the various signals. Processes can block

51

p p

the signals and, if they do not block them, they can either choose to handle them

themselves or allow the kernel to handle them. If the kernel handles the signals, it will

do the default actions required for this signal. For example, the default action when

a process receives the SIGFPE (
oating point exception) signal is to core dump and

then exit. Signals have no inherent relative priorities. If two signals are generated

for a process at the same time then they may be presented to the process or handled

in any order. Also there is no mechanism for handling multiple signals of the same

kind. There is no way that a process can tell if it received 1 or 42 SIGCONT signals.

Linux implements signals using information stored in the task struct for the pro-

cess. The number of supported signals is limited to the word size of the processor.

Processes with a word size of 32 bits can have 32 signals whereas 64 bit processors

like the Alpha AXP may have up to 64 signals. The currently pending signals are

kept in the signal �eld with a mask of blocked signals held in blocked. With the

exception of SIGSTOP and SIGKILL, all signals can be blocked. If a blocked signal

is generated, it remains pending until it is unblocked. Linux also holds information

about how each process handles every possible signal and this is held in an array of

sigaction data structures pointed at by the task struct for each process. Amongst

other things it contains either the address of a routine that will handle the signal or

a
ag which tells Linux that the process either wishes to ignore this signal or let the

kernel handle the signal for it. The process modi�es the default signal handling by

making system calls and these calls alter the sigaction for the appropriate signal

as well as the blocked mask.

Not every process in the system can send signals to every other process, the kernel

can and super users can. Normal processes can only send signals to processes with the

same uid and gid or to processes in the same process group1. Signals are generated

by setting the appropriate bit in the task struct's signal �eld. If the process has

not blocked the signal and is waiting but interruptible (in state Interruptible) then

it is woken up by changing its state to Running and making sure that it is in the

run queue. That way the scheduler will consider it a candidate for running when the

system next schedules. If the default handling is needed, then Linux can optimize the

handling of the signal. For example if the signal SIGWINCH (the X window changed

focus) and the default handler is being used then there is nothing to be done.

Signals are not presented to the process immediately they are generated., they must

wait until the process is running again. Every time a process exits from a system call

its signal and blocked �elds are checked and, if there are any unblocked signals,

they can now be delivered. This might seem a very unreliable method but every

process in the system is making system calls, for example to write a character to the

terminal, all of the time. Processes can elect to wait for signals if they wish, they

are suspended in state Interruptible until a signal is presented. The Linux signal

processing code looks at the sigaction structure for each of the current unblocked

signals.

If a signal's handler is set to the default action then the kernel will handle it. The

SIGSTOP signal's default handler will change the current process's state to Stopped

and then run the scheduler to select a new process to run. The default action for the

SIGFPE signal will core dump the process and then cause it to exit. Alternatively,

the process may have spec�ed its own signal handler. This is a routine which will

be called whenever the signal is generated and the sigaction structure holds the

1
REVIEW NOTE: Explain process groups.

p

address of this routine. The kernel must call the process's signal handling routine

and how this happens is processor speci�c but all CPUs must cope with the fact

that the current process is running in kernel mode and is just about to return to

the process that called the kernel or system routine in user mode. The problem is

solved by manipulating the stack and registers of the process. The process's program

counter is set to the address of its signal handling routine and the parameters to the

routine are added to the call frame or passed in registers. When the process resumes

operation it appears as if the signal handling routine were called normally.

Linux is POSIX compatible and so the process can specify which signals are blocked

when a particular signal handling routine is called. This means changing the blocked

mask during the call to the processes signal handler. The blocked mask must be

returned to its original value when the signal handling routine has �nished. Therefore

Linux adds a call to a tidy up routine which will restore the original blocked mask

onto the call stack of the signalled process. Linux also optimizes the case where

several signal handling routines need to be called by stacking them so that each time

one handling routine exits, the next one is called until the tidy up routine is called.

5.2 Pipes

The common Linux shells all allow redirection. For example

$ ls | pr | lpr

pipes the output from the ls command listing the directory's �les into the standard

input of the pr command which paginates them. Finally the standard output from

the pr command is piped into the standard input of the lpr command which prints

the results on the default printer. Pipes then are unidirectional byte streams which

connect the standard output from one process into the standard input of another

process. Neither process is aware of this redirection and behaves just as it would

normally. It is the shell which sets up these temporary pipes between the processes.

In Linux, a pipe is implemented using two file data structures which both point at

the same temporary VFS inode which itself points at a physical page within memory.

Figure 5.1 shows that each file data structure contains pointers to di�erent �le

operation routine vectors; one for writing to the pipe, the other for reading from

the pipe. This hides the underlying di�erences from the generic system calls which
See

include/linux/-

inode fs i.hread and write to ordinary �les. As the writing process writes to the pipe, bytes are

copied into the shared data page and when the reading process reads from the pipe,

bytes are copied from the shared data page. Linux must synchronize access to the

pipe. It must make sure that the reader and the writer of the pipe are in step and

to do this it uses locks, wait queues and signals.

When the writer wants to write to the pipe it uses the standard write library func-

tions. These all pass �le descriptors that are indices into the process's set of file

data structures, each one representing an open �le or, as in this case, an open pipe.

The Linux system call uses the write routine pointed at by the file data structure

describing this pipe. That write routine uses information held in the VFS inode

representing the pipe to manage the write request. If there is enough room to write
See

pipe write() in

fs/pipe.c

p p

Data Page

Pipe
Write
Operations

Process 1 Process 2

f_mode

f_pos

f_flags

f_count

f_owner

f_inode

f_op

f_version

f_mode

f_pos

f_flags

f_count

f_owner

f_inode

f_op

f_version

file file

inode

Pipe

Operations
Read

Figure 5.1: Pipes

all of the bytes into the pipe and, so long as the pipe is not locked by its reader,

Linux locks it for the writer and copies the bytes to be written from the process's

address space into the shared data page. If the pipe is locked by the reader or if

there is not enough room for the data then the current process is made to sleep on

the pipe inode's wait queue and the scheduler is called so that another process can

run. It is interruptible, so it can receive signals and it will be woken by the reader

when there is enough room for the write data or when the pipe is unlocked. When

the data has been written, the pipe's VFS inode is unlocked and any waiting readers

sleeping on the inode's wait queue will themselves be woken up.

Reading data from the pipe is a very similar process to writing to it. Processes are
See pipe read()

in fs/pipe.c

allowed to do non-blocking reads (it depends on the mode in which they opened

the �le or pipe) and, in this case, if there is no data to be read or if the pipe is

locked, an error will be returned. This means that the process can continue to run.

The alternative is to wait on the pipe inode's wait queue until the write process

has �nished. When both processes have �nished with the pipe, the pipe inode is

discarded along with the shared data page.

Linux also supports named pipes, also known as FIFOs because pipes operate on a

First In, First Out principle. The �rst data written into the pipe is the �rst data

read from the pipe. Unlike pipes, FIFOs are not temporary objects, they are entities

in the �le system and can be created using the mk�fo command. Processes are free to

use a FIFO so long as they have appropriate access rights to it. The way that FIFOs

are opened is a little di�erent from pipes. A pipe (its two file data structures, its

VFS inode and the shared data page) is created in one go whereas a FIFO already

exists and is opened and closed by its users. Linux must handle readers opening

the FIFO before writers open it as well as readers reading before any writers have

written to it. That aside, FIFOs are handled almost exactly the same way as pipes

and they use the same data structures and operations.

5.3 Sockets

REVIEW NOTE: Add when networking chapter written.

5.3.1 System V IPC Mechanisms

Linux supports three types of interprocess communication mechanisms that �rst

appeared in UnixTM System V (1983). These are message queues, semaphores and

shared memory. These System V IPC mechanisms all share common authentication

methods. Processes may access these resources only by passing a unique reference

identi�er to the kernel via system calls. Access to these System V IPC objects is

checked using access permissions, much like accesses to �les are checked. The access

rights to the System V IPC object is set by the creator of the object via system calls.

The object's reference identi�er is used by each mechanism as an index into a table

of resources. It is not a straight forward index but requires some manipulation to

generate the index.

All Linux data structures representing System V IPC objects in the system include

an ipc perm structure which contains the owner and creator process's user and
See include/-

linux/ipc.h

group identi�ers. The access mode for this object (owner, group and other) and the

IPC object's key. The key is used as a way of locating the System V IPC object's

reference identi�er. Two sets of keys are supported: public and private. If the key

is public then any process in the system, subject to rights checking, can �nd the

reference identi�er for the System V IPC object. System V IPC objects can never

be referenced with a key, only by their reference identi�er.

5.3.2 Message Queues

Message queues allow one or more processes to write messages, which will be read

by one or more reading processes. Linux maintains a list of message queues, the

msgque vector; each element of which points to a msqid ds data structure that fully

describes the message queue. When message queues are created a new msqid ds

data structure is allocated from system memory and inserted into the vector.

Each msqid ds data structure contains an ipc perm data structure and pointers to
See include/-

linux/msg.h

the messages entered onto this queue. In addition, Linux keeps queue modi�cation

times such as the last time that this queue was written to and so on. The msqid ds

also contains two wait queues; one for the writers to the queue and one for the readers

of the message queue.

Each time a process attempts to write a message to the write queue its e�ective user

and group identi�ers are compared with the mode in this queue's ipc perm data

structure. If the process can write to the queue then the message may be copied

from the process's address space into a msg data structure and put at the end of this

message queue. Each message is tagged with an application speci�c type, agreed

between the cooperating processes. However, there may be no room for the message

as Linux restricts the number and length of messages that can be written. In this

case the process will be added to this message queue's write wait queue and the

p p

times

*wwait

msg_qnum

*msg_last

msqid_ds

ipc

*rwait

*msg_first

msg_qnum

msg

msg_type
*msg_spot
msg_stime
msg_ts

*msg_next

messagemsg_ts

msg

msg_type
*msg_spot
msg_stime
msg_ts

*msg_next

messagemsg_ts

Figure 5.2: System V IPC Message Queues

scheduler will be called to select a new process to run. It will be woken up when one

or more messages have been read from this message queue.

Reading from the queue is a similar process. Again, the processes access rights to

the write queue are checked. A reading process may choose to either get the �rst

message in the queue regardless of its type or select messages with particular types.

If no messages match this criteria the reading process will be added to the message

queue's read wait queue and the scheduler run. When a new message is written to

the queue this process will be woken up and run again.

5.3.3 Semaphores

In its simplest form a semaphore is a location in memory whose value can be tested

and set by more than one process. The test and set operation is, so far as each process

is concerned, uninterruptible or atomic; once started nothing can stop it. The result

of the test and set operation is the addition of the current value of the semaphore

and the set value, which can be positive or negative. Depending on the result of the

test and set operation one process may have to sleep until the semphore's value is

changed by another process. Semaphores can be used to implement critical regions,

areas of critical code that only one process at a time should be executing.

Say you had many cooperating processes reading records from and writing records

to a single data �le. You would want that �le access to be strictly coordinated. You

could use a semaphore with an initial value of 1 and, around the �le operating code,

put two semaphore operations, the �rst to test and decrement the semaphore's value

and the second to test and increment it. The �rst process to access the �le would

try to decrement the semaphore's value and it would succeed, the semaphore's value

now being 0. This process can now go ahead and use the data �le but if another

process wishing to use it now tries to decrement the semaphore's value it would fail

as the result would be -1. That process will be suspended until the �rst process has

�nished with the data �le. When the �rst process has �nished with the data �le it

will increment the semaphore's value, making it 1 again. Now the waiting process

can be woken and this time its attempt to increment the semaphore will succeed.

proc_next
id_next
semid
semadj

sem_undo

sem_queue
next
prev
sleeper
undo
pid
status
sma
sops
nsops

sem_nsems
undo
sem_pending_last

sem_pending

sem_base

times

ipc

semid_ds

array of
semaphores

Figure 5.3: System V IPC Semaphores

System V IPC semaphore objects each describe a semaphore array and Linux uses

the semid ds data structure to represent this. All of the semid ds data structures in
See include/-

linux/sem.h
the system are pointed at by the semary, a vector of pointers. There are sem nsems

in each semaphore array, each one described by a sem data structure pointed at by

sem base. All of the processes that are allowed to manipulate the semaphore array of

a System V IPC semaphore object may make system calls that perform operations on

them. The system call can specify many operations and each operation is described

by three inputs; the semaphore index, the operation value and a set of
ags. The

semaphore index is an index into the semaphore array and the operation value is a

numerical value that will be added to the current value of the semaphore. First Linux

tests whether or not all of the operations would succeed. An operation will succeed

if the operation value added to the semaphore's current value would be greater than

zero or if both the operation value and the semaphore's current value are zero. If

any of the semaphore operations would fail Linux may suspend the process but only

if the operation
ags have not requested that the system call is non-blocking. If

the process is to be suspended then Linux must save the state of the semaphore

operations to be performed and put the current process onto a wait queue. It does

this by building a sem queue data structure on the stack and �lling it out. The new

sem queue data structure is put at the end of this semaphore object's wait queue

(using the sem pending and sem pending last pointers). The current process is

put on the wait queue in the sem queue data structure (sleeper) and the scheduler

called to choose another process to run.

If all of the semaphore operations would have succeeded and the current process

does not need to be suspended, Linux goes ahead and applies the operations to the

appropriate members of the semaphore array. Now Linux must check that any wait-

ing, suspended, processes may now apply their semaphore operations. It looks at

each member of the operations pending queue (sem pending) in turn, testing to see

if the semphore operations will succeed this time. If they will then it removes the

sem queue data structure from the operations pending list and applies the semaphore

operations to the semaphore array. It wakes up the sleeping process making it avail-

p p

able to be restarted the next time the scheduler runs. Linux keeps looking through

the pending list from the start until there is a pass where no semaphore operations

can be applied and so no more processes can be woken.

There is a problem with semaphores, deadlocks. These occur when one process has

altered the semaphores value as it enters a critical region but then fails to leave

the critical region because it crashed or was killed. Linux protects against this by

maintaining lists of adjustments to the semaphore arrays. The idea is that when

these adjustments are applied, the semaphores will be put back to the state that

they were in before the a process's set of semaphore operations were applied. These

adjustments are kept in sem undo data structures queued both on the semid ds

data structure and on the task struct data structure for the processes using these

semaphore arrays.

Each individual semaphore operation may request that an adjustment be main-

tained. Linux will maintain at most one sem undo data structure per process for

each semaphore array. If the requesting process does not have one, then one is cre-

ated when it is needed. The new sem undo data structure is queued both onto this

process's task struct data structure and onto the semaphore array's semid ds data

structure. As operations are applied to the semphores in the semaphore array the

negation of the operation value is added to this semphore's entry in the adjustment

array of this process's sem undo data structure. So, if the operation value is 2, then

-2 is added to the adjustment entry for this semaphore.

When processes are deleted, as they exit Linux works through their set of sem undo

data structures applying the adjustments to the semaphore arrays. If a semaphore set

is deleted, the sem undo data structures are left queued on the process's task struct

but the semaphore array identi�er is made invalid. In this case the semaphore clean

up code simply discards the sem undo data structure.

5.3.4 Shared Memory

Shared memory allows one or more processes to communicate via memory that ap-

pears in all of their virtual address spaces. The pages of the virtual memory is

referenced by page table entries in each of the sharing processes' page tables. It does

not have to be at the same address in all of the processes' virtual memory. As with

all System V IPC objects, access to shared memory areas is controlled via keys and

access rights checking. Once the memory is being shared, there are no checks on how

the processes are using it. They must rely on other mechanisms, for example System

V semaphores, to synchronize access to the memory.

Each newly created shared memory area is represented by a shmid ds data structure.

These are kept in the shm segs vector. The shmid ds data structure decribes how
See include/-

linux/sem.h
big the area of shared memory is, how many processes are using it and information

about how that shared memory is mapped into their address spaces. It is the creator

of the shared memory that controls the access permissions to that memory and

whether its key is public or private. If it has enough access rights it may also lock

the shared memory into physical memory.

Each process that wishes to share the memory must attach to that virtual memory

via a system call. This creates a new vm area struct data structure describing the

shared memory for this process. The process can choose where in its virtual address

space the shared memory goes or it can let Linux choose a free area large enough.

vm_area_struct

vm_next_shared

vm_area_struct

vm_next_shared

pte

pte

pte

ipc

shm_segsz

times

shm_npages

attaches

shm_pages

shmid_ds

Figure 5.4: System V IPC Shared Memory

The new vm area struct structure is put into the list of vm area struct pointed

at by the shmid ds. The vm next shared and vm prev shared pointers are used to

link them together. The virtual memory is not actually created during the attach;

it happens when the �rst process attempts to access it.

The �rst time that a process accesses one of the pages of the shared virtual mem-

ory, a page fault will occur. When Linux �xes up that page fault it �nds the

vm area struct data structure describing it. This contains pointers to handler rou-

tines for this type of shared virtual memory. The shared memory page fault handling

code looks in the list of page table entries for this shmid ds to see if one exists for

this page of the shared virtual memory. If it does not exist, it will allocate a physical

page and create a page table entry for it. As well as going into the current process's

page tables, this entry is saved in the shmid ds. This means that when the next

process that attempts to access this memory gets a page fault, the shared memory

fault handling code will use this newly created physical page for that process too. So,

the �rst process that accesses a page of the shared memory causes it to be created

and thereafter access by the other processes cause that page to be added into their

virtual address spaces.

When processes no longer wish to share the virtual memory, they detach from it.

So long as other processes are still using the memory the detach only a�ects the

current process. Its vm area struct is removed from the shmid ds data structure

and deallocated. The current process's page tables are updated to invalidate the area

of virtual memory that it used to share. When the last process sharing the memory

detaches from it, the pages of the shared memory current in physical memory are

freed, as is the shmid ds data structure for this shared memory.

Further complications arise when shared virtual memory is not locked into physical

memory. In this case the pages of the shared memory may be swapped out to

the system's swap disk during periods of high memory usage. How shared memory

memory is swapped into and out of physical memory is described in Chapter 3.

p p

Chapter 6

PCI

Peripheral Component Interconnect (PCI), as its name implies is a stan-

dard that describes how to connect the peripheral components of a sys-

tem together in a structured and controlled way. The standard[3, PCI

Local Bus Speci�cation] describes the way that the system components

are electrically connected and the way that they should behave. This

chapter looks at how the Linux kernel initializes the system's PCI buses

and devices.

Figure 6.1 is a logical diagram of an example PCI based system. The PCI buses

and PCI-PCI bridges are the glue connecting the system components together; the

CPU is connected to PCI bus 0, the primary PCI bus as is the video device. A

special PCI device, a PCI-PCI bridge connects the primary bus to the secondary

PCI bus, PCI bus 1. In the jargon of the PCI speci�cation, PCI bus 1 is described

as being downstream of the PCI-PCI bridge and PCI bus 0 is up-stream of the

bridge. Connected to the secondary PCI bus are the SCSI and ethernet devices for

the system. Physically the bridge, secondary PCI bus and two devices would all be

contained on the same combination PCI card. The PCI-ISA bridge in the system

supports older, legacy ISA devices and the diagram shows a super I/O controller

chip, which controls the keyboard, mouse and
oppy. 1

6.1 PCI Address Spaces

The CPU and the PCI devices need to access memory that is shared between them.

This memory is used by device drivers to control the PCI devices and to pass in-

formation between them. Typically the shared memory contains control and status

registers for the device. These registers are used to control the device and to read

its status. For example, the PCI SCSI device driver would read its status register

to �nd out if the SCSI device was ready to write a block of information to the SCSI

disk. Or it might write to the control register to start the device running after it has

been turned on.

The CPU's system memory could be used for this shared memory but if it were,

then every time a PCI device accessed memory, the CPU would have to stall, waiting

for the PCI device to �nish. Access to memory is generally limited to one system

1For example?

61

p

EthernetSCSI

Video

Upstream

Downstream

PCI-ISA
Bridge

CPU

PCI-PCI
Bridge

PCI Bus 0

PCI Bus 1ISA Bus

Super I/O Controller

Figure 6.1: Example PCI Based System

component at a time. This would slow the system down. It is also not a good idea to

allow the system's peripheral devices to access main memory in an uncontrolled way.

This would be very dangerous; a rogue device could make the system very unstable.

Peripheral devices have their own memory spaces. The CPU can access these spaces

but access by the devices into the system's memory is very strictly controlled using

DMA (Direct Memory Access) channels. ISA devices have access to two address

spaces, ISA I/O (Input/Output) and ISA memory. PCI has three; PCI I/O, PCI

Memory and PCI Con�guration space. All of these address spaces are also accessible

by the CPU with the the PCI I/O and PCI Memory address spaces being used by the

device drivers and the PCI Con�guration space being used by the PCI initialization

code within the Linux kernel.

The Alpha AXP processor does not have natural access to addresses spaces other

than the system address space. It uses support chipsets to access other address

spaces such as PCI Con�guration space. It uses a sparse address mapping scheme

which steals part of the large virtual address space and maps it to the PCI address

spaces.

6.2 PCI Con�guration Headers

Every PCI device in the system, including the PCI-PCI bridges has a con�guration

data structure that is somewhere in the PCI con�guration address space. The PCI

Con�guration header allows the system to identify and control the device. Exactly

where the header is in the PCI Con�guration address space depends on where in

the PCI topology that device is. For example, a PCI video card plugged into one

PCI slot on the PC motherboard will have its con�guration header at one location

and if it is plugged into another PCI slot then its header will appear in another

location in PCI Con�guration memory. This does not matter, for wherever the PCI

devices and bridges are the system will �nd and con�gure them using the status and

con�guration registers in their con�guration headers.

Typically, systems are designed so that every PCI slot has it's PCI Con�guration

Header in an o�set that is related to its slot on the board. So, for example, the �rst

g

31 1516 0

Device Id Vendor Id

CommandStatus

Class Code

00h

04h

08h

24h

10h

3Ch

Base Address Registers

Line Pin

Figure 6.2: The PCI Con�guration Header

slot on the board might have its PCI Con�guration at o�set 0 and the second slot at

o�set 256 (all headers are the same length, 256 bytes) and so on. A system speci�c

hardware mechanism is de�ned so that the PCI con�guration code can attempt to

examine all possible PCI Con�guration Headers for a given PCI bus and know which

devices are present and which devices are absent simply by trying to read one of the

�elds in the header (usually the Vendor Identi�cation �eld) and getting some sort

of error. The [3, PCI Local Bus Speci�cation] describes one possible error message

as returning 0xFFFFFFFF when attempting to read the Vendor Identi�cation and

Device Identi�cation �elds for an empty PCI slot.

Figure 6.2 shows the layout of the 256 byte PCI con�guration header. It contains

the following �elds:
See include/-

linux/pci.h

Vendor Identi�cation A unique number describing the originator of the PCI de-

vice. Digital's PCI Vendor Identi�cation is 0x1011 and Intel's is 0x8086.

Device Identi�cation A unique number describing the device itself. For example,

Digital's 21141 fast ethernet device has a device identi�cation of 0x0009.

Status This �eld gives the status of the device with the meaning of the bits of this

�eld set by the standard. [3, PCI Local Bus Speci�cation].

Command By writing to this �eld the system controls the device, for example

allowing the device to access PCI I/O memory,

Class Code This identi�es the type of device that this is. There are standard

classes for every sort of device; video, SCSI and so on. The class code for SCSI

is 0x0100.

p

Base Address Registers These registers are used to determine and allocate the

type, amount and location of PCI I/O and PCI memory space that the device

can use.

Interrupt Pin Four of the physical pins on the PCI card carry interrupts from

the card to the PCI bus. The standard labels these as A, B, C and D. The

Interrupt Pin �eld describes which of these pins this PCI device uses. Generally

it is hardwired for a pariticular device. That is, every time the system boots,

the device uses the same interrupt pin. This information allows the interrupt

handling subsystem to manage interrupts from this device,

Interrupt Line The Interrupt Line �eld of the device's PCI Con�guration header

is used to pass an interrupt handle between the PCI initialisation code, the

device's driver and Linux's interrupt handling subsystem. The number written

there is meaningless to the the device driver but it allows the interrupt handler

to correctly route an interrupt from the PCI device to the correct device driver's

interrupt handling code within the Linux operating system. See Chapter 7 on

page 75 for details on how Linux handles interrupts.

6.3 PCI I/O and PCI Memory Addresses

These two address spaces are used by the devices to communicate with their device

drivers running in the Linux kernel on the CPU. For example, the DECchip 21141

fast ethernet device maps its internal registers into PCI I/O space. Its Linux device

driver then reads and writes those registers to control the device. Video drivers

typically use large amounts of PCI memory space to contain video information.

Until the PCI system has been set up and the device's access to these address spaces

has been turned on using the Command �eld in the PCI Con�guration header, noth-

ing can access them. It should be noted that only the PCI con�guration code reads

and writes PCI con�guration addresses; the Linux device drivers only read and write

PCI I/O and PCI memory addresses.

6.4 PCI-ISA Bridges

These bridges support legacy ISA devices by translating PCI I/O and PCI Memory

space accesses into ISA I/O and ISA Memory accesses. A lot of systems now sold

contain several ISA bus slots and several PCI bus slots. Over time the need for this

backwards compatibility will dwindle and PCI only systems will be sold. Where in

the ISA address spaces (I/O and Memory) the ISA devices of the system have their

registers was �xed in the dim mists of time by the early Intel 8080 based PCs. Even a

$5000 Alpha AXP based computer systems will have its ISA
oppy controller at the

same place in ISA I/O space as the �rst IBM PC. The PCI speci�cation copes with

this by reserving the lower regions of the PCI I/O and PCI Memory address spaces

for use by the ISA peripherals in the system and using a single PCI-ISA bridge to

translate any PCI memory accesses to those regions into ISA accesses.

g

071131 10 8 2 1

00Func RegisterDevice Select

Figure 6.3: Type 0 PCI Con�guration Cycle

071131 10 8 2 1

0Func Register 1Reserved DeviceBus

24 23 16 15

Figure 6.4: Type 1 PCI Con�guration Cycle

6.5 PCI-PCI Bridges

PCI-PCI bridges are special PCI devices that glue the PCI buses of the system

together. Simple systems have a single PCI bus but there is an electrical limit on the

number of PCI devices that a single PCI bus can support. Using PCI-PCI bridges to

add more PCI buses allows the system to support many more PCI devices. This is

particularly important for a high performance server. Of course, Linux fully supports

the use of PCI-PCI bridges.

6.5.1 PCI-PCI Bridges: PCI I/O and PCI Memory Windows

PCI-PCI bridges only pass a subset of PCI I/O and PCI memory read and write

requests downstream. For example, in Figure 6.1 on page 62, the PCI-PCI bridge

will only pass read and write addresses from PCI bus 0 to PCI bus 1 if they are

for PCI I/O or PCI memory addresses owned by either the SCSI or ethernet device;

all other PCI I/O and memory addresses are ignored. This �ltering stops addresses

propogating needlessly throughout the system. To do this, the PCI-PCI bridges must

be programmed with a base and limit for PCI I/O and PCI Memory space access

that they have to pass from their primary bus onto their secondary bus. Once the

PCI-PCI Bridges in a system have been con�gured then so long as the Linux device

drivers only access PCI I/O and PCI Memory space via these windows, the PCI-PCI

Bridges are invisible. This is an important feature that makes life easier for Linux

PCI device driver writers. However, it also makes PCI-PCI bridges somewhat tricky

for Linux to con�gure as we shall see later on.

6.5.2 PCI-PCI Bridges: PCI Con�guration Cycles and PCI

Bus Numbering

So that the CPU's PCI initialization code can address devices that are not on the

main PCI bus, there has to be a mechanism that allows bridges to decide whether

or not to pass Con�guration cycles from their primary interface to their secondary

interface. A cycle is just an address as it appears on the PCI bus. The PCI speci�-

cation de�nes two formats for the PCI Con�guration addresses; Type 0 and Type 1;

these are shown in Figure 6.3 and Figure 6.4 respectively. Type 0 PCI Con�guration

cycles do not contain a bus number and these are interpretted by all devices as being

for PCI con�guration addresses on this PCI bus. Bits 31:11 of the Type 0 con�gura-

ration cycles are treated as the device select �eld. One way to design a system is to

have each bit select a di�erent device. In this case bit 11 would select the PCI device

p

in slot 0, bit 12 would select the PCI device in slot 1 and so on. Another way is to

write the device's slot number directly into bits 31:11. Which mechanism is used in

a system depends on the system's PCI memory controller.

Type 1 PCI Con�guration cycles contain a PCI bus number and this type of con-

�guration cycle is ignored by all PCI devices except the PCI-PCI bridges. All of

the PCI-PCI Bridges seeing Type 1 con�guration cycles may choose to pass them

to the PCI buses downstream of themselves. Whether the PCI-PCI Bridge ignores

the Type 1 con�guration cycle or passes it onto the downstream PCI bus depends

on how the PCI-PCI Bridge has been con�gured. Every PCI-PCI bridge has a pri-

mary bus interface number and a secondary bus interface number. The primary bus

interface being the one nearest the CPU and the secondary bus interface being the

one furthest away. Each PCI-PCI Bridge also has a subordinate bus number and

this is the maximum bus number of all the PCI buses that are bridged beyond the

secondary bus interface. Or to put it another way, the subordinate bus number is the

highest numbered PCI bus downstream of the PCI-PCI bridge. When the PCI-PCI

bridge sees a Type 1 PCI con�guration cycle it does one of the following things:

� Ignore it if the bus number speci�ed is not in between the bridge's secondary

bus number and subordinate bus number (inclusive),

� Convert it to a Type 0 con�guration command if the bus number speci�ed

matches the secondary bus number of the bridge,

� Pass it onto the secondary bus interface unchanged if the bus number speci-

�ed is greater than the secondary bus number and less than or equal to the

subordinate bus number.

So, if we want to address Device 1 on bus 3 of the topology Figure 6.9 on page 71

we must generate a Type 1 Con�guration command from the CPU. Bridge1 passes

this unchanged onto Bus 1. Bridge2 ignores it but Bridge3 converts it into a Type

0 Con�guration command and sends it out on Bus 3 where Device 1 responds to it.

It is up to each individual operating system to allocate bus numbers during PCI

con�guration but whatever the numbering scheme used the following statement must

be true for all of the PCI-PCI bridges in the system:

\All PCI buses located behind a PCI-PCI bridge must reside between the seondary

bus number and the subordinate bus number (inclusive)."

If this rule is broken then the PCI-PCI Bridges will not pass and translate Type 1

PCI con�guration cycles correctly and the system will fail to �nd and initialise the

PCI devices in the system. To achieve this numbering scheme, Linux con�gures these

special devices in a particular order. Section 6.6.2 on page 68 describes Linux's PCI

bridge and bus numbering scheme in detail together with a worked example.

6.6 Linux PCI Initialization

The PCI initialisation code in Linux is broken into three logical parts:

PCI Device Driver This pseudo-device driver searches the PCI system starting at

Bus 0 and locates all PCI devices and bridges in the system. It builds a linked

list of data structures describing the topology of the system. Additionally, it

numbers all of the bridges that it �nds.

See drivers/-

pci/pci.c and

include/linux/-

pci.h

pci_root

pci_dev

bus
sibling
next

pci_dev

bus
sibling
next

pci_dev

bus
sibling
next

pci_dev

bus
sibling
next

pci_dev

bus
sibling
next

pci_bus

parent
children
next
self
devices

pci_bus

parent
children
next
self
devices
bus = 0

bus = 1

PCI-ISA Bridge PCI-PCI BridgeVideo

SCSI Ethernet

Figure 6.5: Linux Kernel PCI Data Structures

PCI BIOS This software layer provides the services described in [4, PCI BIOS

ROM speci�cation]. Even though Alpha AXP does not have BIOS services,

there is equivalent code in the Linux kernel providing the same functions,
See arch/*/-

kernel/bios32.c

PCI Fixup System speci�c �xup code tidies up the system speci�c loose ends of

PCI initialization.
See arch/*/-

kernel/bios32.c

6.6.1 The Linux Kernel PCI Data Structures

As the Linux kernel initialises the PCI system it builds data structures mirroring

the real PCI topology of the system. Figure 6.5 shows the relationships of the data

structures that it would build for the example PCI system in Figure 6.1 on page 62.

Each PCI device (including the PCI-PCI Bridges) is described by a pci dev data

structure. Each PCI bus is described by a pci bus data structure. The result is a

tree structure of PCI buses each of which has a number of child PCI devices attached

to it. As a PCI bus can only be reached using a PCI-PCI Bridge (except the primary

PCI bus, bus 0), each pci bus contains a pointer to the PCI device (the PCI-PCI

Bridge) that it is accessed through. That PCI device is a child of the the PCI Bus's

p

parent PCI bus.

Not shown in the Figure 6.5 is a pointer to all of the PCI devices in the system,

pci devices. All of the PCI devices in the system have their pci dev data structures

queued onto this queue.. This queue is used by the Linux kernel to quickly �nd all

of the PCI devices in the system.

6.6.2 The PCI Device Driver

The PCI device driver is not really a device driver at all but a function of the

operating system called at system initialisation time. The PCI initialisation code

must scan all of the PCI buses in the system looking for all PCI devices in the

system (including PCI-PCI bridge devices). It uses the PCI BIOS code to �nd out if
See Scan bus()

in drivers/pci/-

pci.c every possible slot in the current PCI bus that it is scanning is occupied. If the PCI

slot is occupied, it builds a pci dev data structure describing the device and links

into the list of known PCI devices (pointed at by pci devices).

The PCI initialisation code starts by scanning PCI Bus 0. It tries to read the

Vendor Identi�cation and Device Identi�cation �elds for every possible PCI device

in every possible PCI slot. When it �nds an occupied slot it builds a pci dev data

structure describing the device. All of the pci dev data structures built by the PCI

initialisation code (including all of the PCI-PCI Bridges) are linked into a singly

linked list; pci devices.

If the PCI device that was found was a PCI-PCI bridge then a pci bus data structure

is built and linked into the tree of pci bus and pci dev data structures pointed at by

pci root. The PCI initialisation code can tell if the PCI device is a PCI-PCI Bridge

because it has a class code of 0x060400. The Linux kernel then con�gures the PCI bus

on the other (downstream) side of the PCI-PCI Bridge that it has just found. If more

PCI-PCI Bridges are found then these are also con�gured. This process is known as

a depthwise algorithm; the system's PCI topology is fully mapped depthwise before

searching breadthwise. Looking at Figure 6.1 on page 62, Linux would con�gure PCI

Bus 1 with its Ethernet and SCSI device before it con�gured the video device on

PCI Bus 0.

As Linux searches for downstream PCI buses it must also con�gure the intervening

PCI-PCI bridges' secondary and subordinate bus numbers. This is described in detail

in Section 6.6.2 below.

Con�guring PCI-PCI Bridges - Assigning PCI Bus Numbers

For PCI-PCI bridges to pass PCI I/O, PCI Memory or PCI Con�guration address

space reads and writes across them, they need to know the following:

Primary Bus Number The bus number immediately upstream of the PCI-PCI

Bridge,

Secondary Bus Number The bus number immediately downstream of the PCI-

PCI Bridge,

Subordinate Bus Number The highest bus number of all of the buses that can

be reached downstream of the bridge.

DI D2

1

Bridge
DI D2

DI

DI D2

CPU

Bus 0

Bus 1

Bridge Bridge

3 2

Bus ?

Bus ?

Bus ?

Bridge

4

Secondary Bus = 1
Subordinate=0xFF

Primary Bus = 0

Figure 6.6: Con�guring a PCI System: Part 1

PCI I/O and PCI Memory Windows The window base and size for PCI I/O

address space and PCI Memory address space for all addresses downstream of

the PCI-PCI Bridge.

The problem is that at the time when you wish to con�gure any given PCI-PCI bridge

you do not know the subordinate bus number for that bridge. You do not know if

there are further PCI-PCI bridges downstream and if you did, you do not know

what numbers will be assigned to them. The answer is to use a depthwise recursive

algorithm and scan each bus for any PCI-PCI bridges assigning them numbers as

they are found. As each PCI-PCI bridge is found and its secondary bus numbered,

assign it a temporary subordinate number of 0xFF and scan and assign numbers to

all PCI-PCI bridges downstream of it. This all seems complicated but the worked

example below makes this process clearer.

PCI-PCI Bridge Numbering: Step 1 Taking the topology in Figure 6.6, the

�rst bridge the scan would �nd is Bridge1. The PCI bus downstream of

Bridge1 would be numbered as 1 and Bridge1 assigned a secondary bus num-

ber of 1 and a temporary subordinate bus number of 0xFF. This means that

all Type 1 PCI Con�guration addresses specifying a PCI bus number of 1 or

higher would be passed across Bridge1 and onto PCI Bus 1. They would be

translated into Type 0 Con�guration cycles if they have a bus number of 1 but

left untranslated for all other bus numbers. This is exactly what the Linux

PCI initialisation code needs to do in order to go and scan PCI Bus 1.

PCI-PCI Bridge Numbering: Step 2 Linux uses a depthwise algorithm and so

the initialisation code goes on to scan PCI Bus 1. Here it �nds PCI-PCI

Bridge2. There are no further PCI-PCI bridges beyond PCI-PCI Bridge2, so

it is assigned a subordinate bus number of 2 which matches the number assigned

p

DI D2

1

Bridge
DI D2

DI

DI D2

CPU

Bus 0

Bus 1

Bridge Bridge

3 2

Bus ?

Bus ?

Bridge

4

Secondary Bus = 2

Bus 2

Subordinate=0xFF

Primary Bus = 0
Secondary Bus = 1

Primary Bus = 1

Subordinate=2

Figure 6.7: Con�guring a PCI System: Part 2

to its secondary interface. Figure 6.7 shows how the buses and PCI-PCI bridges

are numbered at this point.

PCI-PCI Bridge Numbering: Step 3 The PCI initialisation code returns to scan-

ning PCI Bus 1 and �nds another PCI-PCI bridge, Bridge3. It is assigned 1

as its primary bus interface number, 3 as its secondary bus interface number

and 0xFF as its subordinate bus number. Figure 6.8 on page 71 shows how the

system is con�gured now. Type 1 PCI con�guration cycles with a bus number

of 1, 2 or 3 wil be correctly delivered to the appropriate PCI buses.

PCI-PCI Bridge Numbering: Step 4 Linux starts scanning PCI Bus 3, down-

stream of PCI-PCI Bridge3. PCI Bus 3 has another PCI-PCI bridge (Bridge4)

on it, it is assigned 3 as its primary bus number and 4 as its secondary bus num-

ber. It is the last bridge on this branch and so it is assigned a subordinate bus

interface number of 4. The initialisation code returns to PCI-PCI Bridge3 and

assigns it a subordinate bus number of 4. Finally, the PCI initialisation code

can assign 4 as the subordinate bus number for PCI-PCI Bridge1. Figure 6.9

on page 71 shows the �nal bus numbers.

6.6.3 PCI BIOS Functions

The PCI BIOS functions are a series of standard routines which are common across

all platforms. For example, they are the same for both Intel and Alpha AXP based

systems. They allow the CPU controlled access to all of the PCI address spaces.

Only Linux kernel code and device drivers may use them.
See arch/*/-

kernel/bios32.c

DI D2

1

Bridge
DI D2

DI

DI D2

CPU

Bus 0

Bus 1

Bridge Bridge

3 2

Bus ?

Bridge

4

Bus 2Bus 3

Subordinate=0xFF

Primary Bus = 0
Secondary Bus = 2

Subordinate=2

Primary Bus = 1
Secondary Bus = 2

Primary Bus = 1

Subordinate=0xFF
Secondary Bus = 3

Figure 6.8: Con�guring a PCI System: Part 3

DI D2

1

Bridge
DI D2

DI

DI D2

CPU

Bus 0

Bus 1

Bridge Bridge

3 2

Bus 4

Bridge

4

Bus 2Bus 3

Subordinate=4

Primary Bus = 0
Secondary Bus = 1

Subordinate=2

Primary Bus = 1
Secondary Bus = 2

Subordinate=4

Subordinate=4

Primary Bus = 1
Secondary Bus = 3

Primary Bus = 3
Secondary Bus = 4

Figure 6.9: Con�guring a PCI System: Part 4

p

01

0

31 234

Base Address

Typeprefetchable

0131

Reserved

Base Address 1

Base Address for PCI I/O Space

Base Address for PCI Memory Space

2

Figure 6.10: PCI Con�guration Header: Base Address Registers

6.6.4 PCI Fixup

The PCI �xup code for Alpha AXP does rather more than that for Intel (which

basically does nothing). For Intel based systems the system BIOS, which ran at
See arch/*/-

kernel/bios32.c
boot time, has already fully con�gured the PCI system. This leaves Linux with

little to do other than map that con�guration. For non-Intel based systems further

con�guration needs to happen to:

� Allocate PCI I/O and PCI Memory space to each device,

� Con�gure the PCI I/O and PCI Memory address windows for each PCI-PCI

bridge in the system,

� Generate Interrupt Line values for the devices; these control interrupt handling

for the device.

The next subsections describe how that code works.

Finding Out How Much PCI I/O and PCI Memory Space a Device Needs

Each PCI device found is queried to �nd out how much PCI I/O and PCI Memory

address space it requires. To do this, each Base Address Register has all 1's written to

it and then read. The device will return 0's in the don't-care address bits, e�ectively

specifying the address space required.

There are two basic types of Base Address Register, the �rst indicates within which

address space the devices registers must reside; either PCI I/O or PCI Memory space.

This is indicated by Bit 0 of the register. Figure 6.10 shows the two forms of the

Base Address Register for PCI Memory and for PCI I/O.

To �nd out just how much of each address space a given Base Address Register is

requesting, you write all 1s into the register and then read it back. The device will

specify zeros in the don't care address bits, e�ectively specifying the address space

required. This design implies that all address spaces used are a power of two and are

naturally aligned.

For example when you initialize the DECChip 21142 PCI Fast Ethernet device, it

tells you that it needs 0x100 bytes of space of either PCI I/O or PCI Memory. The

initialization code allocates it space. The moment that it allocates space, the 21142's

control and status registers can be seen at those addresses.

Allocating PCI I/O and PCI Memory to PCI-PCI Bridges and Devices

Like all memory the PCI I/O and PCI memory spaces are �nite, and to some extent

scarce. The PCI Fixup code for non-Intel systems (and the BIOS code for Intel

systems) has to allocate each device the amount of memory that it is requesting in

an e�cient manner. Both PCI I/O and PCI Memory must be allocated to a device

in a naturally aligned way. For example, if a device asks for 0xB0 of PCI I/O space

then it must be aligned on an address that is a multiple of 0xB0. In addition to this,

the PCI I/O and PCI Memory bases for any given bridge must be aligned on 4K and

on 1Mbyte boundaries respectively. Given that the address spaces for downstream

devices must lie within all of the upstream PCI-PCI Bridge's memory ranges for any

given device, it is a somewhat di�cult problem to allocate space e�ciently.

The algorithm that Linux uses relies on each device described by the bus/device tree

built by the PCI Device Driver being allocated address space in ascending PCI I/O

memory order. Again a recursive algorithm is used to walk the pci bus and pci dev

data structures built by the PCI initialisation code. Starting at the root PCI bus

(pointed at by pci root) the BIOS �xup code:

� Aligns the current global PCI I/O and Memory bases on 4K and 1 Mbyte

boundaries respectively,

� For every device on the current bus (in ascending PCI I/O memory needs),

{ allocates it space in PCI I/O and/or PCI Memory,

{ moves on the global PCI I/O and Memory bases by the appropriate

amounts,

{ enables the device's use of PCI I/O and PCI Memory,

� Allocates space recursively to all of the buses downstream of the current bus.

Note that this will change the global PCI I/O and Memory bases,

� Aligns the current global PCI I/O and Memory bases on 4K and 1 Mbyte

boundaries respectively and in doing so �gure out the size and base of PCI I/O

and PCI Memory windows required by the current PCI-PCI bridge,

� Programs the PCI-PCI bridge that links to this bus with its PCI I/O and PCI

Memory bases and limits,

� Turns on bridging of PCI I/O and PCI Memory accesses in the PCI-PCI Bridge.

This means that if any PCI I/O or PCI Memory addresses seen on the Bridge's

primary PCI bus that are within its PCI I/O and PCI Memory address windows

will be bridged onto its secondary PCI bus.

Taking the PCI system in Figure 6.1 on page 62 as our example the PCI Fixup code

would set up the system in the following way:

p

Align the PCI bases PCI I/O is 0x4000 and PCI Memory is 0x100000. This

allows the PCI-ISA bridges to translate all addresses below these into ISA

address cycles,

The Video Device This is asking for 0x200000 of PCI Memory and so we allocate

it that amount starting at the current PCI Memory base of 0x200000 as it has

to be naturally aligned to the size requested. The PCI Memory base is moved

to 0x400000 and the PCI I/O base remains at 0x4000.

The PCI-PCI Bridge We now cross the PCI-PCI Bridge and allocate PCI mem-

ory there, note that we do not need to align the bases as they are already

correctly aligned:

The Ethernet Device This is asking for 0xB0 bytes of both PCI I/O and

PCI Memory space. It gets allocated PCI I/O at 0x4000 and PCI Memory

at 0x400000. The PCI Memory base is moved to 0x4000B0 and the PCI

I/O base to 0x40B0.

The SCSI Device This is asking for 0x1000 PCI Memory and so it is allo-

cated it at 0x401000 after it has been naturally aligned. The PCI I/O base

is still 0x40B0 and the PCI Memory base has been moved to 0x402000.

The PCI-PCI Bridge's PCI I/O and Memory Windows We now return to

the bridge and set its PCI I/O window at between 0x4000 and 0x40B0 and it's

PCI Memory window at between 0x400000 and 0x402000. This means that

the PCI-PCI Bridge will ignore the PCI Memory accesses for the video device

and pass them on if they are for the ethernet or SCSI devices.

Chapter 7

Interrupts and Interrupt

Handling

This chapter looks at how interrupts are handled by the Linux kernel.

Whilst the kernel has generic mechanisms and interfaces for handling in-

terrupts, most of the interrupt handling details are architecture speci�c.

Linux uses a lot of di�erent pieces of hardware to perform many di�erent tasks.

The video device drives the monitor, the IDE device drives the disks and so on.

You could drive these devices synchronously, that is you could send a request for

some operation (say writing a block of memory out to disk) and then wait for the

operation to complete. That method, although it would work, is very ine�cient and

the operating system would spend a lot of time \busy doing nothing" as it waited

for each operation to complete. A better, more e�cient, way is to make the request

and then do other, more useful work and later be interrupted by the device when it

has �nished the request. With this scheme, there may be many outstanding requests

to the devices in the system all happening at the same time.

There has to be some hardware support for the devices to interrupt whatever the

CPU is doing. Most, if not all, general purpose processors such as the Alpha AXP

use a similar method. Some of the physical pins of the CPU are wired such that

changing the voltage (for example changing it from +5v to -5v) causes the CPU to

stop what it is doing and to start executing special code to handle the interruption;

the interrupt handling code. One of these pins might be connected to an interval

timer and receive an interrupt every 1000th of a second, others may be connected to

the other devices in the system, such as the SCSI controller.

Systems often use an interrupt controller to group the device interrupts together

before passing on the signal to a single interrupt pin on the CPU. This saves interrupt

pins on the CPU and also gives
exibility when designing systems. The interrupt

controller has mask and status registers that control the interrupts. Setting the bits

in the mask register enables and disables interrupts and the status register returns

the currently active interrupts in the system.

Some of the interrupts in the system may be hard-wired, for example, the real time

clock's interval timer may be permanently connected to pin 3 on the interrupt con-

troller. However, what some of the pins are connected to may be determined by

what controller card is plugged into a particular ISA or PCI slot. For example, pin

4 on the interrupt controller may be connected to PCI slot number 0 which might

75

p p p g

P
I
C
1

P
I
C
2

Keyboard

ide1

SCSI

sound5

CPU
0

7

0

7

2

Real Time Clock

ide0

Serial

1

4

floppy6

3

6

Figure 7.1: A Logical Diagram of Interrupt Routing

one day have an ethernet card in it but the next have a SCSI controller in it. The

bottom line is that each system has its own interrupt routing mechanisms and the

operating system must be
exible enough to cope.

Most modern general purpose microprocessors handle the interrupts the same way.

When a hardware interrupt occurs the CPU stops executing the instructions that it

was executing and jumps to a location in memory that either contains the interrupt

handling code or an instruction branching to the interrupt handling code. This code

usually operates in a special mode for the CPU, interrupt mode, and, normally, no

other interrupts can happen in this mode. There are exceptions though; some CPUs

rank the interrupts in priority and higher level interrupts may happen. This means

that the �rst level interrupt handling code must be very carefully written and it

often has its own stack, which it uses to store the CPU's execution state (all of the

CPU's normal registers and context) before it goes o� and handles the interrupt.

Some CPUs have a special set of registers that only exist in interrupt mode, and the

interrupt code can use these registers to do most of the context saving it needs to

do.

When the interrupt has been handled, the CPU's state is restored and the interrupt

is dismissed. The CPU will then continue to doing whatever it was doing before

being interrupted. It is important that the interrupt processing code is as e�cient

as possible and that the operating system does not block interrupts too often or for

too long.

7.1 Programmable Interrupt Controllers

Systems designers are free to use whatever interrupt architecture they wish but IBM

PCs use the Intel 82C59A-2 CMOS Programmable Interrupt Controller [6, Intel

Peripheral Components] or its derivatives. This controller has been around since

the dawn of the PC and it is programmable with its registers being at well known

g p g

locations in the ISA address space. Even very modern support logic chip sets keep

equivalent registers in the same place in ISA memory. Non-Intel based systems such

as Alpha AXP based PCs are free from these architectural constraints and so often

use di�erent interrupt controllers.

Figure 7.1 shows that there are two 8 bit controllers chained together; each having

a mask and an interrupt status register, PIC1 and PIC2. The mask registers are

at addresses 0x21 and 0xA1 and the status registers are at 0x20 and 0xA0 Writing

a one to a particular bit of the mask register enables an interrupt, writing a zero

disables it. So, writing one to bit 3 would enable interrupt 3, writing zero would

disable it. Unfortunately (and irritatingly), the interrupt mask registers are write

only, you cannot read back the value that you wrote. This means that Linux must

keep a local copy of what it has set the mask registers to. It modi�es these saved

masks in the interrupt enable and disable routines and writes the full masks to the

registers every time.

When an interrupt is signalled, the interrupt handling code reads the two interrupt

status registers (ISRs). It treats the ISR at 0x20 as the bottom eight bits of a sixteen

bit interrupt register and the ISR at 0xA0 as the top eight bits. So, an interrupt on

bit 1 of the ISR at 0xA0 would be treated as system interrupt 9. Bit 2 of PIC1 is

not available as this is used to chain interrupts from PIC2, any interrupt on PIC2

results in bit 2 of PIC1 being set.

7.2 Initializing the Interrupt Handling Data Struc-

tures

The kernel's interrupt handling data structures are set up by the device drivers as

they request control of the system's interrupts. To do this the device driver uses a

set of Linux kernel services that are used to request an interrupt, enable it and to

disable it. The individual device drivers call these routines to register their interrupt

See

request irq(),

enable irq() and

disable irq() in

arch/*/kernel

irq.c

handling routine addresses.

Some interrupts are �xed by convention for the PC architecture and so the driver

simply requests its interrupt when it is initialized. This is what the
oppy disk device

driver does; it always requests IRQ 6. There may be occassions when a device driver

does not know which interrupt the device will use. This is not a problem for PCI

device drivers as they always know what their interrupt number is. Unfortunately

there is no easy way for ISA device drivers to �nd their interrupt number. Linux

solves this problem by allowing device drivers to probe for their interrupts.

First, the device driver does something to the device that causes it to interrupt.

Then all of the unassigned interrupts in the system are enabled. This means that

the device's pending interrupt will now be delivered via the programmable interrupt

controller. Linux reads the interrupt status register and returns its contents to the

device driver. A non-zero result means that one or more interrupts occured during

the probe. The driver now turns probing o� and the unassigned interrupts are all

disabled. If the ISA device driver has successfully found its IRQ number then it can

See

irq probe *() in

arch/*/kernel/-

irq.cnow request control of it as normal.

PCI based systems are much more dynamic than ISA based systems. The interrupt

pin that an ISA device uses is often set using jumpers on the hardware device and

�xed in the device driver. On the other hand, PCI devices have their interrupts

p p p g

Interrupt
handling
routine
for this
device

flags

name

next

handler

irq_action

1

0

2

3

irqaction

irqaction

handler

flags

name

next

irqaction

handler

flags

name

next

Figure 7.2: Linux Interrupt Handling Data Structures

allocated by the PCI BIOS or the PCI subsystem as PCI is initialized when the

system boots. Each PCI device may use one of four interrupt pins, A, B, C or D.

This was �xed when the device was built and most devices default to interrupt on

pin A. The PCI interrupt lines A, B, C and D for each PCI slot are routed to the

interrupt controller. So, Pin A from PCI slot 4 might be routed to pin 6 of the

interrupt controller, pin B of PCI slot 4 to pin 7 of the interrupt controller and so

on.

How the PCI interrupts are routed is entirely system speci�c and there must be

some set up code which understands this PCI interrupt routing topology. On Intel

based PCs this is the system BIOS code that runs at boot time but for system's

without BIOS (for example Alpha AXP based systems) the Linux kernel does this

setup. The PCI set up code writes the pin number of the interrupt controller into the
See

arch/alpha/-

kernel/bios32.c PCI con�guration header for each device. It determines the interrupt pin (or IRQ)

number using its knowledge of the PCI interrupt routing topology together with the

devices PCI slot number and which PCI interrupt pin that it is using. The interrupt

pin that a device uses is �xed and is kept in a �eld in the PCI con�guration header

for this device. It writes this information into the interrupt line �eld that is reserved

for this purpose. When the device driver runs, it reads this information and uses it

to request control of the interrupt from the Linux kernel.

There may be many PCI interrupt sources in the system, for example when PCI-PCI

bridges are used. The number of interrupt sources may exceed the number of pins on

the system's programmable interrupt controllers. In this case, PCI devices may share

interrupts, one pin on the interrupt controller taking interrupts from more than one

PCI device. Linux supports this by allowing the �rst requestor of an interrupt source

declare whether it may be shared. Sharing interrupts results in several irqaction

data structures being pointed at by one entry in the irq action vector vector.

When a shared interrupt happens, Linux will call all of the interrupt handlers for

that source. Any device driver that can share interrupts (which should be all PCI

device drivers) must be prepared to have its interrupt handler called when there is

no interrupt to be serviced.

p g

7.3 Interrupt Handling

One of the principal tasks of Linux's interrupt handling subsystem is to route the

interrupts to the right pieces of interrupt handling code. This code must understand

the interrupt topology of the system. If, for example, the
oppy controller interrupts

on pin 6 1 of the interrupt controller then it must recognize the interrupt as from the

oppy and route it to the
oppy device driver's interrupt handling code. Linux uses a

set of pointers to data structures containing the addresses of the routines that handle

the system's interrupts. These routines belong to the device drivers for the devices in

the system and it is the responsibility of each device driver to request the interrupt

that it wants when the driver is initialized. Figure 7.2 shows that irq action is a

vector of pointers to the irqaction data structure. Each irqaction data structure

contains information about the handler for this interrupt, including the address of the

interrupt handling routine. As the number of interrupts and how they are handled

varies between architectures and, sometimes, between systems, the Linux interrupt

handling code is architecture speci�c. This means that the size of the irq action

vector vector varies depending on the number of interrupt sources that there are.

When the interrupt happens, Linux must �rst determine its source by reading the

interrupt status register of the system's programmable interrupt controllers. It then

translates that source into an o�set into the irq action vector vector. So, for

example, an interrupt on pin 6 of the interrupt controller from the
oppy controller

would be translated into the seventh pointer in the vector of interrupt handlers. If

there is not an interrupt handler for the interrupt that occurred then the Linux kernel

will log an error, otherwise it will call into the interrupt handling routines for all of

the irqaction data structures for this interrupt source.

When the device driver's interrupt handling routine is called by the Linux kernel

it must e�ciently work out why it was interrupted and respond. To �nd the cause

of the interrupt the device driver would read the status register of the device that

interrupted. The device may be reporting an error or that a requested operation has

completed. For example the
oppy controller may be reporting that it has completed

the positioning of the
oppy's read head over the correct sector on the
oppy disk.

Once the reason for the interrupt has been determined, the device driver may need to

do more work. If it does, the Linux kernel has mechanisms that allow it to postpone

that work until later. This avoids the CPU spending too much time in interrupt

mode. See the Device Driver chapter (Chapter 8) for more details.

REVIEW NOTE: Fast and slow interrupts, are these an Intel thing?

1Actually, the
oppy controller is one of the �xed interrupts in a PC system as, by convention,

the
oppy controller is always wired to interrupt 6.

p p p g

Chapter 8

Device Drivers

One of the purposes of an operating system is to hide the peculiarities of

the system's hardware devices from its users. For example the Virtual File

System presents a uniform view of the mounted �lesystems irrespective

of the underlying physical devices. This chapter describes how the Linux

kernel manages the physical devices in the system.

The CPU is not the only intelligent device in the system, every physical device has

its own hardware controller. The keyboard, mouse and serial ports are controlled by

a SuperIO chip, the IDE disks by an IDE controller, SCSI disks by a SCSI controller

and so on. Each hardware controller has its own control and status registers (CSRs)

and these di�er between devices. The CSRs for an Adaptec 2940 SCSI controller

are completely di�erent from those of an NCR 810 SCSI controller. The CSRs are

used to start and stop the device, to initialize it and to diagnose any problems with

it. Instead of putting code to manage the hardware controllers in the system into

every application, the code is kept in the Linux kernel. The software that handles or

manages a hardware controller is known as a device driver. The Linux kernel device

drivers are, essentially, a shared library of privileged, memory resident, low level

hardware handling routines. It is Linux's device drivers that handle the peculiarities

of the devices they are managing.

One of the basic features of un?x is that it abstracts the handling of devices. All

hardware devices look like regular �les; they can be opened, closed, read and written

using the same, standard, system calls that are used to manipulate �les. Every device

in the system is represented by a device special �le, for example the �rst IDE disk in

the system is represented by /dev/hda. For block (disk) and character devices, these

device special �les are created by the mknod command and they describe the device

using major and minor device numbers. Network devices are also represented by

device special �les but they are created by Linux as it �nds and initializes the network

controllers in the system. All devices controlled by the same device driver have a

common major device number. The minor device numbers are used to distinguish

between di�erent devices and their controllers, for example each partition on the

primary IDE disk has a di�erent minor device number. So, /dev/hda2, the second

partition of the primary IDE disk has a major number of 3 and a minor number of 2.

Linux maps the device special �le passed in system calls (say to mount a �le system

on a block device) to the device's device driver using the major device number and

a number of system tables, for example the character device table, chrdevs .
See

fs/devices.c

81

p

Linux supports three types of hardware device: character, block and network. Char-

acter devices are read and written directly without bu�ering, for example the system's

serial ports /dev/cua0 and /dev/cua1. Block devices can only be written to and

read from in multiples of the block size, typically 512 or 1024 bytes. Block devices

are accessed via the bu�er cache and may be randomly accessed, that is to say, any

block can be read or written no matter where it is on the device. Block devices can

be accessed via their device special �le but more commonly they are accessed via the

�le system. Only a block device can support a mounted �le system. Network devices

are accessed via the BSD socket interface and the networking subsytems described

in the Networking chapter (Chapter 10).

There are many di�erent device drivers in the Linux kernel (that is one of Linux's

strengths) but they all share some common attributes:

kernel code Device drivers are part of the kernel and, like other code within the

kernel, if they go wrong they can seriously damage the system. A badly written

driver may even crash the system, possibly corrupting �le systems and losing

data,

Kernel interfaces Device drivers must provide a standard interface to the Linux

kernel or to the subsystem that they are part of. For example, the terminal

driver provides a �le I/O interface to the Linux kernel and a SCSI device driver

provides a SCSI device interface to the SCSI subsystem which, in turn, provides

both �le I/O and bu�er cache interfaces to the kernel.

Kernel mechanisms and services Device drivers make use of standard kernel

services such as memory allocation, interrupt delivery and wait queues to op-

erate,

Loadable Most of the Linux device drivers can be loaded on demand as kernel

modules when they are needed and unloaded when they are no longer being

used. This makes the kernel very adaptable and e�cient with the system's

resources,

Con�gurable Linux device drivers can be built into the kernel. Which devices are

built is con�gurable when the kernel is compiled,

Dynamic As the system boots and each device driver is initialized it looks for the

hardware devices that it is controlling. It does not matter if the device being

controlled by a particular device driver does not exist. In this case the device

driver is simply redundant and causes no harm apart from occupying a little

of the system's memory.

8.1 Polling and Interrupts

Each time the device is given a command, for example \move the read head to sector

42 of the
oppy disk" the device driver has a choice as to how it �nds out that the

command has completed. The device drivers can either poll the device or they can

use interrupts.

Polling the device usually means reading its status register every so often until the

device's status changes to indicate that it has completed the request. As a device

driver is part of the kernel it would be disasterous if a driver were to poll as nothing

y ()

else in the kernel would run until the device had completed the request. Instead

polling device drivers use system timers to have the kernel call a routine within the

device driver at some later time. This timer routine would check the status of the

command and this is exactly how Linux's
oppy driver works. Polling by means of

timers is at best approximate, a much more e�cient method is to use interrupts.

An interrupt driven device driver is one where the hardware device being controlled

will raise a hardware interrupt whenever it needs to be serviced. For example, an

ethernet device driver would interrupt whenever it receives an ethernet packet from

the network. The Linux kernel needs to be able to deliver the interrupt from the

hardware device to the correct device driver. This is achieved by the device driver

registering its usage of the interrupt with the kernel. It registers the address of an

interrupt handling routine and the interrupt number that it wishes to own. You can

see which interrupts are being used by the device drivers, as well as how many of

each type of interrupts there have been, by looking at /proc/interrupts:

0: 727432 timer

1: 20534 keyboard

2: 0 cascade

3: 79691 + serial

4: 28258 + serial

5: 1 sound blaster

11: 20868 + aic7xxx

13: 1 math error

14: 247 + ide0

15: 170 + ide1

This requesting of interrupt resources is done at driver initialization time. Some of

the interrupts in the system are �xed, this is a legacy of the IBM PC's architecture.

So, for example, the
oppy disk controller always uses interrupt 6. Other interrupts,

for example the interrupts from PCI devices are dynamically allocated at boot time.

In this case the device driver must �rst discover the interrupt number (IRQ) of the

device that it is controlling before it requests ownership of that interrupt. For PCI

interrupts Linux supports standard PCI BIOS callbacks to determine information

about the devices in the system, including their IRQ numbers.

How an interrupt is delivered to the CPU itself is architecture dependent but on most

architectures the interrupt is delivered in a special mode that stops other interrupts

from happening in the system. A device driver should do as little as possible in its

interrupt handling routine so that the Linux kernel can dismiss the interrupt and

return to what it was doing before it was interrupted. Device drivers that need to

do a lot of work as a result of receiving an interrupt can use the kernel's bottom half

handlers or task queues to queue routines to be called later on.

8.2 Direct Memory Access (DMA)

Using interrupts driven device drivers to transfer data to or from hardware devices

works well when the amount of data is reasonably low. For example a 9600 baud

modem can transfer approximately one character every millisecond (1=1000'th sec-

ond). If the interrupt latency, the amount of time that it takes between the hardware

device raising the interrupt and the device driver's interrupt handling routine being

p

called, is low (say 2 milliseconds) then the overall system impact of the data transfer

is very low. The 9600 baud modem data transfer would only take 0.002% of the

CPU's processing time. For high speed devices, such as hard disk controllers or eth-

ernet devices the data transfer rate is a lot higher. A SCSI device can transfer up to

40 Mbytes of information per second.

Direct Memory Access, or DMA, was invented to solve this problem. A DMA con-

troller allows devices to transfer data to or from the system's memory without the

intervention of the processor. A PC's ISA DMA controller has 8 DMA channels of

which 7 are available for use by the device drivers. Each DMA channel has associated

with it a 16 bit address register and a 16 bit count register. To initiate a data transfer

the device driver sets up the DMA channel's address and count registers together

with the direction of the data transfer, read or write. It then tells the device that

it may start the DMA when it wishes. When the transfer is complete the device

interrupts the PC. Whilst the transfer is taking place the CPU is free to do other

things.

Device drivers have to be careful when using DMA. First of all the DMA controller

knows nothing of virtual memory, it only has access to the physical memory in the

system. Therefore the memory that is being DMA'd to or from must be a contiguous

block of physical memory. This means that you cannot DMA directly into the virtual

address space of a process. You can however lock the process's physical pages into

memory, preventing them from being swapped out to the swap device during a DMA

operation. Secondly, the DMA controller cannot access the whole of physical memory.

The DMA channel's address register represents the �rst 16 bits of the DMA address,

the next 8 bits come from the page register. This means that DMA requests are

limited to the bottom 16 Mbytes of memory.

DMA channels are scarce resources, there are only 7 of them, and they cannot be

shared between device drivers. Just like interrupts, the device driver must be able

to work out which DMA channel it should use. Like interrupts, some devices have

a �xed DMA channel. The
oppy device, for example, always uses DMA channel

2. Sometimes the DMA channel for a device can be set by jumpers; a number of

ethernet devices use this technique. The more
exible devices can be told (via their

CSRs) which DMA channels to use and, in this case, the device driver can simply

pick a free DMA channel to use.

Linux tracks the usage of the DMA channels using a vector of dma chan data struc-

tures (one per DMA channel). The dma chan data structure contains just two �elds,

a pointer to a string describing the owner of the DMA channel and a
ag indicating

if the DMA channel is allocated or not. It is this vector of dma chan data structures

that is printed when you cat /proc/dma.

8.3 Memory

Device drivers have to be careful when using memory. As they are part of the Linux

kernel they cannot use virtual memory. Each time a device driver runs, maybe as

an interrupt is received or as a bottom half or task queue handler is scheduled, the

current process may change. The device driver cannot rely on a particular process

running even if it is doing work on its behalf. Like the rest of the kernel, device

drivers use data structures to keep track of the device that it is controlling. These

data structures can be statically allocated, part of the device driver's code, but that

g

would be wasteful as it makes the kernel larger than it need be. Most device drivers

allocate kernel, non-paged, memory to hold their data.

Linux provides kernel memory allocation and deallocation routines and it is these

that the device drivers use. Kernel memory is allocated in chunks that are powers

of 2. For example 128 or 512 bytes, even if the device driver asks for less. The

number of bytes that the device driver requests is rounded up to the next block size

boundary. This makes kernel memory deallocation easier as the smaller free blocks

can be recombined into bigger blocks.

It may be that Linux needs to do quite a lot of extra work when the kernel memory

is requested. If the amount of free memory is low, physical pages may need to be dis-

carded or written to the swap device. Normally, Linux would suspend the requestor,

putting the process onto a wait queue until there is enough physical memory. Not

all device drivers (or indeed Linux kernel code) may want this to happen and so the

kernel memory allocation routines can be requested to fail if they cannot immedi-

ately allocate memory. If the device driver wishes to DMA to or from the allocated

memory it can also specify that the memory is DMA'able. This way it is the Linux

kernel that needs to understand what constitutes DMA'able memory for this system,

and not the device driver.

8.4 Interfacing Device Drivers with the Kernel

The Linux kernel must be able to interact with them in standard ways. Each class

of device driver, character, block and network, provides common interfaces that the

kernel uses when requesting services from them. These common interfaces mean that

the kernel can treat often very di�erent devices and their device drivers absolutely

the same. For example, SCSI and IDE disks behave very di�erently but the Linux

kernel uses the same interface to both of them.

Linux is very dynamic, every time a Linux kernel boots it may encounter di�erent

physical devices and thus need di�erent device drivers. Linux allows you to include

device drivers at kernel build time via its con�guration scripts. When these drivers

are initialized at boot time they may not discover any hardware to control. Other

drivers can be loaded as kernel modules when they are needed. To cope with this

dynamic nature of device drivers, device drivers register themselves with the kernel

as they are initialized. Linux maintains tables of registered device drivers as part of

its interfaces with them. These tables include pointers to routines and information

that support the interface with that class of devices.

8.4.1 Character Devices

Character devices, the simplest of Linux's devices, are accessed as �les, applications

use standard system calls to open them, read from them, write to them and close

them exactly as if the device were a �le. This is true even if the device is a modem

being used by the PPP daemon to connect a Linux system onto a network. As a

character device is initialized its device driver registers itself with the Linux kernel

by adding an entry into the chrdevs vector of device struct data structures. The

device's major device identi�er (for example 4 for the tty device) is used as an

index into this vector. The major device identi�er for a device is �xed. Each entry
See include/-

linux/major.h

in the chrdevs vector, a device struct data structure contains two elements; a

p

name
fops

chrdevs

lseek
read
write
readdir
select
ioclt
mmap
open
release
fsyn
fasync
check_media_change
revalidate

file operations

Figure 8.1: Character Devices

pointer to the name of the registered device driver and a pointer to a block of �le

operations. This block of �le operations is itself the addresses of routines within the

device character device driver each of which handles speci�c �le operations such as

open, read, write and close. The contents of /proc/devices for character devices is

taken from the chrdevs vector.

When a character special �le representing a character device (for example /dev/cua0)

is opened the kernel must set things up so that the correct character device driver's

�le operation routines will be called. Just like an ordinairy �le or directory, each

device special �le is represented by a VFS inode . The VFS inode for a character

special �le, indeed for all device special �les, contains both the major and minor

identi�ers for the device. This VFS inode was created by the underlying �lesystem,

for example EXT2, from information in the real �lesystem when the device special

�le's name was looked up.

See

ext2 read inode()

in

fs/ext2/inode.c Each VFS inode has associated with it a set of �le operations and these are di�erent

depending on the �lesystem object that the inode represents. Whenever a VFS

inode representing a character special �le is created, its �le operations are set to the

default character device operations . This has only one �le operation, the open �ledef chr fops

operation. When the character special �le is opened by an application the generic

open �le operation uses the device's major identi�er as an index into the chrdevs
See

chrdev open() in

fs/devices.c vector to retrieve the �le operations block for this particular device. It also sets up the

file data structure describing this character special �le, making its �le operations

pointer point to those of the device driver. Thereafter all of the applications �le

operations will be mapped to calls to the character devices set of �le operations.

8.4.2 Block Devices

Block devices also support being accessed like �les. The mechanisms used to provide

the correct set of �le operations for the opened block special �le are very much the

same as for character devices. Linux maintains the set of registered block devices as

the blkdevs vector. It, like the chrdevs vector, is indexed using the device's major
See

fs/devices.c
device number. Its entries are also device struct data structures. Unlike character

devices, there are classes of block devices. SCSI devices are one such class and IDE

devices are another. It is the class that registers itself with the Linux kernel and

provides �le operations to the kernel. The device drivers for a class of block device

provide class speci�c interfaces to the class. So, for example, a SCSI device driver

g

request_fn()
current_request

:
:

sem
bh

next

tail

rq_status

rq_dev

mcd

request

sem
bh

next

tail

rq_status

rq_dev

mcd

request

0x0301

39

1024

b_dev
b_blocknr
b_state
b_count
b_size

b_prev
b_next

b_data

buffer_head

blk_dev_struct

blk_dev

Figure 8.2: Bu�er Cache Block Device Requests

has to provide interfaces to the SCSI subsystem which the SCSI subsystem uses to

provide �le operations for this device to the kernel.

Every block device driver must provide an interface to the bu�er cache as well as

the normal �le operations interface. Each block device driver �lls in its entry in the

blk dev vector of blk dev struct data structures . The index into this vector is,
See

drivers/block/-

ll rw blk.c

See include/-

linux/blkdev.h

again, the device's major number. The blk dev struct data structure consists of

the address of a request routine and a pointer to a list of request data structures,

each one representing a request from the bu�er cache for the driver to read or write

a block of data.

Each time the bu�er cache wishes to read or write a block of data to or from a reg-

istered device it adds a request data structure onto its blk dev struct. Figure 8.2

shows that each request has a pointer to one or more buffer head data structures,

each one a request to read or write a block of data. The buffer head structures are

locked (by the bu�er cache) and there may be a process waiting on the block oper-

ation to this bu�er to complete. Each request structure is allocated from a static

list, the all requests list. If the request is being added to an empty request list, the

driver's request function is called to start processing the request queue. Otherwise

the driver will simply process every request on the request list.

Once the device driver has completed a request it must remove each of the buffer head

structures from the request structure, mark them as up to date and unlock them.

This unlocking of the buffer head will wake up any process that has been sleeping

waiting for the block operation to complete. An example of this would be where

a �le name is being resolved and the EXT2 �lesystem must read the block of data

that contains the next EXT2 directory entry from the block device that holds the

�lesystem. The process sleeps on the buffer head that will contain the directory

entry until the device driver wakes it up. The request data structure is marked as

free so that it can be used in another block request.

p

8.5 Hard Disks

Disk drives provide a more permanent method for storing data, keeping it on spinning

disk platters. To write data, a tiny head magnetizes minute particles on the platter's

surface. The data is read by a head, which can detect whether a particular minute

particle is magnetized.

A disk drive consists of one or more platters, each made of �nely polished glass or

ceramic composites and coated with a �ne layer of iron oxide. The platters are

attached to a central spindle and spin at a constant speed that can vary between

3000 and 10,000 RPM depending on the model. Compare this to a
oppy disk which

only spins at 360 RPM. The disk's read/write heads are responsible for reading and

writing data and there is a pair for each platter, one head for each surface. The

read/write heads do not physically touch the surface of the platters, instead they

oat on a very thin (10 millionths of an inch) cushion of air. The read/write heads

are moved across the surface of the platters by an actuator. All of the read/write

heads are attached together, they all move across the surfaces of the platters together.

Each surface of the platter is divided into narrow, concentric circles called tracks.

Track 0 is the outermost track and the highest numbered track is the track closest

to the central spindle. A cylinder is the set of all tracks with the same number. So

all of the 5th tracks from each side of every platter in the disk is known as cylinder

5. As the number of cylinders is the same as the number of tracks, you often see

disk geometries described in terms of cylinders. Each track is divided into sectors.

A sector is the smallest unit of data that can be written to or read from a hard disk

and it is also the disk's block size. A common sector size is 512 bytes and the sector

size was set when the disk was formatted, usually when the disk is manufactured.

A disk is usually described by its geometry, the number of cylinders, heads and

sectors. For example, at boot time Linux describes one of my IDE disks as:

hdb: Conner Peripherals 540MB - CFS540A, 516MB w/64kB Cache, CHS=1050/16/63

This means that it has 1050 cylinders (tracks), 16 heads (8 platters) and 63 sectors

per track. With a sector, or block, size of 512 bytes this gives the disk a storage

capacity of 529200 bytes. This does not match the disk's stated capacity of 516

Mbytes as some of the sectors are used for disk partitioning information. Some disks

automatically �nd bad sectors and re-index the disk to work around them.

Hard disks can be further subdivided into partitions. A partition is a large group

of sectors allocated for a particular purpose. Partitioning a disk allows the disk to

be used by several operating system or for several purposes. A lot of Linux systems

have a single disk with three partitions; one containing a DOS �lesystem, another

an EXT2 �lesystem and a third for the swap partition. The partitions of a hard disk

are described by a partition table; each entry describing where the partition starts

and ends in terms of heads, sectors and cylinder numbers. For DOS formatted disks,

those formatted by fdisk, there are four primary disk partitions. Not all four entries

in the partition table have to be used. There are three types of partition supported

by fdisk, primary, extended and logical. Extended partitions are not real partitions

at all, they contain any number of logical parititions. Extended and logical partitions

were invented as a way around the limit of four primary partitions. The following is

the output from fdisk for a disk containing two primary partitions:

Disk /dev/sda: 64 heads, 32 sectors, 510 cylinders

major
major_name
minor_shift
max_p
max_nr
init()
part
sizes
nr_real
real_devices
next

gendisk

8
"sd"

major
major_name
minor_shift
max_p
max_nr
init()
part
sizes
nr_real
real_devices
next

gendisk

start_sect
nr_sects

start_sect
nr_sects

:
:
:

hd_struct[]

"ide0"
3

gendisk_head

max_p

Figure 8.3: Linked list of disks

Units = cylinders of 2048 * 512 bytes

Device Boot Begin Start End Blocks Id System

/dev/sda1 1 1 478 489456 83 Linux native

/dev/sda2 479 479 510 32768 82 Linux swap

Expert command (m for help): p

Disk /dev/sda: 64 heads, 32 sectors, 510 cylinders

Nr AF Hd Sec Cyl Hd Sec Cyl Start Size ID

1 00 1 1 0 63 32 477 32 978912 83

2 00 0 1 478 63 32 509 978944 65536 82

3 00 0 0 0 0 0 0 0 0 00

4 00 0 0 0 0 0 0 0 0 00

This shows that the �rst partition starts at cylinder or track 0, head 1 and sector 1

and extends to include cylinder 477, sector 32 and head 63. As there are 32 sectors in

a track and 64 read/write heads, this partition is a whole number of cylinders in size.

fdisk alligns partitions on cylinder boundaries by default. It starts at the outermost

cylinder (0) and extends inwards, towards the spindle, for 478 cylinders. The second

partition, the swap partition, starts at the next cylinder (478) and extends to the

innermost cylinder of the disk.

During initialization Linux maps the topology of the hard disks in the system. It

�nds out how many hard disks there are and of what type. Additionally, Linux

discovers how the individual disks have been partitioned. This is all represented by a

list of gendisk data structures pointed at by the gendisk head list pointer. As each

disk subsystem, for example IDE, is initialized it generates gendisk data structures

representing the disks that it �nds. It does this at the same time as it registers its �le

operations and adds its entry into the blk dev data structure. Each gendisk data

structure has a unique major device number and these match the major numbers

of the block special devices. For example, the SCSI disk subsystem creates a single

gendisk entry (``sd'') with a major number of 8, the major number of all SCSI

disk devices. Figure 8.3 shows two gendisk entries, the �rst one for the SCSI disk

p

subsystem and the second for an IDE disk controller. This is ide0, the primary IDE

controller.

Although the disk subsystems build the gendisk entries during their initialization

they are only used by Linux during partition checking. Instead, each disk subsystem

maintains its own data structures which allow it to map device special major and

minor device numbers to partitions within physical disks. Whenever a block device

is read from or written to, either via the bu�er cache or �le operations, the kernel

directs the operation to the appropriate device using the major device number found

in its block special device �le (for example /dev/sda2). It is the individual device

driver or subsystem that maps the minor device number to the real physical device.

8.5.1 IDE Disks

The most common disks used in Linux systems today are Integrated Disk Electronic

or IDE disks. IDE is a disk interface rather than an I/O bus like SCSI. Each IDE

controller can support up to two disks, one the master disk and the other the slave

disk. The master and slave functions are usually set by jumpers on the disk. The

�rst IDE controller in the system is known as the primary IDE controller, the next

the secondary controller and so on. IDE can manage about 3.3 Mbytes per second

of data transfer to or from the disk and the maximum IDE disk size is 538Mbytes.

Extended IDE, or EIDE, has raised the disk size to a maximum of 8.6 Gbytes and the

data transfer rate up to 16.6 Mbytes per second. IDE and EIDE disks are cheaper

than SCSI disks and most modern PCs contain one or more on board IDE controllers.

Linux names IDE disks in the order in which it �nds their controllers. The master

disk on the primary controller is /dev/hda and the slave disk is /dev/hdb. /dev/hdc

is the master disk on the secondary IDE controller. The IDE subsystem registers IDE

controllers and not disks with the Linux kernel. The major identi�er for the primary

IDE controller is 3 and is 22 for the secondary IDE controller. This means that if a

system has two IDE controllers there will be entries for the IDE subsystem at indices

at 3 and 22 in the blk dev and blkdevs vectors. The block special �les for IDE disks

re
ect this numbering, disks /dev/hda and /dev/hdb, both connected to the primary

IDE controller, have a major identi�er of 3. Any �le or bu�er cache operations for

the IDE subsystem operations on these block special �les will be directed to the IDE

subsystem as the kernel uses the major identi�er as an index. When the request is

made, it is up to the IDE subsystem to work out which IDE disk the request is for.

To do this the IDE subsystem uses the minor device number from the device special

identi�er, this contains information that allows it to direct the request to the correct

partition of the correct disk. The device identi�er for /dev/hdb, the slave IDE drive

on the primary IDE controller is (3,64). The device identi�er for the �rst partition

of that disk (/dev/hdb1) is (3,65).

8.5.2 Initializing the IDE Subsystem

IDE disks have been around for much of the IBM PC's history. Throughout this

time the interface to these devices has changed. This makes the initialization of the

IDE subsystem more complex than it might at �rst appear.

The maximum number of IDE controllers that Linux can support is 4. Each con-

troller is represented by an ide hwif t data structure in the ide hwifs vector. Each

ide hwif t data structure contains two ide drive t data structures, one per pos-

sible supported master and slave IDE drive. During the initializing of the IDE

subsystem, Linux �rst looks to see if there is information about the disks present

in the system's CMOS memory. This is battery backed memory that does not lose

its contents when the PC is powered o�. This CMOS memory is actually in the

system's real time clock device which always runs no matter if your PC is on or o�.

The CMOS memory locations are set up by the system's BIOS and tell Linux what

IDE controllers and drives have been found. Linux retrieves the found disk's geom-

etry from BIOS and uses the information to set up the ide hwif t data structure

for this drive. More modern PCs use PCI chipsets such as Intel's 82430 VX chipset

which includes a PCI EIDE controller. The IDE subsystem uses PCI BIOS call-

backs to locate the PCI (E)IDE controllers in the system. It then calls PCI speci�c

interrogation routines for those chipsets that are present.

Once each IDE interface or controller has been discovered, its ide hwif t is set up

to re
ect the controllers and attached disks. During operation the IDE driver writes

commands to IDE command registers that exist in the I/O memory space. The

default I/O address for the primary IDE controller's control and status registers is

0x1F0 - 0x1F7. These addresses were set by convention in the early days of the IBM

PC. The IDE driver registers each controller with the Linux block bu�er cache and

VFS, adding it to the blk dev and blkdevs vectors respectively. The IDE drive will

also request control of the appropriate interrupt. Again these interrupts are set by

convention to be 14 for the primary IDE controller and 15 for the secondary IDE

controller. However, they like all IDE details, can be overridden by command line

options to the kernel. The IDE driver also adds a gendisk entry into the list of

gendisk's discovered during boot for each IDE controller found. This list will later

be used to discover the partition tables of all of the hard disks found at boot time.

The partition checking code understands that IDE controllers may each control two

IDE disks.

8.5.3 SCSI Disks

The SCSI (Small Computer System Interface) bus is an e�cient peer-to-peer data

bus that supports up to eight devices per bus, including one or more hosts. Each

device has to have a unique identi�er and this is usually set by jumpers on the disks.

Data can be transfered synchronously or asynchronously between any two devices

on the bus and with 32 bit wide data transfers up to 40 Mbytes per second are

possible. The SCSI bus transfers both data and state information between devices,

and a single transaction between an initiator and a target can involve up to eight

distinct phases. You can tell the current phase of a SCSI bus from �ve signals from

the bus. The eight phases are:

BUS FREE No device has control of the bus and there are no transactions currently

happening,

ARBITRATION A SCSI device has attempted to get control of the SCSI bus, it

does this by asserting its SCSI identifer onto the address pins. The highest

number SCSI identi�er wins.

SELECTION When a device has succeeded in getting control of the SCSI bus

through arbitration it must now signal the target of this SCSI request that it

p

wants to send a command to it. It does this by asserting the SCSI identi�er of

the target on the address pins.

RESELECTION SCSI devices may disconnect during the processing of a request.

The target may then reselect the initiator. Not all SCSI devices support this

phase.

COMMAND 6,10 or 12 bytes of command can be transfered from the initiator to

the target,

DATA IN, DATA OUT During these phases data is transfered between the ini-

tiator and the target,

STATUS This phase is entered after completion of all commands and allows the

target to send a status byte indicating success or failure to the initiator,

MESSAGE IN, MESSAGE OUT Additional information is transfered between

the initiator and the target.

The Linux SCSI subsystem is made up of two basic elements, each of which is rep-

resented by data structures:

host A SCSI host is a physical piece of hardware, a SCSI controller. The NCR810

PCI SCSI controller is an example of a SCSI host. If a Linux system has more

than one SCSI controller of the same type, each instance will be represented by

a separate SCSI host. This means that a SCSI device driver may control more

than one instance of its controller. SCSI hosts are almost always the initiator

of SCSI commands.

Device The most common set of SCSI device is a SCSI disk but the SCSI standard

supports several more types; tape, CD-ROM and also a generic SCSI device.

SCSI devices are almost always the targets of SCSI commands. These devices

must be treated di�erently, for example with removable media such as CD-

ROMs or tapes, Linux needs to detect if the media was removed. The di�erent

disk types have di�erent major device numbers, allowing Linux to direct block

device requests to the appropriate SCSI type.

Initializing the SCSI Subsystem

Initializing the SCSI subsystem is quite complex, re
ecting the dynamic nature of

SCSI buses and their devices. Linux initializes the SCSI subsystem at boot time; it

�nds the SCSI controllers (known as SCSI hosts) in the system and then probes each

of their SCSI buses �nding all of their devices. It then initializes those devices and

makes them available to the rest of the Linux kernel via the normal �le and bu�er

cache block device operations. This initialization is done in four phases:

First, Linux �nds out which of the SCSI host adapters, or controllers, that were

built into the kernel at kernel build time have hardware to control. Each built in

SCSI host has a Scsi Host Template entry in the builtin scsi hosts vector The

Scsi Host Template data structure contains pointers to routines that carry out SCSI

host speci�c actions such as detecting what SCSI devices are attached to this SCSI

host. These routines are called by the SCSI subsystem as it con�gures itself and they

are part of the SCSI device driver supporting this host type. Each detected SCSI host,

Device
Driver
Routines

name

Scsi_Host_Template

next
"Buslogic"

next

id
type

host

Scsi_Device

next

id
type

host

Scsi_Device

next

this_id
max_id

Scsi_Host

hostt

scsi_devices

scsi_hostlist

scsi_hosts

Figure 8.4: SCSI Data Structures

those for which there are real SCSI devices attached, has its Scsi Host Template

data structure added to the scsi hosts list of active SCSI hosts. Each instance

of a detected host type is represented by a Scsi Host data structure held in the

scsi hostlist list. For example a system with two NCR810 PCI SCSI controllers

would have two Scsi Host entries in the list, one per controller. Each Scsi Host

points at the Scsi Host Template representing its device driver.

Now that every SCSI host has been discovered, the SCSI subsystem must �nd out

what SCSI devices are attached to each host's bus. SCSI devices are numbered be-

tween 0 and 7 inclusively, each device's number or SCSI identi�er being unique on

the SCSI bus to which it is attached. SCSI identi�ers are usually set by jumpers on

the device. The SCSI initialization code �nds each SCSI device on a SCSI bus by

sending it a TEST UNIT READY command. When a device responds, its identi�-

cation is read by sending it an ENQUIRY command. This gives Linux the vendor's

name and the device's model and revision names. SCSI commands are represented

by a Scsi Cmnd data structure and these are passed to the device driver for this

SCSI host by calling the device driver routines within its Scsi Host Template data

structure. Every SCSI device that is found is represented by a Scsi Device data

structure, each of which points to its parent Scsi Host. All of the Scsi Device data

structures are added to the scsi devices list. Figure 8.4 shows how the main data

structures relate to one another.

There are four SCSI device types: disk, tape, CD and generic. Each of these SCSI

types are individually registered with the kernel as di�erent major block device types.

p

However they will only register themselves if one or more of a given SCSI device

type has been found. Each SCSI type, for example SCSI disk, maintains its own

tables of devices. It uses these tables to direct kernel block operations (�le or bu�er

cache) to the correct device driver or SCSI host. Each SCSI type is represented by

a Scsi Device Template data structure. This contains information about this type

of SCSI device and the addresses of routines to perform various tasks. The SCSI

subsystem uses these templates to call the SCSI type routines for each type of SCSI

device. In other words, if the SCSI subsystem wishes to attach a SCSI disk device it

will call the SCSI disk type attach routine. The Scsi Type Template data structures

are added to the scsi devicelist list if one or more SCSI devices of that type have

been detected.

The �nal phase of the SCSI subsystem initialization is to call the �nish functions for

each registered Scsi Device Template. For the SCSI disk type this spins up all of

the SCSI disks that were found and then records their disk geometry. It also adds the

gendisk data structure representing all SCSI disks to the linked list of disks shown

in Figure 8.3.

Delivering Block Device Requests

Once Linux has initialized the SCSI subsystem, the SCSI devices may be used. Each

active SCSI device type registers itself with the kernel so that Linux can direct

block device requests to it. There can be bu�er cache requests via blk dev or �le

operations via blkdevs. Taking a SCSI disk driver that has one or more EXT2

�lesystem partitions as an example, how do kernel bu�er requests get directed to the

right SCSI disk when one of its EXT2 partitions is mounted?

Each request to read or write a block of data to or from a SCSI disk partition results

in a new request structure being added to the SCSI disks current request list in

the blk dev vector. If the request list is being processed, the bu�er cache need not

do anything else; otherwise it must nudge the SCSI disk subsystem to go and process

its request queue. Each SCSI disk in the system is represented by a Scsi Disk data

structure. These are kept in the rscsi disks vector that is indexed using part of the

SCSI disk partition's minor device number. For exmaple, /dev/sdb1 has a major

number of 8 and a minor number of 17; this generates an index of 1. Each Scsi Disk

data structure contains a pointer to the Scsi Device data structure representing

this device. That in turn points at the Scsi Host data structure which \owns" it.

The request data structures from the bu�er cache are translated into Scsi Cmd

structures describing the SCSI command that needs to be sent to the SCSI device

and this is queued onto the Scsi Host structure representing this device. These will

be processed by the individual SCSI device driver once the appropriate data blocks

have been read or written.

8.6 Network Devices

A network device is, so far as Linux's network subsystem is concerned, an entity that

sends and receives packets of data. This is normally a physical device such as an

ethernet card. Some network devices though are software only such as the loopback

device which is used for sending data to yourself. Each network device is represented

by a device data structure. Network device drivers register the devices that they
See

include/linux/-

netdevice.h

control with Linux during network initialization at kernel boot time. The device

data structure contains information about the device and the addresses of functions

that allow the various supported network protocols to use the device's services. These

functions are mostly concerned with transmitting data using the network device. The

device uses standard networking support mechanisms to pass received data up to the

appropriate protocol layer. All network data (packets) transmitted and received

are represented by sk buff data structures, these are
exible data structures that

allow network protocol headers to be easily added and removed. How the network

protocol layers use the network devices, how they pass data back and forth using

sk buff data structures is described in detail in the Networks chapter (Chapter 10).

This chapter concentrates on the device data structure and on how network devices

are discovered and initialized.

The device data structure contains information about the network device:

Name Unlike block and character devices which have their device special �les cre-

ated using the mknod command, network device special �les appear spontan-

iously as the system's network devices are discovered and initialized. Their

names are standard, each name representing the type of device that it is. Mul-

tiple devices of the same type are numbered upwards from 0. Thus the ethernet

devices are known as /dev/eth0,/dev/eth1,/dev/eth2 and so on. Some com-

mon network devices are:

/dev/ethN Ethernet devices

/dev/slN SLIP devices

/dev/pppN PPP devices

/dev/lo Loopback devices

Bus Information This is information that the device driver needs in order to con-

trol the device. The irq number is the interrupt that this device is using. The

base address is the address of any of the device's control and status registers

in I/O memory. The DMA channel is the DMA channel number that this net-

work device is using. All of this information is set at boot time as the device

is initialized.

Interface Flags These describe the characteristics and abilities of the network de-

vice:

IFF UP Interface is up and running,

IFF BROADCAST Broadcast address in device is valid

IFF DEBUG Device debugging turned on

IFF LOOPBACK This is a loopback device

IFF POINTTOPOINT This is point to point link (SLIP and PPP)

IFF NOTRAILERS No network trailers

IFF RUNNING Resources allocated

IFF NOARP Does not support ARP protocol

IFF PROMISC Device in promiscuous receive mode, it will receive

all packets no matter who they are addressed to

IFF ALLMULTI Receive all IP multicast frames

IFF MULTICAST Can receive IP multicast frames

Protocol Information Each device describes how it may be used by the network

protocool layers:

p

mtu The size of the largest packet that this network can transmit not including

any link layer headers that it needs to add. This maximum is used by the

protocol layers, for example IP, to select suitable packet sizes to send.

Family The family indicates the protocol family that the device can support.

The family for all Linux network devices is AF INET, the Internet address

family.

Type The hardware interface type describes the media that this network de-

vice is attached to. There are many di�erent types of media that Linux

network devices support. These include Ethernet, X.25, Token Ring, Slip,

PPP and Apple Localtalk.

Addresses The device data structure holds a number of addresses that are

relevent to this network device, including its IP addresses.

Packet Queue This is the queue of sk buff packets queued waiting to be trans-

mitted on this network device,

Support Functions Each device provides a standard set of routines that protocol

layers call as part of their interface to this device's link layer. These include

setup and frame transmit routines as well as routines to add standard frame

headers and collect statistics. These statistics can be seen using the ifcon�g

command.

8.6.1 Initializing Network Devices

Network device drivers can, like other Linux device drivers, be built into the Linux

kernel. Each potential network device is represented by a device data structure

within the network device list pointed at by dev base list pointer. The network layers

call one of a number of network device service routines whose addresses are held in

the device data structure if they need device speci�c work performing. Initially

though, each device data structure holds only the address of an initialization or

probe routine.

There are two problems to be solved for network device drivers. Firstly, not all of

the network device drivers built into the Linux kernel will have devices to control.

Secondly, the ethernet devices in the system are always called /dev/eth0, /dev/eth1

and so on, no matter what their underlying device drivers are. The problem of

\missing" network devices is easily solved. As the initialization routine for each

network device is called, it returns a status indicating whether or not it located an

instance of the controller that it is driving. If the driver could not �nd any devices, its

entry in the device list pointed at by dev base is removed. If the driver could �nd

a device it �lls out the rest of the device data structure with information about the

device and the addresses of the support functions within the network device driver.

The second problem, that of dynamically assigning ethernet devices to the standard

/dev/ethN device special �les is solved more elegantly. There are eight standard

entries in the devices list; one for eth0, eth1 and so on to eth7. The initialization

routine is the same for all of them, it tries each ethernet device driver built into the

kernel in turn until one �nds a device. When the driver �nds its ethernet device it

�lls out the ethN device data structure, which it now owns. It is also at this time

that the network device driver initializes the physical hardware that it is controlling

and works out which IRQ it is using, which DMA channel (if any) and so on. A

driver may �nd several instances of the network device that it is controlling and, in

this case, it will take over several of the /dev/ethN device data structures. Once

all eight standard /dev/ethN have been allocated, no more ethernet devices will be

probed for.

p

Chapter 9

The File system

This chapter describes how the Linux kernel maintains the �les in the �le

systems that it supports. It describes the Virtual File System (VFS) and

explains how the Linux kernel's real �le systems are supported.

One of the most important features of Linux is its support for many di�erent �le

systems. This makes it very
exible and well able to coexist with many other op-

erating systems. At the time of writing, Linux supports 15 �le systems; ext, ext2,

xia, minix, umsdos, msdos, vfat, proc, smb, ncp, iso9660, sysv, hpfs, affs and

ufs, and no doubt, over time more will be added.

In Linux, as it is for UnixTM, the separate �le systems the system may use are not

accessed by device identi�ers (such as a drive number or a drive name) but instead

they are combined into a single hierarchical tree structure that represents the �le

system as one whole single entity. Linux adds each new �le system into this single

�le system tree as it is mounted. All �le systems, of whatever type, are mounted onto

a directory and the �les of the mounted �le system cover up the existing contents

of that directory. This directory is known as the mount directory or mount point.

When the �le system is unmounted, the mount directory's own �les are once again

revealed.

When disks are initialized (using fdisk, say) they have a partition structure imposed

on them that divides the physical disk into a number of logical partitions. Each

partition may hold a single �le system, for example an EXT2 �le system. File systems

organize �les into logical hierarchical structures with directories, soft links and so on

held in blocks on physical devices. Devices that can contain �le systems are known

as block devices. The IDE disk partition /dev/hda1, the �rst partition of the �rst

IDE disk drive in the system, is a block device. The Linux �le systems regard these

block devices as simply linear collections of blocks, they do not know or care about

the underlying physical disk's geometry. It is the task of each block device driver to

map a request to read a particular block of its device into terms meaningful to its

device; the particular track, sector and cylinder of its hard disk where the block is

kept. A �le system has to look, feel and operate in the same way no matter what

device is holding it. Moreover, using Linux's �le systems, it does not matter (at least

to the system user) that these di�erent �le systems are on di�erent physical media

controlled by di�erent hardware controllers. The �le system might not even be on

the local system, it could just as well be a disk remotely mounted over a network

link. Consider the following example where a Linux system has its root �le system

99

p y

on a SCSI disk:

A E boot etc lib opt tmp usr

C F cdrom fd proc root var sbin

D bin dev home mnt lost+found

Neither the users nor the programs that operate on the �les themselves need know

that /C is in fact a mounted VFAT �le system that is on the �rst IDE disk in the

system. In the example (which is actually my home Linux system), /E is the master

IDE disk on the second IDE controller. It does not matter either that the �rst IDE

controller is a PCI controller and that the second is an ISA controller which also

controls the IDE CDROM. I can dial into the network where I work using a modem

and the PPP network protocol using a modem and in this case I can remotely mount

my Alpha AXP Linux system's �le systems on /mnt/remote.

The �les in a �le system are collections of data; the �le holding the sources to this

chapter is an ASCII �le called filesystems.tex. A �le system not only holds the

data that is contained within the �les of the �le system but also the structure of

the �le system. It holds all of the information that Linux users and processes see as

�les, directories soft links, �le protection information and so on. Moreover it must

hold that information safely and securely, the basic integrity of the operating system

depends on its �le systems. Nobody would use an operating system that randomly

lost data and �les1.

Minix, the �rst �le system that Linux had is rather restrictive and lacking in per-

formance. Its �lenames cannot be longer than 14 characters (which is still better

than 8.3 �lenames) and the maximum �le size is 64MBytes. 64Mbytes might at

�rst glance seem large enough but large �le sizes are necessary to hold even modest

databases. The �rst �le system designed speci�cally for Linux, the Extended File

system, or EXT, was introduced in April 1992 and cured a lot of the problems but it

was still felt to lack performance. So, in 1993, the Second Extended File system,

or EXT2, was added. It is this �le system that is described in detail later on in this

chapter.

An important development took place when the EXT �le system was added into

Linux. The real �le systems were separated from the operating system and system

services by an interface layer known as the Virtual File system, or VFS. VFS allows

Linux to support many, often very di�erent, �le systems, each presenting a common

software interface to the VFS. All of the details of the Linux �le systems are translated

by software so that all �le systems appear identical to the rest of the Linux kernel

and to programs running in the system. Linux's Virtual File system layer allows you

to transparently mount the many di�erent �le systems at the same time.

The Linux Virtual File system is implemented so that access to its �les is as fast and

e�cient as possible. It must also make sure that the �les and their data are kept

correctly. These two requirements can be at odds with each other. The Linux VFS

caches information in memory from each �le system as it is mounted and used. A

lot of care must be taken to update the �le system correctly as data within these

caches is modi�ed as �les and directories are created, written to and deleted. If you

could see the �le system's data structures within the running kernel, you would be

able to see data blocks being read and written by the �le system. Data structures,

1Well, not knowingly, although I have been bitten by operating systems with more lawyers than

Linux has developers

y ()

Data
Blocks

Block

Group N-1

Block

Group 0

Block

Group N

Block
Bitmap

Group
Descriptors

Super
Block

Inode
Table

Inode
Bitmap

Figure 9.1: Physical Layout of the EXT2 File system

describing the �les and directories being accessed would be created and destroyed

and all the time the device drivers would be working away, fetching and saving data.

The most important of these caches is the Bu�er Cache, which is integrated into

the way that the individual �le systems access their underlying block devices. As

blocks are accessed they are put into the Bu�er Cache and kept on various queues

depending on their states. The Bu�er Cache not only caches data bu�ers, it also

helps manage the asynchronous interface with the block device drivers.

9.1 The Second Extended File system (EXT2)

The Second Extended File system was devised (by R�emy Card) as an extensible and

powerful �le system for Linux. It is also the most successful �le system so far in the

Linux community and is the basis for all of the currently shipping Linux distributions.

The EXT2 �le system, like a lot of the �le systems, is built on the premise that the See fs/ext2/*

data held in �les is kept in data blocks. These data blocks are all of the same length

and, although that length can vary between di�erent EXT2 �le systems the block

size of a particular EXT2 �le system is set when it is created (using mke2fs). Every

�le's size is rounded up to an integral number of blocks. If the block size is 1024

bytes, then a �le of 1025 bytes will occupy two 1024 byte blocks. Unfortunately this

means that on average you waste half a block per �le. Usually in computing you

trade o� CPU usage for memory and disk space utilisation. In this case Linux, along

with most operating systems, trades o� a relatively ine�cient disk usage in order to

reduce the workload on the CPU. Not all of the blocks in the �le system hold data,

some must be used to contain the information that describes the structure of the �le

system. EXT2 de�nes the �le system topology by describing each �le in the system

with an inode data structure. An inode describes which blocks the data within a

�le occupies as well as the access rights of the �le, the �le's modi�cation times and

the type of the �le. Every �le in the EXT2 �le system is described by a single inode

and each inode has a single unique number identifying it. The inodes for the �le

system are all kept together in inode tables. EXT2 directories are simply special

�les (themselves described by inodes) which contain pointers to the inodes of their

directory entries.

Figure 9.1 shows the layout of the EXT2 �le system as occupying a series of blocks in

a block structured device. So far as each �le system is concerned, block devices are

just a series of blocks that can be read and written. A �le system does not need to

concern itself with where on the physical media a block should be put, that is the job

p y

Data

Data

Data

Data

Data

Data

Data

Data

Direct Blocks

Double Indirect

Mode

Size

Timestamps

Indirect blocks

Triple Indirect

Owner info

ext2_inode

Figure 9.2: EXT2 Inode

of the device's driver. Whenever a �le system needs to read information or data from

the block device containing it, it requests that its supporting device driver reads an

integral number of blocks. The EXT2 �le system divides the logical partition that

it occupies into Block Groups. Each group duplicates information critical to the

integrity of the �le system as well as holding real �les and directories as blocks of

information and data. This duplication is neccessary should a disaster occur and the

�le system need recovering. The subsections describe in more detail the contents of

each Block Group.

9.1.1 The EXT2 Inode

In the EXT2 �le system, the inode is the basic building block; every �le and directory

in the �le system is described by one and only one inode. The EXT2 inodes for

each Block Group are kept in the inode table together with a bitmap that allows

the system to keep track of allocated and unallocated inodes. Figure 9.2 shows the

format of an EXT2 inode, amongst other information, it contains the following �elds:See

include/linux/-

ext2 fs i.h

mode This holds two pieces of information; what this inode describes and the per-

missions that users have to it. For EXT2, an inode can describe one of �le,

directory, symbolic link, block device, character device or FIFO.

Owner Information The user and group identi�ers of the owners of this �le or

directory. This allows the �le system to correctly allow the right sort of accesses,

Size The size of the �le in bytes,

Timestamps The time that the inode was created and the last time that it was

modi�ed,

y ()

Datablocks Pointers to the blocks that contain the data that this inode is describ-

ing. The �rst twelve are pointers to the physical blocks containing the data

described by this inode and the last three pointers contain more and more lev-

els of indirection. For example, the double indirect blocks pointer points at a

block of pointers to blocks of pointers to data blocks. This means that �les less

than or equal to twelve data blocks in length are more quickly accessed than

larger �les.

You should note that EXT2 inodes can describe special device �les. These are not

real �les but handles that programs can use to access devices. All of the device �les

in /dev are there to allow programs to access Linux's devices. For example the mount

program takes as an argument the device �le that it wishes to mount.

9.1.2 The EXT2 Superblock

The Superblock contains a description of the basic size and shape of this �le system.

The information within it allows the �le system manager to use and maintain the �le

system. Usually only the Superblock in Block Group 0 is read when the �le system

is mounted but each Block Group contains a duplicate copy in case of �le system

corruption. Amongst other information it holds the:
See

include/linux/-

ext2 fs sb.h

Magic Number This allows the mounting software to check that this is indeed the

Superblock for an EXT2 �le system. For the current version of EXT2 this is

0xEF53.

Revision Level The major and minor revision levels allow the mounting code to de-

termine whether or not this �le system supports features that are only available

in particular revisions of the �le system. There are also feature compatibility

�elds which help the mounting code to determine which new features can safely

be used on this �le system,

Mount Count and Maximum Mount Count Together these allow the system

to determine if the �le system should be fully checked. The mount count

is incremented each time the �le system is mounted and when it equals the

maximum mount count the warning message \maximal mount count reached,

running e2fsck is recommended" is displayed,

Block Group Number The Block Group number that holds this copy of the Su-

perblock,

Block Size The size of the block for this �le system in bytes, for example 1024

bytes,

Blocks per Group The number of blocks in a group. Like the block size this is

�xed when the �le system is created,

Free Blocks The number of free blocks in the �le system,

Free Inodes The number of free Inodes in the �le system,

First Inode This is the inode number of the �rst inode in the �le system. The

�rst inode in an EXT2 root �le system would be the directory entry for the '/'

directory.

p y

i1 15 file i2 40 14 very_long_name5

0 15 55

inode table

Figure 9.3: EXT2 Directory

9.1.3 The EXT2 Group Descriptor

Each Block Group has a data structure describing it. Like the Superblock, all the

group descriptors for all of the Block Groups are duplicated in each Block Group

in case of �le system corruption. Each Group Descriptor contains the following

See

ext2 group desc

in include/-

linux/ext2 fs.h information:

Blocks Bitmap The block number of the block allocation bitmap for this Block

Group. This is used during block allocation and deallocation,

Inode Bitmap The block number of the inode allocation bitmap for this Block

Group. This is used during inode allocation and deallocation,

Inode Table The block number of the starting block for the inode table for this

Block Group. Each inode is represented by the EXT2 inode data structure

described below.

Free blocks count, Free Inodes count, Used directory count

The group descriptors are placed on after another and together they make the group

descriptor table. Each Blocks Group contains the entire table of group descriptors

after its copy of the Superblock. Only the �rst copy (in Block Group 0) is actually

used by the EXT2 �le system. The other copies are there, like the copies of the

Superblock, in case the main copy is corrupted.

9.1.4 EXT2 Directories

In the EXT2 �le system, directories are special �les that are used to create and hold

access paths to the �les in the �le system. Figure 9.3 shows the layout of a directory

entry in memory. A directory �le is a list of directory entries, each one containing

See

ext2 dir entry

in include/-

linux/ext2 fs.h the following information:

y ()

inode The inode for this directory entry. This is an index into the array of inodes

held in the Inode Table of the Block Group. In �gure 9.3, the directory entry

for the �le called file has a reference to inode number i1,

name length The length of this directory entry in bytes,

name The name of this directory entry.

The �rst two entries for every directory are always the standard \." and \.." entries

meaning \this directory" and \the parent directory" respectively.

9.1.5 Finding a File in an EXT2 File System

A Linux �lename has the same format as all UnixTM �lenames have. It is a series of

directory names separated by forward slashes (\/") and ending in the �le's name.

One example �lename would be /home/rusling/.cshrcwhere /home and /rusling

are directory names and the �le's name is .cshrc. Like all other UnixTM systems,

Linux does not care about the format of the �lename itself; it can be any length and

consist of any of the printable characters. To �nd the inode representing this �le

within an EXT2 �le system the system must parse the �lename a directory at a time

until we get to the �le itself.

The �rst inode we need is the inode for the root of the �le system and we �nd its

number in the �le system's superblock. To read an EXT2 inode we must look for it

in the inode table of the appropriate Block Group. If, for example, the root inode

number is 42, then we need the 42nd inode from the inode table of Block Group 0.

The root inode is for an EXT2 directory, in other words the mode of the root inode

describes it as a directory and it's data blocks contain EXT2 directory entries.

home is just one of the many directory entries and this directory entry gives us the

number of the inode describing the /home directory. We have to read this directory

(by �rst reading its inode and then reading the directory entries from the data

blocks described by its inode) to �nd the rusling entry which gives us the number

of the inode describing the /home/rusling directory. Finally we read the directory

entries pointed at by the inode describing the /home/rusling directory to �nd the

inode number of the .cshrc �le and from this we get the data blocks containing the

information in the �le.

9.1.6 Changing the Size of a File in an EXT2 File System

One common problem with a �le system is its tendency to fragment. The blocks that

hold the �le's data get spread all over the �le system and this makes sequentially

accessing the data blocks of a �le more and more ine�cient the further apart the

data blocks are. The EXT2 �le system tries to overcome this by allocating the new

blocks for a �le physically close to its current data blocks or at least in the same

Block Group as its current data blocks. Only when this fails does it allocate data

blocks in another Block Group.

Whenever a process attempts to write data into a �le the Linux �le system checks

to see if the data has gone o� the end of the �le's last allocated block. If it has, then

it must allocate a new data block for this �le. Until the allocation is complete, the

process cannot run; it must wait for the �le system to allocate a new data block and

write the rest of the data to it before it can continue. The �rst thing that the EXT2

p y

block allocation routines do is to lock the EXT2 Superblock for this �le system.

Allocating and deallocating changes �elds within the superblock, and the Linux �le

system cannot allow more than one process to do this at the same time. If another

process needs to allocate more data blocks, it will have to wait until this process has

�nished. Processes waiting for the superblock are suspended, unable to run, until

control of the superblock is relinquished by its current user. Access to the superblock

is granted on a �rst come, �rst served basis and once a process has control of the

superblock, it keeps control until it has �nished. Having locked the superblock, the

process checks that there are enough free blocks left in this �le system. If there are

not enough free blocks, then this attempt to allocate more will fail and the process

will relinquish control of this �le system's superblock.

If there are enough free blocks in the �le system, the process tries to allocate one.

If the EXT2 �le system has been built to preallocate data blocks then we may

See

ext2 new block()

in fs/ext2/-

balloc.c be able to take one of those. The preallocated blocks do not actually exist, they

are just reserved within the allocated block bitmap. The VFS inode representing

the �le that we are trying to allocate a new data block for has two EXT2 speci�c

�elds, prealloc block and prealloc count, which are the block number of the �rst

preallocated data block and how many of them there are, respectively. If there were

no preallocated blocks or block preallocation is not enabled, the EXT2 �le system

must allocate a new block. The EXT2 �le system �rst looks to see if the data block

after the last data block in the �le is free. Logically, this is the most e�cient block

to allocate as it makes sequential accesses much quicker. If this block is not free,

then the search widens and it looks for a data block within 64 blocks of the of the

ideal block. This block, although not ideal is at least fairly close and within the same

Block Group as the other data blocks belonging to this �le.

If even that block is not free, the process starts looking in all of the other Block

Groups in turn until it �nds some free blocks. The block allocation code looks for a

cluster of eight free data blocks somewhere in one of the Block Groups. If it cannot

�nd eight together, it will settle for less. If block preallocation is wanted and enabled

it will update prealloc block and prealloc count accordingly.

Wherever it �nds the free block, the block allocation code updates the Block Group's

block bitmap and allocates a data bu�er in the bu�er cache. That data bu�er is

uniquely identi�ed by the �le system's supporting device identi�er and the block

number of the allocated block. The data in the bu�er is zero'd and the bu�er is

marked as \dirty" to show that it's contents have not been written to the physical

disk. Finally, the superblock itself is marked as \dirty" to show that it has been

changed and it is unlocked. If there were any processes waiting for the superblock,

the �rst one in the queue is allowed to run again and will gain exclusive control of

the superblock for its �le operations. The process's data is written to the new data

block and, if that data block is �lled, the entire process is repeated and another data

block allocated.

9.2 The Virtual File System (VFS)

Figure 9.4 shows the relationship between the Linux kernel's Virtual File System

and it's real �le systems. The virtual �le system must manage all of the di�erent �le

systems that are mounted at any given time. To do this it maintains data structures

that describe the whole (virtual) �le system and the real, mounted, �le systems.

y ()

Disk
Drivers

Buffer
Cache

Cache
Inode

Cache
Directory

VFS

MINIX EXT2

Figure 9.4: A Logical Diagram of the Virtual File System

Rather confusingly, the VFS describes the system's �les in terms of superblocks See fs/*

and inodes in much the same way as the EXT2 �le system uses superblocks and

inodes. Like the EXT2 inodes, the VFS inodes describe �les and directories within

the system; the contents and topology of the Virtual File System. From now on, to

avoid confusion, I will write about VFS inodes and VFS superblocks to distinquish

them from EXT2 inodes and superblocks.

As each �le system is initialised, it registers itself with the VFS. This happens as

the operating system initialises itself at system boot time. The real �le systems

are either built into the kernel itself or are built as loadable modules. File System

modules are loaded as the system needs them, so, for example, if the VFAT �le system

is implemented as a kernel module, then it is only loaded when a VFAT �le system

is mounted. When a block device based �le system is mounted, and this includes

the root �le system, the VFS must read its superblock. Each �le system type's

superblock read routine must work out the �le system's topology and map that

information onto a VFS superblock data structure. The VFS keeps a list of the

mounted �le systems in the system together with their VFS superblocks. Each VFS

superblock contains information and pointers to routines that perform particular

functions. So, for example, the superblock representing a mounted EXT2 �le system

contains a pointer to the EXT2 speci�c inode reading routine. This EXT2 inode

read routine, like all of the �le system speci�c inode read routines, �lls out the �elds

in a VFS inode. Each VFS superblock contains a pointer to the �rst VFS inode on

the �le system. For the root �le system, this is the inode that represents the ``/''

directory. This mapping of information is very e�cient for the EXT2 �le system but

moderately less so for other �le systems.

As the system's processes access directories and �les, system routines are called that

traverse the VFS inodes in the system. For example, typing ls for a directory or cat See fs/inode.c

p y

for a �le cause the the Virtual File System to search through the VFS inodes that

represent the �le system. As every �le and directory on the system is represented

by a VFS inode, then a number of inodes will be being repeatedly accessed. These

inodes are kept in the inode cache which makes access to them quicker. If an inode

is not in the inode cache, then a �le system speci�c routine must be called in order

to read the appropriate inode. The action of reading the inode causes it to be put

into the inode cache and further accesses to the inode keep it in the cache. The less

used VFS inodes get removed from the cache.

All of the Linux �le systems use a common bu�er cache to cache data bu�ers from the

underlying devices to help speed up access by all of the �le systems to the physical

devices holding the �le systems. This bu�er cache is independent of the �le systemsSee fs/buffer.c

and is integrated into the mechanisms that the Linux kernel uses to allocate and

read and write data bu�ers. It has the distinct advantage of making the Linux

�le systems independent from the underlying media and from the device drivers that

support them. All block structured devices register themselves with the Linux kernel

and present a uniform, block based, usually asynchronous interface. Even relatively

complex block devices such as SCSI devices do this. As the real �le systems read

data from the underlying physical disks, this results in requests to the block device

drivers to read physical blocks from the device that they control. Integrated into this

block device interface is the bu�er cache. As blocks are read by the �le systems they

are saved in the global bu�er cache shared by all of the �le systems and the Linux

kernel. Bu�ers within it are identi�ed by their block number and a unique identi�er

for the device that read it. So, if the same data is needed often, it will be retrieved

from the bu�er cache rather than read from the disk, which would take somewhat

longer. Some devices support read ahead where data blocks are speculatively read

just in case they are needed.

The VFS also keeps a cache of directory lookups so that the inodes for frequently

used directories can be quickly found. As an experiment, try listing a directory thatSee fs/dcache.c

you have not listed recently. The �rst time you list it, you may notice a slight pause

but the second time you list its contents the result is immediate. The directory cache

does not store the inodes for the directories itself; these should be in the inode cache,

the directory cache simply stores the mapping between the full directory names and

their inode numbers.

9.2.1 The VFS Superblock

Every mounted �le system is represented by a VFS superblock; amongst other infor-

mation, the VFS superblock contains the:
See include/-

linux/fs.h

Device This is the device identi�er for the block device that this �le system is

contained in. For example, /dev/hda1, the �rst IDE hard disk in the system

has a device identi�er of 0x301,

Inode pointers The mounted inode pointer points at the �rst inode in this �le sys-

tem. The covered inode pointer points at the inode representing the directory

that this �le system is mounted on. The root �le system's VFS superblock

does not have a covered pointer,

Blocksize The block size in bytes of this �le system, for example 1024 bytes,

y ()

Superblock operations A pointer to a set of superblock routines for this �le sys-

tem. Amongst other things, these routines are used by the VFS to read and

write inodes and superblocks.

File System type A pointer to the mounted �le system's file system type data

structure,

File System speci�c A pointer to information needed by this �le system,

9.2.2 The VFS Inode

Like the EXT2 �le system, every �le, directory and so on in the VFS is represented

by one and only one VFS inode. The information in each VFS inode is built from
See include/-

linux/fs.h
information in the underlying �le system by �le system speci�c routines. VFS inodes

exist only in the kernel's memory and are kept in the VFS inode cache as long as

they are useful to the system. Amongst other information, VFS inodes contain the

following �elds:

device This is the device identifer of the device holding the �le or whatever that

this VFS inode represents,

inode number This is the number of the inode and is unique within this �le system.

The combination of device and inode number is unique within the Virtual File

System,

mode Like EXT2 this �eld describes what this VFS inode represents as well as

access rights to it,

user ids The owner identi�ers,

times The creation, modi�cation and write times,

block size The size of a block for this �le in bytes, for example 1024 bytes,

inode operations A pointer to a block of routine addresses. These routines are

speci�c to the �le system and they perform operations for this inode, for ex-

ample, truncate the �le that is represented by this inode.

count The number of system components currently using this VFS inode. A count

of zero means that the inode is free to be discarded or reused,

lock This �eld is used to lock the VFS inode, for example, when it is being read

from the �le system,

dirty Indicates whether this VFS inode has been written to, if so the underlying �le

system will need modifying,

�le system speci�c information

9.2.3 Registering the File Systems

When you build the Linux kernel you are asked if you want each of the supported

�le systems. When the kernel is built, the �le system startup code contains calls to

the initialisation routines of all of the built in �le systems. Linux �le systems may
See sys setup()

in fs/-

filesystems.calso be built as modules and, in this case, they may be demand loaded as they are

p y

file_systems

requires_dev

file_system_type

*read_super()

name

next

"ext2"

requires_dev

file_system_type

*read_super()

name

next

requires_dev

file_system_type

*read_super()

name "iso9660"

next

"proc"

Figure 9.5: Registered File Systems

needed or loaded by hand using insmod. Whenever a �le system module is loaded

it registers itself with the kernel and unregisters itself when it is unloaded. Each

�le system's initialisation routine registers itself with the Virtual File System and is

represented by a file system type data structure which contains the name of the �le

system and a pointer to its VFS superblock read routine. Figure 9.5 shows that the

file system type data structures are put into a list pointed at by the file systems

pointer. Each file system type data structure contains the following information:See

file system type

in include/-

linux/fs.h

Superblock read routine This routine is called by the VFS when an instance of

the �le system is mounted,

File System name The name of this �le system, for example ext2,

Device needed Does this �le system need a device to support? Not all �le system

need a device to hold them. The /proc �le system, for example, does not

require a block device,

You can see which �le systems are registered by looking in at /proc/filesystems.

For example:

ext2

nodev proc

iso9660

9.2.4 Mounting a File System

When the superuser attempts to mount a �le system, the Linux kernel must �rst

validate the arguments passed in the system call. Although mount does some basic

checking, it does not know which �le systems this kernel has been built to support

or that the proposed mount point actually exists. Consider the following mount

command:

$ mount -t iso9660 -o ro /dev/cdrom /mnt/cdrom

This mount command will pass the kernel three pieces of information; the name of

the �le system, the physical block device that contains the �le system and, thirdly,

where in the existing �le system topology the new �le system is to be mounted.

The �rst thing that the Virtual File System must do is to �nd the �le system.

To do this it searches through the list of known �le systems by looking at each
See do mount()

in fs/super.c

file system type data structure in the list pointed at by file systems. If it �nds
See

get fs type() in

fs/super.c

a matching name it now knows that this �le system type is supported by this kernel

and it has the address of the �le system speci�c routine for reading this �le system's

y ()

requires_dev

file_system_type

*read_super()

name

next

i_dev
i_ino

vfsmntlist

"ext2"

0x0301

0x0301

0x0301
/dev/hda1
/

vfsmount

mnt_dev
mnt_devname

mnt_sb
mnt_flags

mnt_dirname

next

1024

42

s_dev
s_blocksize

s_covered

s_flags

s_type

s_mounted

super_block
VFS

inode
VFS

Figure 9.6: A Mounted File System

superblock. If it cannot �nd a matching �le system name then all is not lost if the

kernel is built to demand load kernel modules (see Chapter 12). In this case the

kernel will request that the kernel daemon loads the appropriate �le system module

before continuing as before.

Next if the physical device passed by mount is not already mounted, it must �nd the

VFS inode of the directory that is to be the new �le system's mount point. This

VFS inode may be in the inode cache or it might have to be read from the block

device supporting the �le system of the mount point. Once the inode has been found

it is checked to see that it is a directory and that there is not already some other

�le system mounted there. The same directory cannot be used as a mount point for

more than one �le system.

At this point the VFS mount code must allocate a VFS superblock and pass it the

mount information to the superblock read routine for this �le system. All of the

system's VFS superblocks are kept in the super blocks vector of super block data

structures and one must be allocated for this mount. The superblock read routine

must �ll out the VFS superblock �elds based on information that it reads from the

physical device. For the EXT2 �le system this mapping or translation of information

is quite easy, it simply reads the EXT2 superblock and �lls out the VFS superblock

from there. For other �le systems, such as the MS DOS �le system, it is not quite such

an easy task. Whatever the �le system, �lling out the VFS superblock means that

the �le system must read whatever describes it from the block device that supports

it. If the block device cannot be read from or if it does not contain this type of �le

system then the mount command will fail.

Each mounted �le system is described by a vfsmount data structure; see �gure 9.6.

These are queued on a list pointed at by vfsmntlist. Another pointer, vfsmnttail
See

add vfsmnt() in

fs/super.cpoints at the last entry in the list and the mru vfsmnt pointer points at the most

recently used �le system. Each vfsmount structure contains the device number of the

block device holding the �le system, the directory where this �le system is mounted

and a pointer to the VFS superblock allocated when this �le system was mounted. In

p y

turn the VFS superblock points at the file system type data structure for this sort

of �le system and to the root inode for this �le system. This inode is kept resident

in the VFS inode cache all of the time that this �le system is loaded.

9.2.5 Finding a File in the Virtual File System

To �nd the VFS inode of a �le in the Virtual File System, VFS must resolve the name

a directory at a time, looking up the VFS inode representing each of the intermediate

directories in the name. Each directory lookup involves calling the �le system speci�c

lookup whose address is held in the VFS inode representing the parent directory. This

works because we always have the VFS inode of the root of each �le system available

and pointed at by the VFS superblock for that system. Each time an inode is looked

up by the real �le system it checks the directory cache for the directory. If there is

no entry in the directory cache, the real �le system gets the VFS inode either from

the underlying �le system or from the inode cache.

9.2.6 Creating a File in the Virtual File System

9.2.7 Unmounting a File System

The workshop manual for my MG usually describes assembly as the reverse of dis-

assembly and the reverse is more or less true for unmounting a �le system. A �le
See do umount()

in fs/super.c

system cannot be unmounted if something in the system is using one of its �les. So,

for example, you cannot umount /mnt/cdrom if a process is using that directory or

any of its children. If anything is using the �le system to be unmounted there may be

VFS inodes from it in the VFS inode cache, and the code checks for this by looking

through the list of inodes looking for inodes owned by the device that this �le system

occupies. If the VFS superblock for the mounted �le system is dirty, that is it has

been modi�ed, then it must be written back to the �le system on disk. Once it has

been written to disk, the memory occupied by the VFS superblock is returned to the

kernel's free pool of memory. Finally the vfsmount data structure for this mount is

unlinked from vfsmntlist and freed.
See

remove vfsmnt()

in fs/super.c

9.2.8 The VFS Inode Cache

As the mounted �le systems are navigated, their VFS inodes are being continually

read and, in some cases, written. The Virtual File System maintains an inode cache

to speed up accesses to all of the mounted �le systems. Every time a VFS inode is

read from the inode cache the system saves an access to a physical device.See fs/inode.c

The VFS inode cache is implmented as a hash table whose entries are pointers to

lists of VFS inodes that have the same hash value. The hash value of an inode is

calculated from its inode number and from the device identi�er for the underlying

physical device containing the �le system. Whenever the Virtual File System needs

to access an inode, it �rst looks in the VFS inode cache. To �nd an inode in the

cache, the system �rst calculates its hash value and then uses it as an index into the

inode hash table. This gives it a pointer to a list of inodes with the same hash value.

It then reads each inode in turn until it �nds one with both the same inode number

and the same device identi�er as the one that it is searching for.

y ()

If it can �nd the inode in the cache, its count is incremented to show that it has

another user and the �le system access continues. Otherwise a free VFS inode must

be found so that the �le system can read the inode from memory. VFS has a number

of choices about how to get a free inode. If the system may allocate more VFS inodes

then this is what it does; it allocates kernel pages and breaks them up into new, free,

inodes and puts them into the inode list. All of the system's VFS inodes are in a

list pointed at by first inode as well as in the inode hash table. If the system

already has all of the inodes that it is allowed to have, it must �nd an inode that is

a good candidate to be reused. Good candidates are inodes with a usage count of

zero; this indicates that the system is not currently using them. Really important

VFS inodes, for example the root inodes of �le systems always have a usage count

greater than zero and so are never candidates for reuse. Once a candidate for reuse

has been located it is cleaned up. The VFS inode might be dirty and in this case it

needs to be written back to the �le system or it might be locked and in this case the

system must wait for it to be unlocked before continuing. The candidate VFS inode

must be cleaned up before it can be reused.

However the new VFS inode is found, a �le system speci�c routine must be called

to �ll it out from information read from the underlying real �le system. Whilst it is

being �lled out, the new VFS inode has a usage count of one and is locked so that

nothing else accesses it until it contains valid information.

To get the VFS inode that is actually needed, the �le system may need to access

several other inodes. This happens when you read a directory; only the inode for

the �nal directory is needed but the inodes for the intermediate directories must also

be read. As the VFS inode cache is used and �lled up, the less used inodes will be

discarded and the more used inodes will remain in the cache.

9.2.9 The Directory Cache

To speed up accesses to commonly used directories, the VFS maintains a cache of

directory entries. As directories are looked up by the real �le systems their details See fs/dcache.c

are added into the directory cache. The next time the same directory is looked up,

for example to list it or open a �le within it, then it will be found in the directory

cache. Only short directory entries (up to 15 characters long) are cached but this

is reasonable as the shorter directory names are the most commonly used ones. For

example, /usr/X11R6/bin is very commonly accessed when the X server is running.

The directory cache consists of a hash table, each entry of which points at a list

of directory cache entries that have the same hash value. The hash function uses

the device number of the device holding the �le system and the directory's name to

calculate the o�set, or index, into the hash table. It allows cached directory entries

to be quickly found. It is no use having a cache when lookups within the cache take

too long to �nd entries, or even not to �nd them.

In an e�ort to keep the caches valid and up to date the VFS keeps lists of Least

Recently Used (LRU) directory cache entries. When a directory entry is �rst put

into the cache, which is when it is �rst looked up, it is added onto the end of the �rst

level LRU list. In a full cache this will displace an existing entry from the front of the

LRU list. As the directory entry is accessed again it is promoted to the back of the

second LRU cache list. Again, this may displace a cached level two directory entry

at the front of the level two LRU cache list. This displacing of entries at the front

p y

b_dev
b_blocknr
b_state
b_count
b_size

b_prev
b_next

b_data

buffer_head

b_dev
b_blocknr
b_state
b_count
b_size

b_prev
b_next

b_data

buffer_headhash_table
b_dev
b_blocknr
b_state
b_count
b_size

b_prev
b_next

b_data

buffer_head

0x0301

0x0301

0x0801

42 17

39

20481024

1024

Figure 9.7: The Bu�er Cache

of the level one and level two LRU lists is �ne. The only reason that entries are at

the front of the lists is that they have not been recently accessed. If they had, they

would be nearer the back of the lists. The entries in the second level LRU cache list

are safer than entries in the level one LRU cache list. This is the intention as these

entries have not only been looked up but also they have been repeatedly referenced.

REVIEW NOTE: Do we need a diagram for this?

9.3 The Bu�er Cache

As the mounted �le systems are used they generate a lot of requests to the block

devices to read and write data blocks. All block data read and write requests are

given to the device drivers in the form of buffer head data structures via standard

kernel routine calls. These give all of the information that the block device drivers

need; the device identi�er uniquely identi�es the device and the block number tells

the driver which block to read. All block devices are viewed as linear collections

of blocks of the same size. To speed up access to the physical block devices, Linux

maintains a cache of block bu�ers. All of the block bu�ers in the system are kept

somewhere in this bu�er cache, even the new, unused bu�ers. This cache is shared

between all of the physical block devices; at any one time there are many block

bu�ers in the cache, belonging to any one of the system's block devices and often in

many di�erent states. If valid data is available from the bu�er cache this saves the

system an access to a physical device. Any block bu�er that has been used to read

data from a block device or to write data to it goes into the bu�er cache. Over time

it may be removed from the cache to make way for a more deserving bu�er or it may

remain in the cache as it is frequently accessed.

Block bu�ers within the cache are uniquely ident�ed by the owning device identi�er

and the block number of the bu�er. The bu�er cache is composed of two functional

parts. The �rst part is the lists of free block bu�ers. There is one list per supported

bu�er size and the system's free block bu�ers are queued onto these lists when they

are �rst created or when they have been discarded. The currently supported bu�er

sizes are 512, 1024, 2048, 4096 and 8192 bytes. The second functional part is the

cache itself. This is a hash table which is a vector of pointers to chains of bu�ers

that have the same hash index. The hash index is generated from the owning device

identi�er and the block number of the data block. Figure 9.7 shows the hash table

together with a few entries. Block bu�ers are either in one of the free lists or they

are in the bu�er cache. When they are in the bu�er cache they are also queued onto

Least Recently Used (LRU) lists. There is an LRU list for each bu�er type and these

are used by the system to perform work on bu�ers of a type, for example, writing

bu�ers with new data in them out to disk. The bu�er's type re
ects its state and

Linux currently supports the following types:

clean Unused, new bu�ers,

locked Bu�ers that are locked, waiting to be written,

dirty Dirty bu�ers. These contain new, valid data, and will be written but so far

have not been scheduled to write,

shared Shared bu�ers,

unshared Bu�ers that were once shared but which are now not shared,

Whenever a �le system needs to read a bu�er from its underlying physical device, it

trys to get a block from the bu�er cache. If it cannot get a bu�er from the bu�er

cache, then it will get a clean one from the appropriate sized free list and this new

bu�er will go into the bu�er cache. If the bu�er that it needed is in the bu�er cache,

then it may or may not be up to date. If it is not up to date or if it is a new block

bu�er, the �le system must request that the device driver read the appropriate block

of data from the disk.

Like all caches, the bu�er cache must be maintained so that it runs e�ciently and

fairly allocates cache entries between the block devices using the bu�er cache. Linux

uses the bdflush kernel daemon to perform a lot of housekeeping duties on the

cache but some happen automatically as a result of the cache being used.

9.3.1 The bdflush Kernel Daemon See bdflush()

in fs/buffer.c

The bdflush kernel daemon is a simple kernel daemon that provides a dynamic

response to the system having too many dirty bu�ers; bu�ers that contain data that

must be written out to disk at some time. It is started as a kernel thread at system

startup time and, rather confusingly, it calls itself \k
ushd" and that is the name

that you will see if you use the ps command to show the processes in the system.

Mostly this daemon sleeps waiting for the number of dirty bu�ers in the system to

grow too large. As bu�ers are allocated and discarded the number of dirty bu�ers in

the system is checked. If there are too many as a percentage of the total number of

bu�ers in the system then bdflush is woken up. The default threshold is 60% but,

if the system is desperate for bu�ers, bdflush will be woken up anyway. This value

can be seen and changed using the update command:

update -d

p y

bdflush version 1.4

0: 60 Max fraction of LRU list to examine for dirty blocks

1: 500 Max number of dirty blocks to write each time bdflush activated

2: 64 Num of clean buffers to be loaded onto free list by refill_freelist

3: 256 Dirty block threshold for activating bdflush in refill_freelist

4: 15 Percentage of cache to scan for free clusters

5: 3000 Time for data buffers to age before flushing

6: 500 Time for non-data (dir, bitmap, etc) buffers to age before flushing

7: 1884 Time buffer cache load average constant

8: 2 LAV ratio (used to determine threshold for buffer fratricide).

All of the dirty bu�ers are linked into the BUF DIRTY LRU list whenever they are

made dirty by having data written to them and bdflush tries to write a reasonable

number of them out to their owning disks. Again this number can be seen and

controlled by the update command and the default is 500 (see above).

9.3.2 The update Process

The update command is more than just a command; it is also a daemon. When run

as superuser (during system initialisation) it will periodically
ush all of the older

dirty bu�ers out to disk. It does this by calling a system service routine that does
See

sys bdflush() in

fs/buffer.c more or less the same thing as bdflush. Whenever a dirty bu�er is �nished with,

it is tagged with the system time that it should be written out to its owning disk.

Every time that update runs it looks at all of the dirty bu�ers in the system looking

for ones with an expired
ush time. Every expired bu�er is written out to disk.

9.4 The /proc File System

The /proc �le system really shows the power of the Linux Virtual File System. It

does not really exist (yet another of Linux's conjuring tricks), neither the /proc

directory nor its subdirectories and its �les actually exist. So how can you cat

/proc/devices? The /proc �le system, like a real �le system, registers itself with the

Virtual File System. However, when the VFS makes calls to it requesting inodes as

its �les and directories are opened, the /proc �le system creates those �les and direc-

tories from information within the kernel. For example, the kernel's /proc/devices

�le is generated from the kernel's data structures describing its devices.

The /proc �le system presents a user readable window into the kernel's inner work-

ings. Several Linux subsystems, such as Linux kernel modules described in chap-

ter 12, create entries in the the /proc �le system.

9.5 Device Special Files

Linux, like all versions of UnixTM presents its hardware devices as special �les. So,

for example, /dev/null is the null device. A device �le does not use any data space in

the �le system, it is only an access point to the device driver. The EXT2 �le system

and the Linux VFS both implement device �les as special types of inode. There are

two types of device �le; character and block special �les. Within the kernel itself,

p

the device drivers implement �le semantices: you can open them, close them and

so on. Character devices allow I/O operations in character mode and block devices

require that all I/O is via the bu�er cache. When an I/O request is made to a device

�le, it is forwarded to the appropriate device driver within the system. Often this

is not a real device driver but a pseudo-device driver for some subsystem such as

the SCSI device driver layer. Device �les are referenced by a major number, which

identi�es the device type, and a minor type, which identi�es the unit, or instance

of that major type. For example, the IDE disks on the �rst IDE controller in the

system have a major number of 3 and the �rst partition of an IDE disk would have

a minor number of 1. So, ls -l of /dev/hda1 gives:

see

/include/linux/

major.h for all of

Linux's major

device numbers.
$ brw-rw---- 1 root disk 3, 1 Nov 24 15:09 /dev/hda1

Within the kernel, every device is uniquely described by a kdev t data type, this is

two bytes long, the �rst byte containing the minor device number and the second

byte holding the major device number. The IDE device above is held within the
See include/-

linux/kdev t.h
kernel as 0x0301. An EXT2 inode that represents a block or character device keeps

the device's major and minor numbers in its �rst direct block pointer. When it is

read by the VFS, the VFS inode data structure representing it has its i rdev �eld

set to the correct device identi�er.

p y

Chapter 10

Networks

Networking and Linux are terms that are almost synonymous. In a very

real sense Linux is a product of the Internet or World WideWeb (WWW).

Its developers and users use the web to exchange information ideas, code,

and Linux itself is often used to support the networking needs of organiza-

tions. This chapter describes how Linux supports the network protocols

known collectively as TCP/IP.

The TCP/IP protocols were designed to support communications between computers

connected to the ARPANET, an American research network funded by the US gov-

ernment. The ARPANET pioneered networking concepts such as packet switching

and protocol layering where one protocol uses the services of another. ARPANET

was retired in 1988 but its successors (NSF1 NET and the Internet) have grown even

larger. What is now known as the World Wide Web grew from the ARPANET and

is itself supported by the TCP/IP protocols. UnixTM was extensively used on the

ARPANET and the �rst released networking version of UnixTM was 4.3 BSD. Linux's

networking implementation is modeled on 4.3 BSD in that it supports BSD sockets

(with some extensions) and the full range of TCP/IP networking. This programming

interface was chosen because of its popularity and to help applications be portable

between Linux and other UnixTM platforms.

10.1 An Overview of TCP/IP Networking

This section gives an overview of the main principles of TCP/IP networking. It is not

meant to be an exhaustive description, for that I suggest that you read [10, Comer].

In an IP network every machine is assigned an IP address, this is a 32 bit number

that uniquely identi�es the machine. The WWW is a very large, and growing, IP

network and every machine that is connected to it has to have a unique IP address

assigned to it. IP addresses are represented by four numbers separated by dots, for

example, 16.42.0.9. This IP address is actually in two parts, the network address

and the host address. The sizes of these parts may vary (there are several classes of IP

addresses) but using 16.42.0.9 as an example, the network address would be 16.42

and the host address 0.9. The host address is further subdivided into a subnetwork

and a host address. Again, using 16.42.0.9 as an example, the subnetwork address

1National Science Foundation

119

p

would be 16.42.0 and the host address 16.42.0.9. This subdivision of the IP address

allows organizations to subdivide their networks. For example, 16.42 could be the

network address of the ACME Computer Company; 16.42.0 would be subnet 0

and 16.42.1 would be subnet 1. These subnets might be in separate buildings,

perhaps connected by leased telephone lines or even microwave links. IP addresses

are assigned by the network administrator and having IP subnetworks is a good way

of distributing the administration of the network. IP subnet administrators are free

to allocate IP addresses within their IP subnetworks.

Generally though, IP addresses are somewhat hard to remember. Names are much

easier. linux.acme.com is much easier to remember than 16.42.0.9 but there must

be some mechanism to convert the network names into an IP address. These names

can be statically speci�ed in the /etc/hosts �le or Linux can ask a Distributed

Name Server (DNS server) to resolve the name for it. In this case the local host

must know the IP address of one or more DNS servers and these are speci�ed in

/etc/resolv.conf.

Whenever you connect to another machine, say when reading a web page, its IP

address is used to exchange data with that machine. This data is contained in IP

packets each of which have an IP header containing the IP addresses of the source

and destination machine's IP addresses, a checksum and other useful information.

The checksum is derived from the data in the IP packet and allows the receiver of

IP packets to tell if the IP packet was corrupted during transmission, perhaps by a

noisy telephone line. The data transmitted by an application may have been broken

down into smaller packets which are easier to handle. The size of the IP data packets

varies depending on the connection media; ethernet packets are generally bigger than

PPP packets. The destination host must reassemble the data packets before giving

the data to the receiving application. You can see this fragmentation and reassembly

of data graphically if you access a web page containing a lot of graphical images via

a moderately slow serial link.

Hosts connected to the same IP subnet can send IP packets directly to each other, all

other IP packets will be sent to a special host, a gateway. Gateways (or routers) are

connected to more than one IP subnet and they will resend IP packets received on

one subnet, but destined for another onwards. For example, if subnets 16.42.1.0

and 16.42.0.0 are connected together by a gateway then any packets sent from

subnet 0 to subnet 1 would have to be directed to the gateway so that it could route

them. The local host builds up routing tables which allow it to route IP packets to

the correct machine. For every IP destination there is an entry in the routing tables

which tells Linux which host to send IP packets to in order that they reach their

destination. These routing tables are dynamic and change over time as applications

use the network and as the network topology changes.

The IP protocol is a transport layer that is used by other protocols to carry their data.

The Transmission Control Protocol (TCP) is a reliable end to end protocol that uses

IP to transmit and receive its own packets. Just as IP packets have their own header,

TCP has its own header. TCP is a connection based protocol where two networking

applications are connected by a single, virtual connection even though there may be

many subnetworks, gateways and routers between them. TCP reliably transmits and

receives data between the two applications and guarantees that there will be no lost or

duplicated data. When TCP transmits its packet using IP, the data contained within

the IP packet is the TCP packet itself. The IP layer on each communicating host

/ g

Destination
ethernet
address

Source
ethernet
address

Destination
IP address

Source
IP address

Destination
TCP address

ETHERNET FRAME

IP PACKET

Data Checksum

DataProtocolLength Checksum

TCP PACKET

SEQ ACK Data
address
Source TCP

Protocol

Figure 10.1: TCP/IP Protocol Layers

is responsible for transmitting and receiving IP packets. User Datagram Protocol

(UDP) also uses the IP layer to transport its packets, unlike TCP, UDP is not a

reliable protocol but o�ers a datagram service. This use of IP by other protocols

means that when IP packets are received the receiving IP layer must know which

upper protocol layer to give the data contained in this IP packet to. To facilitate this

every IP packet header has a byte containing a protocol identi�er. When TCP asks

the IP layer to transmit an IP packet , that IP packet's header states that it contains

a TCP packet. The receiving IP layer uses that protocol identi�er to decide which

layer to pass the received data up to, in this case the TCP layer. When applications

communicate via TCP/IP they must specify not only the target's IP address but also

the port address of the application. A port address uniquely identi�es an application

and standard network applications use standard port addresses; for example, web

servers use port 80. These registered port addresses can be seen in /etc/services.

This layering of protocols does not stop with TCP, UDP and IP. The IP protocol

layer itself uses many di�erent physical media to transport IP packets to other IP

hosts. These media may themselves add their own protocol headers. One such

example is the ethernet layer, but PPP and SLIP are others. An ethernet network

allows many hosts to be simultaneously connected to a single physical cable. Every

transmitted ethernet frame can be seen by all connected hosts and so every ethernet

device has a unique address. Any ethernet frame transmitted to that address will be

received by the addressed host but ignored by all the other hosts connected to the

network. These unique addresses are built into each ethernet device when they are

manufactured and it is usually kept in an SROM2 on the ethernet card. Ethernet

addresses are 6 bytes long, an example would be 08-00-2b-00-49-A4. Some ethernet

addresses are reserved for multicast purposes and ethernet frames sent with these

destination addresses will be received by all hosts on the network. As ethernet frames

can carry many di�erent protocols (as data) they, like IP packets, contain a protocol

identi�er in their headers. This allows the ethernet layer to correctly receive IP

packets and to pass them onto the IP layer.

2Synchronous Read Only Memory

p

In order to send an IP packet via a multi-connection protocol such as ethernet, the

IP layer must �nd the ethernet address of the IP host. This is because IP addresses

are simply an addressing concept, the ethernet devices themselves have their own

physical addresses. IP addresses on the other hand can be assigned and reassigned

by network administrators at will but the network hardware responds only to eth-

ernet frames with its own physical address or to special multicast addresses which

all machines must receive. Linux uses the Address Resolution Protocol (or ARP)

to allow machines to translate IP addresses into real hardware addresses such as

ethernet addresses. A host wishing to know the hardware address associated with

an IP address sends an ARP request packet containing the IP address that it wishes

translating to all nodes on the network by sending it to a multicast address. The

target host that owns the IP address, responds with an ARP reply that contains its

physical hardware address. ARP is not just restricted to ethernet devices, it can

resolve IP addresses for other physical media, for example FDDI. Those network

devices that cannot ARP are marked so that Linux does not attempt to ARP. There

is also the reverse function, Reverse ARP or RARP, which translates phsyical net-

work addresses into IP addresses. This is used by gateways, which respond to ARP

requests on behalf of IP addresses that are in the remote network.

10.2 The Linux TCP/IP Networking Layers

Just like the network protocols themselves, Figure 10.2 shows that Linux implements

the internet protocol address family as a series of connected layers of software. BSD

sockets are supported by a generic socket management software concerned only with

BSD sockets. Supporting this is the INET socket layer, this manages the communi-

cation end points for the IP based protocols TCP and UDP. UDP (User Datagram

Protocol) is a connectionless protocol whereas TCP (Transmission Control Protocol)

is a reliable end to end protocol. When UDP packets are transmitted, Linux neither

knows nor cares if they arrive safely at their destination. TCP packets are numbered

and both ends of the TCP connection make sure that transmitted data is received

correctly. The IP layer contains code implementing the Internet Protocol. This code

prepends IP headers to transmitted data and understands how to route incoming IP

packets to either the TCP or UDP layers. Underneath the IP layer, supporting all

of Linux's networking are the network devices, for example PPP and ethernet. Net-

work devices do not always represent physical devices; some like the loopback device

are purely software devices. Unlike standard Linux devices that are created via the

mknod command, network devices appear only if the underlying software has found

and initialized them. You will only see /dev/eth0 when you have built a kernel with

the appropriate ethernet device driver in it. The ARP protocol sits between the IP

layer and the protocols that support ARPing for addresses.

10.3 The BSD Socket Interface

This is a general interface which not only supports various forms of networking but

is also an inter-process communications mechanism. A socket describes one end

of a communications link, two communicating processes would each have a socket

describing their end of the communication link between them. Sockets could be

thought of as a special case of pipes but, unlike pipes, sockets have no limit on the

User

Kernel

Network
Devices

Socket
Interface

Protocol
Layers

Sockets
BSD

INET
Sockets

TCP UDP

Applications
Network

Ethernet

IP

SLIPPPP

ARP

Figure 10.2: Linux Networking Layers

p

amount of data that they can contain. Linux supports several classes of socket and

these are known as address families. This is because each class has its own method of

addressing its communications. Linux supports the following socket address families

or domains:

UNIX Unix domain sockets,

INET The Internet address family supports communications via

TCP/IP protocols

AX25 Amateur radio X25

IPX Novell IPX

APPLETALK Appletalk DDP

X25 X25

There are several socket types and these represent the type of service that supports

the connection. Not all address families support all types of service. Linux BSD

sockets support a number of socket types:

Stream These sockets provide reliable two way sequenced data streams with a guar-

antee that data cannot be lost, corrupted or duplicated in transit. Stream

sockets are supported by the TCP protocol of the Internet (INET) address

family.

Datagram These sockets also provide two way data transfer but, unlike stream

sockets, there is no guarantee that the messages will arrive. Even if they

do arrive there is no guarantee that they will arrive in order or even not be

duplicated or corrupted. This type of socket is supported by the UDP protocol

of the Internet address family.

Raw This allows processes direct (hence \raw") access to the underlying protocols.

It is, for example, possible to open a raw socket to an ethernet device and see

raw IP data tra�c.

Reliable Delivered Messages These are very like datagram sockets but the data

is guaranteed to arrive.

Sequenced Packets These are like stream sockets except that the data packet sizes

are �xed.

Packet This is not a standard BSD socket type, it is a Linux speci�c extension that

allows processes to access packets directly at the device level.

Processes that communicate using sockets use a client server model. A server provides

a service and clients make use of that service. One example would be a Web Server,

which provides web pages and a web client, or browser, which reads those pages. A

server using sockets, �rst creates a socket and then binds a name to it. The format

of this name is dependent on the socket's address family and it is, in e�ect, the local

address of the server. The socket's name or address is speci�ed using the sockaddr

data structure. An INET socket would have an IP port address bound to it. The

registered port numbers can be seen in /etc/services; for example, the port number

for a web server is 80. Having bound an address to the socket, the server then listens

for incoming connection requests specifying the bound address. The originator of the

request, the client, creates a socket and makes a connection request on it, specifying

the target address of the server. For an INET socket the address of the server is its

IP address and its port number. These incoming requests must �nd their way up

y

through the various protocol layers and then wait on the server's listening socket.

Once the server has received the incoming request it either accepts or rejects it. If

the incoming request is to be accepted, the server must create a new socket to accept

it on. Once a socket has been used for listening for incoming connection requests it

cannot be used to support a connection. With the connection established both ends

are free to send and receive data. Finally, when the connection is no longer needed it

can be shutdown. Care is taken to ensure that data packets in transit are correctly

dealt with.

The exact meaning of operations on a BSD socket depends on its underlying address

family. Setting up TCP/IP connections is very di�erent from setting up an amateur

radio X.25 connection. Like the virtual �lesystem, Linux abstracts the socket inter-

face with the BSD socket layer being concerned with the BSD socket interface to

the application programs which is in turn supported by independent address family

speci�c software. At kernel initialization time, the address families built into the

kernel register themselves with the BSD socket interface. Later on, as applications

create and use BSD sockets, an association is made between the BSD socket and

its supporting address family. This association is made via cross-linking data struc-

tures and tables of address family speci�c support routines. For example there is an

address family speci�c socket creation routine which the BSD socket interface uses

when an application creates a new socket.

When the kernel is con�gured, a number of address families and protocols are built

into the protocols vector. Each is represented by its name, for example \INET"

and the address of its initialization routine. When the socket interface is initialized

at boot time each protocol's initialization routine is called. For the socket address

families this results in them registering a set of protocol operations. This is a set

of routines, each of which performs a a particular operation speci�c to that address

family. The registered protocol operations are kept in the pops vector, a vector of

pointers to proto ops data structures. The proto ops data structure consists of
See include/-

linux/net.h
the address family type and a set of pointers to socket operation routines speci�c

to a particular address family. The pops vector is indexed by the address family

identi�er, for example the Internet address family identi�er (AF INET is 2).

10.4 The INET Socket Layer

The INET socket layer supports the internet address family which contains the

TCP/IP protocols. As discussed above, these protocols are layered, one protocol

using the services of another. Linux's TCP/IP code and data structures re
ect this

layering. Its interface with the BSD socket layer is through the set of Internet ad-

dress family socket operations which it registers with the BSD socket layer during

network initialization. These are kept in the pops vector along with the other reg-

istered address families. The BSD socket layer calls the INET layer socket support

routines from the registered INET proto ops data structure to perform work for it.

For example a BSD socket create request that gives the address family as INET will

use the underlying INET socket create function. The BSD socket layer passes the

socket data structure representing the BSD socket to the INET layer in each of these

operations. Rather than clutter the BSD socket wiht TCP/IP speci�c information,

the INET socket layer uses its own data structure, the sock which it links to the
See include/-

net/sock.h
BSD socket data structure. This linkage can be seen in Figure 10.3. It links the

p

files_struct

count

close_on_exec

open_fs

fd[0]

fd[1]

fd[255]

type

ops

inode

data

socket

Address Family
socket operations

BSD Socket
File Operations

lseek
read
write
select
ioctl
close
fasync

socket

sock

type

protocol

file

f_mode

f_pos

f_flags

f_count

f_owner

f_version

f_op

f_inode

SOCK_STREAM

SOCK_STREAM

Figure 10.3: Linux BSD Socket Data Structures

y

sock data structure to the BSD socket data structure using the data pointer in

the BSD socket. This means that subsequent INET socket calls can easily retrieve

the sock data structure. The sock data structure's protocol operations pointer is

also set up at creation time and it depends on the protocol requested. If TCP is

requested, then the sock data structure's protocol operations pointer will point to

the set of TCP protocol operations needed for a TCP connection.

10.4.1 Creating a BSD Socket

The system call to create a new socket passes identi�ers for its address family, socket

type and protocol. Firstly the requested address family is used to search the pops

See

sys socket() in

net/socket.cvector for a matching address family. It may be that a particular address family is

implemented as a kernel module and, in this case, the kerneld daemon must load

the module before we can continue. A new socket data structure is allocated to

represent the BSD socket. Actually the socket data structure is physically part of

the VFS inode data structure and allocating a socket really means allocating a VFS

inode. This may seem strange unless you consider that sockets can be operated on

in just the same way that ordinairy �les can. As all �les are represented by a VFS

inode data structure, then in order to support �le operations, BSD sockets must

also be represented by a VFS inode data structure.

The newly created BSD socket data structure contains a pointer to the address

family speci�c socket routines and this is set to the proto ops data structure re-

trieved from the pops vector. Its type is set to the sccket type requested; one of

SOCK STREAM, SOCK DGRAM and so on. The address family speci�c creation

routine is called using the address kept in the proto ops data structure.

A free �le descriptor is allocated from the current processes fd vector and the file

data structure that it points at is initialized. This includes setting the �le operations

pointer to point to the set of BSD socket �le operations supported by the BSD socket

interface. Any future operations will be directed to the socket interface and it will

in turn pass them to the supporting address family by calling its address family

operation routines.

10.4.2 Binding an Address to an INET BSD Socket

In order to be able to listen for incoming internet connection requests, each server

must create an INET BSD socket and bind its address to it. The bind operation is

mostly handled within the INET socket layer with some support from the underlying

TCP and UDP protocol layers. The socket having an address bound to cannot be

being used for any other communication. This means that the socket's state must

be TCP CLOSE. The sockaddr pass to the bind operation contains the IP address to

be bound to and, optionally, a port number. Normally the IP address bound to

would be one that has been assigned to a network device that supports the INET

address family and whose interface is up and able to be used. You can see which

network interfaces are currently active in the system by using the ifcon�g command.

The IP address may also be the IP broadcast address of either all 1's or all 0's.

These are special addresses that mean \send to everybody"3. The IP address could

also be speci�ed as any IP address if the machine is acting as a transparent proxy or

3duh? What used for?

p

�rewall, but only processes with superuser privileges can bind to any IP address. The

IP address bound to is saved in the sock data structure in the recv addr and saddr

�elds. These are used in hash lookups and as the sending IP address respectively.

The port number is optional and if it is not speci�ed the supporting network is

asked for a free one. By convention, port numbers less than 1024 cannot be used

by processes without superuser privileges. If the underlying network does allocate a

port number it always allocates ones greater than 1024.

As packets are being received by the underlying network devices they must be routed

to the correct INET and BSD sockets so that they can be processed. For this reason

UDP and TCP maintain hash tables which are used to lookup the addresses within

incoming IP messages and direct them to the correct socket/sock pair. TCP is a

connection oriented protocol and so there is more information involved in processing

TCP packets than there is in processing UDP packets.

UDP maintains a hash table of allocated UDP ports, the udp hash table. This

consists of pointers to sock data structures indexed by a hash function based on the

port number. As the UDP hash table is much smaller than the number of permissible

port numbers (udp hash is only 128 or UDP HTABLE SIZE entries long) some entries in

the table point to a chain of sock data structures linked together using each sock's

next pointer.

TCP is much more complex as it maintains several hash tables. However, TCP

does not actually add the binding sock data stucture into its hash tables during the

bind operation, it merely checks that the port number requested is not currently

being used. The sock data structure is added to TCP's hash tables during the listen

operation.

REVIEW NOTE: What about the route entered?

10.4.3 Making a Connection on an INET BSD Socket

Once a socket has been created and, provided it has not been used to listen for

inbound connection requests, it can be used to make outbound connection requests.

For connectionless protocols like UDP this socket operation does not do a whole lot

but for connection orientated protocols like TCP it involves building a virtual circuit

between two applications.

An outbound connection can only be made on an INET BSD socket that is in the

right state; that is to say one that does not already have a connection established and

one that is not being used for listening for inbound connections. This means that the

BSD socket data structure must be in state SS UNCONNECTED. The UDP protocol

does not establish virtual connections between applications, any messages sent are

datagrams, one o� messages that may or may not reach their destinations. It does,

however, support the connect BSD socket operation. A connection operation on a

UDP INET BSD socket simply sets up the addresses of the remote application; its IP

address and its IP port number. Additionally it sets up a cache of the routing table

entry so that UDP packets sent on this BSD socket do not need to check the routing

database again (unless this route becomes invalid). The cached routing information

is pointed at from the ip route cache pointer in the INET sock data structure. If

no addressing information is given, this cached routing and IP addressing information

will be automatically be used for messages sent using this BSD socket. UDP moves

the sock's state to TCP ESTABLISHED.

y

For a connect operation on a TCP BSD socket, TCP must build a TCP message

containing the connection information and send it to IP destination given. The TCP

message contains information about the connection, a unique starting message se-

quence number, the maximum sized message that can be managed by the initiating

host, the transmit and receive window size and so on. Within TCP all messages

are numbered and the initial sequence number is used as the �rst message number.

Linux chooses a reasonably random value to avoid malicious protocol attacks. Every

message transmitted by one end of the TCP connection and successfully received by

the other is acknowledged to say that it arrived successfully and uncorrupted. Unac-

knowledges messages will be retransmitted. The transmit and receive window size is

the number of outstanding messages that there can be without an acknowledgement

being sent. The maximum message size is based on the network device that is being

used at the initiating end of the request. If the receiving end's network device sup-

ports smaller maximum message sizes then the connection will use the minimum of

the two. The application making the outbound TCP connection request must now

wait for a response from the target application to accept or reject the connection

request. As the TCP sock is now expecting incoming messages, it is added to the

tcp listening hash so that incoming TCP messages can be directed to this sock

data structure. TCP also starts timers so that the outbound connection request can

be timed out if the target application does not respond to the request.

10.4.4 Listening on an INET BSD Socket

Once a socket has had an address bound to it, it may listen for incoming connection

requests specifying the bound addresses. A network application can listen on a socket

without �rst binding an address to it; in this case the INET socket layer �nds an

unused port number (for this protocol) and automatically binds it to the socket. The

listen socket function moves the socket into state TCP LISTEN and does any network

speci�c work needed to allow incoming connections.

For UDP sockets, changing the socket's state is enough but TCP now adds the

socket's sock data structure into two hash tables as it is now active. These are the

tcp bound hash table and the tcp listening hash. Both are indexed via a hash

function based on the IP port number.

Whenever an incoming TCP connection request is received for an active listening

socket, TCP builds a new sock data structure to represent it. This sock data

structure will become the bottom half of the TCP connection when it is eventually

accepted. It also clones the incoming sk buff containing the connection request and

queues it onto the receive queue for the listening sock data structure. The clone

sk buff contains a pointer to the newly created sock data structure.

10.4.5 Accepting Connection Requests

UDP does not support the concept of connections, accepting INET socket connection

requests only applies to the TCP protocol as an accept operation on a listening socket

causes a new socket data structure to be cloned from the original listening socket.

The accept operation is then passed to the supporting protocol layer, in this case

INET to accept any incoming connection requests. The INET protocol layer will

fail the accept operation if the underlying protocol, say UDP, does not support

connections. Otherwise the accept operation is passed through to the real protocol,

p

head
data
tail
end

next
prev
dev

Packet
to be
transmitted

sk_buff

lentruesize

Figure 10.4: The Socket Bu�er (sk bu�)

in this case TCP. The accept operation can be either blocking or non-blocking. In

the non-blocking case if there are no incoming connections to accept, the accept

operation will fail and the newly created socket data structure will be thrown away.

In the blocking case the network application performing the accept operation will

be added to a wait queue and then suspended until a TCP connection request is

received. Once a connection request has been received the sk buff containing the

request is discarded and the sock data structure is returned to the INET socket

layer where it is linked to the new socket data structure created earlier. The �le

descriptor (fd) number of the new socket is returned to the network application,

and the application can then use that �le descriptor in socket operations on the newly

created INET BSD socket.

10.5 The IP Layer

10.5.1 Socket Bu�ers

One of the problems of having many layers of network protocols, each one using the

services of another, is that each protocol needs to add protocol headers and tails to

data as it is transmitted and to remove them as it processes received data. This make

passing data bu�ers between the protocols di�cult as each layer needs to �nd where

its particular protocol headers and tails are. One solution is to copy bu�ers at each

layer but that would be ine�cient. Instead, Linux uses socket bu�ers or sk buffs

to pass data between the protocol layers and the network device drivers. sk buffs

contain pointer and length �elds that allow each protocol layer to manipulate the

application data via standard functions or \methods".

Figure 10.4 shows the sk buff data structure; each sk buff has a block of data
See include/-

linux/skbuff.h
associated with it. The sk buff has four data pointers, which are used to manipulate

y

and manage the socket bu�er's data:

head points to the start of the data area in memory. This is �xed when the sk buff

and its associated data block is allocated,

data points at the current start of the protocol data. This pointer varies depending

on the protocol layer that currently owns the sk buff,

tail points at the current end of the protocol data. Again, this pointer varies de-

pending on the owning protocol layer,

end points at the end of the data area in memory. This is �xed when the sk buff

is allocated.

There are two length �elds len and truesize, which describe the length of the cur-

rent protocol packet and the total size of the data bu�er respectively. The sk buff

handling code provides standard mechanisms for adding and removing protocol head-

ers and tails to the application data. These safely manipulate the data, tail and

len �elds in the sk buff:

push This moves the data pointer towards the start of the data area and increments

the len �eld. This is used when adding data or protocol headers to the start

of the data to be transmitted,
See skb push()

in include/-

linux/skbuff.h

pull This moves the data pointer away from the start, towards the end of the data

area and decrements the len �eld. This is used when removing data or protocol

headers from the start of the data that has been received,
See skb pull()

in include/-

linux/skbuff.h

put This moves the tail pointer towards the end of the data area and increments

the len �eld. This is used when adding data or protocol information to the

end of the data to be transmitted,
See skb put() in

include/linux/-

skbuff.h

trim This moves the tail pointer towards the start of the data area and decrements

the len �eld. This is used when removing data or protocol tails from the

received packet.
See skb trim()

in include/-

linux/skbuff.h

The sk buff data structure also contains pointers that are used as it is stored in

doubly linked circular lists of sk buff's during processing. There are generic sk buff

routines for adding sk buffs to the front and back of these lists and for removing

them.

10.5.2 Receiving IP Packets

Chapter 8 described how Linux's network drivers built are into the kernel and ini-

tialized. This results in a series of device data structures linked together in the

dev base list. Each device data structure describes its device and provides a set of

callback routines that the network protocol layers call when they need the network

driver to perform work. These functions are mostly concerned with transmitting

data and with the network device's addresses. When a network device receives pack-

ets from its network it must convert the received data into sk buff data structures.

These received sk buff's are added onto the backlog queue by the network drivers as

they are received. If the backlog queue grows too large, then the received sk buff's
See netif rx()

in

net/core/dev.c

p

are discarded. The network bottom half is
agged as ready to run as there is work

to do.

When the network bottom half handler is run by the scheduler it processes any

network packets waiting to be transmitted before processing the backlog queue of

sk buff's determining which protocol layer to pass the received packets to. As the
See net bh() in

net/core/dev.c
Linux networking layers were initialized, each protocol registered itself by adding a

packet type data structure onto either the ptype all list or into the ptype base

hash table. The packet type data structure contains the protocol type, a pointer

to a network device, a pointer to the protocol's receive data processing routine and,

�nally, a pointer to the next packet type data structure in the list or hash chain.

The ptype all chain is used to snoop all packets being received from any network

device and is not normally used. The ptype base hash table is hashed by protocol

identi�er and is used to decide which protocol should receive the incoming network

packet. The network bottom half matches the protocol types of incoming sk buff's

against one or more of the packet type entries in either table. The protocol may

match more than one entry, for example when snooping all network tra�c, and in this

case the sk buff will be cloned. The sk buff is passed to the matching protocol's

handling routine.
See ip recv() in

net/ipv4/-

ip input.c

10.5.3 Sending IP Packets

Packets are transmitted by applications exchanging data or else they are generated by

the network protocols as they support established connections or connections being

established. Whichever way the data is generated, an sk buff is built to contain the

data and various headers are added by the protocol layers as it passes through them.

The sk buff needs to be passed to a network device to be transmitted. First though

the protocol, for example IP, needs to decide which network device to use. This

depends on the best route for the packet. For computers connected by modem to

a single network, say via the PPP protocol, the routing choice is easy. The packet

should either be sent to the local host via the loopback device or to the gateway at

the end of the PPP modem connection. For computers connected to an ethernet the

choices are harder as there are many computers connected to the network.

For every IP packet transmitted, IP uses the routing tables to resolve the route for

the destination IP address. Each IP destination successfully looked up in the routing

tables returns a rtable data structure describing the route to use. This includes
See include/-

net/route.h
the source IP address to use, the address of the network device data structure and,

sometimes, a prebuilt hardware header. This hardware header is network device

speci�c and contains the source and destination physical addresses and other media

speci�c information. If the network device is an ethernet device, the hardware header

would be as shown in Figure 10.1 and the source and destination addresses would be

physical ethernet addresses. The hardware header is cached with the route because

it must be appended to each IP packet transmitted on this route and constructing

it takes time. The hardware header may contain physical addresses that have to be

resolved using the ARP protocol. In this case the outgoing packet is stalled until the

address has been resolved. Once it has been resolved and the hardware header built,

the hardware header is cached so that future IP packets sent using this interface do

not have to ARP.

()

10.5.4 Data Fragmentation

Every network device has a maximum packet size and it cannot transmit or receive a

data packet bigger than this. The IP protocol allows for this and will fragment data

into smaller units to �t into the packet size that the network device can handle. The

IP protocol header includes a fragment �eld which contains a
ag and the fragment

o�set.

When an IP packet is ready to be transmited, IP �nds the network device to send

See

ip build xmit()

in net/ipv4/

ip output.cthe IP packet out on. This device is found from the IP routing tables. Each device

has a �eld describing its maximum transfer unit (in bytes), this is the mtu �eld. If

the device's mtu is smaller than the packet size of the IP packet that is waiting to

be transmitted, then the IP packet must be broken down into smaller (mtu sized)

fragments. Each fragment is represented by an sk buff; its IP header marked to

show that it is a fragment and what o�set into the data this IP packet contains. The

last packet is marked as being the last IP fragment. If, during the fragmentation, IP

cannot allocate an sk buff, the transmit will fail.

Receiving IP fragments is a little more di�cult than sending them because the IP

fragments can be received in any order and they must all be received before they can

be reassembled. Each time an IP packet is received it is checked to see if it is an IP
See ip rcv() in

net/ipv4/-

ip input.cfragment. The �rst time that the fragment of a message is received, IP creates a new

ipq data structure, and this is linked into the ipqueue list of IP fragments awaiting

recombination. As more IP fragments are received, the correct ipq data structure is

found and a new ipfrag data structure is created to describe this fragment. Each

ipq data structure uniquely describes a fragmented IP receive frame with its source

and destination IP addresses, the upper layer protocol identi�er and the identi�er for

this IP frame. When all of the fragments have been received, they are combined into

a single sk buff and passed up to the next protocol level to be processed. Each ipq

contains a timer that is restarted each time a valid fragment is received. If this timer

expires, the ipq data structure and its ipfrag's are dismantled and the message is

presumed to have been lost in transit. It is then up to the higher level protocols to

retransmit the message.

10.6 The Address Resolution Protocol (ARP)

The Address Resolution Protocol's role is to provide translations of IP addresses into

physical hardware addresses such as ethernet addresses. IP needs this translation

just before it passes the data (in the form of an sk buff) to the device driver for

transmission. It performs various checks to see if this device needs a hardware header

See

ip build xmit()

in net/ipv4/-

ip output.cand, if it does, if the hardware header for the packet needs to be rebuilt. Linux caches

hardware headers to avoid frequent rebuilding of them. If the hardware header

needs rebuilding, it calls the device speci�c hardware header rebuilding routine. All

ethernet devices use the same generic header rebuilding routine which in turn uses

See eth

rebuild header()

in net/-

ethernet/eth.cthe ARP services to translate the destination IP address into a physical address.

The ARP protocol itself is very simple and consists of two message types, an ARP

request and an ARP reply. The ARP request contains the IP address that needs

translating and the reply (hopefully) contains the translated IP address, the hardware

address. The ARP request is broadcast to all hosts connected to the network, so,

for an ethernet network, all of the machines connected to the ethernet will see the

p

ARP request. The machine that owns the IP address in the request will respond to

the ARP request with an ARP reply containing its own physical address.

The ARP protocol layer in Linux is built around a table of arp table data structures

which each describe an IP to physical address translation. These entries are created

as IP addresses need to be translated and removed as they become stale over time.

Each arp table data structure has the following �elds:

last used the time that this ARP entry was last used,

last updated the time that this ARP entry was last updated,

ags these describe this entry's state, if it is complete and so on,

IP address The IP address that this entry describes

hardware address The translated hardware address

hardware header This is a pointer to a cached hardware header,

timer This is a timer list entry used to time out ARP requests

that do not get a response,

retries The number of times that this ARP request has been

retried,

sk buff queue List of sk buff entries waiting for this IP address

to be resolved

The ARP table consists of a table of pointers (the arp tables vector) to chains of

arp table entries. The entries are cached to speed up access to them, each entry is

found by taking the last two bytes of its IP address to generate an index into the

table and then following the chain of entries until the correct one is found. Linux also

caches prebuilt hardware headers o� the arp table entries in the form of hh cache

data structures.

When an IP address translation is requested and there is no corresponding arp table

entry, ARP must send an ARP request message. It creates a new arp table entry

in the table and queues the sk buff containing the network packet that needs the

address translation on the sk buff queue of the new entry. It sends out an ARP

request and sets the ARP expiry timer running. If there is no response then ARP

will retry the request a number of times and if there is still no response ARP will

remove the arp table entry. Any sk buff data structures queued waiting for the

IP address to be translated will be noti�ed and it is up to the protocol layer that is

transmitting them to cope with this failure. UDP does not care about lost packets

but TCP will attempt to retransmit on an established TCP link. If the owner of

the IP address responds with its hardware address, the arp table entry is marked

as complete and any queued sk buff's will be removed from the queue and will go

on to be transmitted. The hardware address is written into the hardware header of

each sk buff.

The ARP protocol layer must also respond to ARP requests that specfy its IP ad-

dress. It registers its protocol type (ETH P ARP), generating a packet type data

structure. This means that it will be passed all ARP packets that are received by

the network devices. As well as ARP replies, this includes ARP requests. It gener-

ates an ARP reply using the hardware address kept in the receiving device's device

data structure.

Network topologies can change over time and IP addresses can be reassigned to

di�erent hardware addresses. For example, some dial up services assign an IP address

as each connection is established. In order that the ARP table contains up to date

entries, ARP runs a periodic timer which looks through all of the arp table entries

g

to see which have timed out. It is very careful not to remove entries that contain

one or more cached hardware headers. Removing these entries is dangerous as other

data structures rely on them. Some arp table entries are permanent and these are

marked so that they will not be deallocated. The ARP table cannot be allowed to

grow too large; each arp table entry consumes some kernel memory. Whenever the

a new entry needs to be allocated and the ARP table has reached its maximum size

the table is pruned by searching out the oldest entries and removing them.

10.7 IP Routing

The IP routing function determines where to send IP packets destined for a particular

IP address. There are many choices to be made when transmitting IP packets. Can

the destination be reached at all? If it can be reached, which network device should

be used to transmit it? If there is more than one network device that could be used

to reach the destination, which is the better one? The IP routing database maintains

information that gives answers to these questions. There are two databases, the most

important being the Forwarding Information Database. This is an exhaustive list of

known IP destinations and their best routes. A smaller and much faster database,

the route cache is used for quick lookups of routes for IP destinations. Like all caches,

it must contain only the frequently accessed routes; its contents are derived from the

Forwarding Information Database.

Routes are added and deleted via IOCTL requests to the BSD socket interface.

These are passed onto the protocol to process. The INET protocol layer only allows

processes with superuser privileges to add and delete IP routes. These routes can be

�xed or they can be dynamic and change over time. Most systems use �xed routes

unless they themselves are routers. Routers run routing protocols which constantly

check on the availability of routes to all known IP destinations. Systems that are

not routers are known as end systems. The routing protocols are implemented as

daemons, for example GATED, and they also add and delete routes via the IOCTL

BSD socket interface.

10.7.1 The Route Cache

Whenever an IP route is looked up, the route cache is �rst checked for a matching

route. If there is no matching route in the route cache the Forwarding Information

Database is searched for a route. If no route can be found there, the IP packet will fail

to be sent and the application noti�ed. If a route is in the Forwarding Information

Database and not in the route cache, then a new entry is generated and added into

the route cache for this route. The route cache is a table (ip rt hash table) that

contains pointers to chains of rtable data structures. The index into the route table

is a hash function based on the least signi�cant two bytes of the IP address. These

are the two bytes most likely to be di�erent between destinations and provide the

best spread of hash values. Each rtable entry contains information about the route;

the destination IP address, the network device to use to reach that IP address, the

maximum size of message that can be used and so on. It also has a reference count,

a usage count and a timestamp of the last time that they were used (in jiffies).

The reference count is incremented each time the route is used to show the number

of network connections using this route. It is decremented as applications stop using

p

fz_list
fz_nent
fz_logmask

fz_hash_table

fz_next

fz_mask

fib_zone

fib_dst
fib_use
fib_info
fib_metric

fib_next

fib_tos

fib_node

fib_prev
fib_gateway
fib_dev
fib_refcnt
fib_window
fib_flags
fib_mtu

fib_irtt

fib_next

fib_info

fib_dst
fib_use
fib_info
fib_metric

fib_next

fib_tos

fib_node

fib_prev
fib_gateway
fib_dev
fib_refcnt
fib_window
fib_flags
fib_mtu

fib_irtt

fib_next

fib_info

fib_zones

Figure 10.5: The Forwarding Information Database

the route. The usage count is incremented each time the route is looked up and is

used to order the rtable entry in its chain of hash entries. The last used timestamp

for all of the entries in the route cache is periodically checked to see if the rtable

is too old . If the route has not been recently used, it is discarded from the route

See ip rt

check expire()

in net/ipv4/-

route.c cache. If routes are kept in the route cache they are ordered so that the most used

entries are at the front of the hash chains. This means that �nding them will be

quicker when routes are looked up.

10.7.2 The Forwarding Information Database

The forwarding information database (shown in Figure 10.5 contains IP's view of the

routes available to this system at this time. It is quite a complicated data structure

and, although it is reasonably e�ciently arranged, it is not a quick database to

consult. In particular it would be very slow to look up destinations in this database

for every IP packet transmitted. This is the reason that the route cache exists: to

speed up IP packet transmission using known good routes. The route cache is derived

from the forwarding database and represents its commonly used entries.

Each IP subnet is represented by a fib zone data structure. All of these are pointed

at from the fib zones hash table. The hash index is derived from the IP subnet

mask. All routes to the same subnet are described by pairs of fib node and fib info

data structures queued onto the fz list of each fib zone data structure. If the

number of routes in this subnet grows large, a hash table is generated to make

�nding the fib node data structures easier.

Several routes may exist to the same IP subnet and these routes can go through one

of several gateways. The IP routing layer does not allow more than one route to a

g

subnet using the same gateway. In other words, if there are several routes to a subnet,

then each route is guaranteed to use a di�erent gateway. Associated with each route

is its metric. This is a measure of how advantagious this route is. A route's metric

is, essentially, the number of IP subnets that it must hop across before it reaches the

destination subnet. The higher the metric, the worse the route.

p

Chapter 11

Kernel Mechanisms

This chapter describes some of the general tasks and mechanisms that

the Linux kernel needs to supply so that other parts of the kernel work

e�ectively together.

11.1 Bottom Half Handling

There are often times in a kernel when you do not want to do work at this moment.

A good example of this is during interrupt processing. When the interrupt was

asserted, the processor stopped what it was doing and the operating system delivered

the interrupt to the appropriate device driver. Device drivers should not spend too

much time handling interrupts as, during this time, nothing else in the system can

run. There is often some work that could just as well be done later on. Linux's

bottom half handlers were invented so that device drivers and other parts of the

Linux kernel could queue work to be done later on. Figure 11.1 shows the kernel

data structures associated with bottom half handling. There can be up to 32 di�erent
See

include/linux/-

interrupt.hbottom half handlers; bh base is a vector of pointers to each of the kernel's bottom

half handling routines. bh active and bh mask have their bits set according to what

handlers have been installed and are active. If bit N of bh mask is set then the

Nth element of bh base contains the address of a bottom half routine. If bit N of

bh active is set then the N'th bottom half handler routine should be called as soon

bh_active
31 0

31 0
bh_mask

bh_base

31

0 Bottom half handler
(timers)

Figure 11.1: Bottom Half Handling Data Structures

139

p

*data

next

*routine()

tq_struct

sync

*data

next

*routine()

tq_struct

sync

task queue

Figure 11.2: A Task Queue

as the scheduler deems reasonable. These indices are statically de�ned; the timer

bottom half handler is the highest priority (index 0), the console bottom half handler

is next in priority (index 1) and so on. Typically the bottom half handling routines

have lists of tasks associated with them. For example, the immediate bottom half

handler works its way through the immediate tasks queue (tq immediate) which

contains tasks that need to be performed immediately.

Some of the kernel's bottom half handers are device speci�c, but others are more

generic:

TIMER This handler is marked as active each time the system's periodic timer

interrupts and is used to drive the kernel's timer queue mechanisms,

CONSOLE This handler is used to process console messages,

TQUEUE This handler is used to process tty messages,

NET This handler handles general network processing,

IMMEDIATE This is a generic handler used by several device drivers to queue

work to be done later.

Whenever a device driver, or some other part of the kernel, needs to schedule work to

be done later, it adds work to the appropriate system queue, for example the timer

queue, and then signals the kernel that some bottom half handling needs to be done.

It does this by setting the appropriate bit in bh active. Bit 8 is set if the driver

has queued something on the immediate queue and wishes the immediate bottom

half handler to run and process it. The bh active bitmask is checked at the end of

each system call, just before control is returned to the calling process. If it has any

bits set, the bottom half handler routines that are active are called. Bit 0 is checked

�rst, then 1 and so on until bit 31. The bit in bh active is cleared as each bottom

See

do bottom half()

in kernel/-

softirq.c half handling routine is called. bh active is transient; it only has meaning between

calls to the scheduler and is a way of not calling bottom half handling routines when

there is no work for them to do.

11.2 Task Queues

Task queues are the kernel's way of deferring work until later. Linux has a generic

mechanism for queuing work on queues and for processing them later. Task queues
See include/-

linux/tqueue.h

are often used in conjunction with bottom half handlers; the timer task queue is

processed when the timer queue bottom half handler runs. A task queue is a simple

data structure, see �gure 11.2 which consists of a singly linked list of tq struct data

structures each of which contains the address of a routine and a pointer to some data.

The routine will be called when the element on the task queue is processed and it

will be passed a pointer to the data.

Anything in the kernel, for example a device driver, can create and use task queues

but there are three task queues created and managed by the kernel:

timer This queue is used to queue work that will be done as soon after the next

system clock tick as is possible. Each clock tick, this queue is checked to see if it

contains any entries and, if it does, the timer queue bottom half handler is made

active. The timer queue bottom half handler is processed, along with all the

other bottom half handlers, when the scheduler next runs. This queue should

not be confused with system timers, which are a much more sophisticated

mechanism.

immediate This queue is also processed when the scheduler processes the active

bottom half handlers. The immediate bottom half handler is not as high in

priority as the timer queue bottom half handler and so these tasks will be run

later.

scheduler This task queue is processed directly by the scheduler. It is used to

support other task queues in the system and, in this case, the task to be run

will be a routine that processes a task queue, say for a device driver.

When task queues are processed, the pointer to the �rst element in the queue is

removed from the queue and replaced with a null pointer. In fact, this removal is

an atomic operation, one that cannot be interrupted. Then each element in the

queue has its handling routine called in turn. The elements in the queue are often

statically allocated data. However there is no inherent mechanism for discarding

allocated memory. The task queue processing routine simply moves onto the next

element in the list. It is the job of the task itself to ensure that it properly cleans up

any allocated kernel memory.

11.3 Timers

An operating system needs to be able to schedule an activity sometime in the future.

A mechanism is needed whereby activities can be scheduled to run at some relatively

precise time. Any microprocessor that wishes to support an operating system must

have a programmable interval timer that periodically interrupts the processor. This

periodic interrupt is known as a system clock tick and it acts like a metronome,

orchestrating the system's activities. Linux has a very simple view of what time it

is; it measures time in clock ticks since the system booted. All system times are

based on this measurement, which is known as jiffies after the globally available

variable of the same name.

Linux has two types of system timers, both queue routines to be called at some

system time but they are slightly di�erent in their implementations. Figure 11.3

shows both mechanisms. The �rst, the old timer mechanism, has a static array of 32
See include/-

linux/timer.h
pointers to timer struct data structures and a mask of active timers, timer active.

Where the timers go in the timer table is statically de�ned (rather like the bottom

half handler table bh base). Entries are added into this table mostly at system

initialization time. The second, newer, mechanism uses a linked list of timer list

data structures held in ascending expiry time order.

p

31 0
timer_active

next
prev
expires
data
*function()

timer_list

next
prev
expires
data
*function()

timer_list

expires
*fn()

timer_struct

expires
*fn()

timer_struct

31

0

timer_table

next
prev
expires
data
*function()

timer_head

Figure 11.3: System Timers

wait queue

*task

*next

Figure 11.4: Wait Queue

Both methods use the time in jiffies as an expiry time so that a timer that wished

to run in 5s would have to convert 5s to units of jiffies and add that to the current

system time to get the system time in jiffies when the timer should expire. Every

system clock tick the timer bottom half handler is marked as active so that the

when the scheduler next runs, the timer queues will be processed. The timer bottom

half handler processes both types of system timer. For the old system timers the
See timer bh()

in

kernel/sched.c timer active bit mask is check for bits that are set. If the expiry time for an active

See

run old timers()

in

kernel/sched.c

timer has expired (expiry time is less than the current system jiffies), its timer

routine is called and its active bit is cleared. For new system timers, the entries in

the linked list of timer list data structures are checked. Every expired timer is

See

run timer list()

in

kernel/sched.c

removed from the list and its routine is called. The new timer mechanism has the

advantage of being able to pass an argument to the timer routine.

11.4 Wait Queues

There are many times when a process must wait for a system resource. For example

a process may need the VFS inode describing a directory in the �le system and that

inode may not be in the bu�er cache. In this case the process must wait for that

inode to be fetched from the physical media containing the �le system before it can

carry on.

The Linux kernel uses a simple data structure, a wait queue (see �gure 11.4), which
See include/-

linux/wait.h
consists of a pointer to the processes task struct and a pointer to the next element

in the wait queue.

When processes are added to the end of a wait queue they can either be inter-

ruptible or uninterruptible. Interruptible processes may be interrupted by events

such as timers expiring or signals being delivered whilst they are waiting on a wait

queue. The waiting processes state will re
ect this and either be INTERRUPTIBLE or

UNINTERRUPTIBLE. As this process can not now continue to run, the scheduler is run

and, when it selects a new process to run, the waiting process will be suspended. 1

When the wait queue is processed, the state of every process in the wait queue is

set to RUNNING. If the process has been removed from the run queue, it is put back

onto the run queue. The next time the scheduler runs, the processes that are on

the wait queue are now candidates to be run as they are now no longer waiting.

When a process on the wait queue is scheduled the �rst thing that it will do is

remove itself from the wait queue. Wait queues can be used to synchronize access

to system resources and they are used by Linux in its implementation of semaphores

(see below).

11.5 Buzz Locks

These are better known as spin locks and they are a primitive way of protecting a

data structure or piece of code. They only allow one process at a time to be within

a critical region of code. They are used in Linux to restrict access to �elds in data

structures, using a single integer �eld as a lock. Each process wishing to enter the

region attempts to change the lock's initial value from 0 to 1. If its current value is

1, the process tries again, spinning in a tight loop of code. The access to the memory

location holding the lock must be atomic, the action of reading its value, checking

that it is 0 and then changing it to 1 cannot be interrupted by any other process.

Most CPU architectures provide support for this via special instructions but you can

also implement buzz locks using uncached main memory.

When the owning process leaves the critical region of code it decrements the buzz

lock, returning its value to 0. Any processes spinning on the lock will now read it as

0, the �rst one to do this will increment it to 1 and enter the critical region.

11.6 Semaphores

Semaphores are used to protect critical regions of code or data structures. Remember

that each access of a critical piece of data such as a VFS inode describing a directory

is made by kernel code running on behalf of a process. It would be very dangerous

to allow one process to alter a critical data structure that is being used by another

process. One way to achieve this would be to use a buzz lock around the critical piece

of data is being accessed but this is a simplistic approach that would not give very

good system performance. Instead Linux uses semaphores to allow just one process

at a time to access critical regions of code and data; all other processes wishing to

access this resource will be made to wait until it becomes free. The waiting processes

are suspended, other processes in the system can continue to run as normal.

A Linux semaphore data structure contains the following information:
See include/-

asm/semaphore.h

1
REVIEW NOTE: What is to stop a task in state INTERRUPTIBLE being made to run the next time

the scheduler runs? Processes in a wait queue should never run until they are woken up.

p

count This �eld keeps track of the count of processes wishing to use this resource.

A positive value means that the resource is available. A negative or zero value

means that processes are waiting for it. An initial value of 1 means that one

and only one process at a time can use this resource. When processes want

this resource they decrement the count and when they have �nished with this

resource they increment the count,

waking This is the count of processes waiting for this resource which is also the

number of process waiting to be woken up when this resource becomes free,

wait queue When processes are waiting for this resource they are put onto this

wait queue,

lock A buzz lock used when accessing the waking �eld.

Suppose the initial count for a semaphore is 1, the �rst process to come along will

see that the count is positive and decrement it by 1, making it 0. The process now

\owns" the critical piece of code or resource that is being protected by the semaphore.

When the process leaves the critical region it increments the semphore's count. The

most optimal case is where there are no other processes contending for ownership of

the critical region. Linux has implemented semaphores to work e�ciently for this,

the most common, case.

If another process wishes to enter the critical region whilst it is owned by a process

it too will decrement the count. As the count is now negative (-1) the process cannot

enter the critical region. Instead it must wait until the owning process exits it.

Linux makes the waiting process sleep until the owning process wakes it on exiting

the critical region. The waiting process adds itself to the semaphore's wait queue

and sits in a loop checking the value of the waking �eld and calling the scheduler

until waking is non-zero.

The owner of the critical region increments the semaphore's count and if it is less

than or equal to zero then there are processes sleeping, waiting for this resource. In

the optimal case the semaphore's count would have been returned to its initial value

of 1 and no further work would be neccessary. The owning process increments the

waking counter and wakes up the process sleeping on the semaphore's wait queue.

When the waiting process wakes up, the waking counter is now 1 and it knows that

it it may now enter the critical region. It decrements the waking counter, returning

it to a value of zero, and continues. All access to the waking �eld of semaphore are

protected by a buzz lock using the semaphore's lock.

Chapter 12

Modules

This chapter describes how the Linux kernel can dynamically load func-

tions, for example �lesystems, only when they are needed.

Linux is a monolithic kernel; that is, it is one, single, large program where all the

functional components of the kernel have access to all of its internal data struc-

tures and routines. The alternative is to have a micro-kernel structure where the

functional pieces of the kernel are broken out into separate units with strict com-

munication mechanisms between them. This makes adding new components into

the kernel via the con�guration process rather time consuming. Say you wanted to

use a SCSI driver for an NCR 810 SCSI and you had not built it into the kernel.

You would have to con�gure and then build a new kernel before you could use the

NCR 810. There is an alternative, Linux allows you to dynamically load and unload

components of the operating system as you need them. Linux modules are lumps of

code that can be dynamically linked into the kernel at any point after the system has

booted. They can be unlinked from the kernel and removed when they are no longer

needed. Mostly Linux kernel modules are device drivers, pseudo-device drivers such

as network drivers, or �le-systems.

You can either load and unload Linux kernel modules explicitly using the insmod and

rmmod commands or the kernel itself can demand that the kernel daemon (kerneld)

loads and unloads the modules as they are needed. Dynamically loading code as it

is needed is attractive as it keeps the kernel size to a minimum and makes the kernel

very
exible. My current Intel kernel uses modules extensively and is only 406Kbytes

long. I only occasionally use VFAT �le systems and so I build my Linux kernel to

automatically load the VFAT �le system module as I mount a VFAT partition. When

I have unmounted the VFAT partition the system detects that I no longer need the

VFAT �le system module and removes it from the system. Modules can also be useful

for trying out new kernel code without having to rebuild and reboot the kernel every

time you try it out. Nothing, though, is for free and there is a slight performance

and memory penalty associated with kernel modules. There is a little more code that

a loadable module must provide and this and the extra data structures take a little

more memory. There is also a level of indirection introduced that makes accesses of

kernel resources slightly less e�cient for modules.

Once a Linux module has been loaded it is as much a part of the kernel as any normal

kernel code. It has the same rights and responsibilities as any kernel code; in other

words, Linux kernel modules can crash the kernel just like all kernel code or device

145

p

drivers can.

So that modules can use the kernel resources that they need, they must be able to �nd

them. Say a module needs to call kmalloc(), the kernel memory allocation routine.

At the time that it is built, a module does not know where in memory kmalloc() is,

so when the module is loaded, the kernel must �x up all of the module's references

to kmalloc() before the module can work. The kernel keeps a list of all of the

kernel's resources in the kernel symbol table so that it can resolve references to those

resources from the modules as they are loaded. Linux allows module stacking, this

is where one module requires the services of another module. For example, the VFAT

�le system module requires the services of the FAT �le system module as the VFAT

�le system is more or less a set of extensions to the FAT �le system. One module

requiring services or resources from another module is very similar to the situation

where a module requires services and resources from the kernel itself. Only here

the required services are in another, previously loaded module. As each module is

loaded, the kernel modi�es the kernel symbol table, adding to it all of the resources

or symbols exported by the newly loaded module. This means that, when the next

module is loaded, it has access to the services of the already loaded modules.

When an attempt is made to unload a module, the kernel needs to know that the

module is unused and it needs some way of notifying the module that it is about to

be unloaded. That way the module will be able to free up any system resources that

it has allocated, for example kernel memory or interrupts, before it is removed from

the kernel. When the module is unloaded, the kernel removes any symbols that that

module exported into the kernel symbol table.

Apart from the ability of a loaded module to crash the operating system by being

badly written, it presents another danger. What happens if you load a module built

for an earlier or later kernel than the one that you are now running? This may

cause a problem if, say, the module makes a call to a kernel routine and supplies the

wrong arguments. The kernel can optionally protect against this by making rigorous

version checks on the module as it is loaded.

12.1 Loading a Module

There are two ways that a kernel module can be loaded. The �rst way is to use the

insmod command to manually insert the it into the kernel. The second, and much

more clever way, is to load the module as it is needed; this is known as demand

loading. When the kernel discovers the need for a module, for example when the

user mounts a �le system that is not in the kernel, the kernel will request that the

kernel daemon (kerneld) attempts to load the appropriate module.

kerneld is in the

modules package

along with

insmod, lsmod

and rmmod. The kernel daemon is a normal user process albeit with super user privileges. When

it is started up, usually at system boot time, it opens up an Inter-Process Communi-

cation (IPC) channel to the kernel. This link is used by the kernel to send messages

to the kerneld asking for various tasks to be performed. Kerneld's major function
See include/-

linux/kerneld.h
is to load and unload kernel modules but it is also capable of other tasks such as

starting up the PPP link over serial line when it is needed and closing it down when it

is not. Kerneld does not perform these tasks itself, it runs the neccessary programs

such as insmod to do the work. Kerneld is just an agent of the kernel, scheduling

work on its behalf.

g

ref
symtab

module

next

size

addr

*cleanup()

state

name

ref
symtab

module

next

size

addr

*cleanup()

state

name "vfat"

symbol_table
size
n_symbols
n_refs

symbols

references

symbol_table
size
n_symbols
n_refs

symbols

references

module_list

"fat"

Figure 12.1: The List of Kernel Modules

The insmod utility must �nd the requested kernel module that it is to load. Demand

loaded kernel modules are normally kept in /lib/modules/kernel-version. The

kernel modules are linked object �les just like other programs in the system except

that they are linked as a relocatable images. That is, images that are not linked

to run from a particular address. They can be either a.out or elf format object

�les. insmod makes a privileged system call to �nd the kernel's exported symbols.

These are kept in pairs containing the symbol's name and its value, for example its
See sys get -

kernel syms() in

kernel/module.caddress. The kernel's exported symbol table is held in the �rst module data structure

in the list of modules maintained by the kernel and pointed at by the module list

pointer. Only speci�cally entered symbols are added into the table, which is built
See include/-

linux/module.h
when the kernel is compiled and linked, not every symbol in the kernel is exported

to its modules. An example symbol is ``request irq'' which is the kernel routine

that must be called when a driver wishes to take control of a particular system

interrupt. In my current kernel, this has a value of 0x0010cd30. You can easily see

the exported kernel symbols and their values by looking at /proc/ksyms or by using

the ksyms utility. The ksyms utility can either show you all of the exported kernel

symbols or only those symbols exported by loaded modules. insmod reads the module

into its virtual memory and �xes up its unresolved references to kernel routines and

resources using the exported symbols from the kernel. This �xing up takes the form

of patching the module image in memory. insmod physically writes the address of

the symbol into the appropriate place in the module.

When insmod has �xed up the module's references to exported kernel symbols, it asks

the kernel for enough space to hold the new kernel, again using a privileged system

call. The kernel allocates a new module data structure and enough kernel memory

to hold the new module and puts it at the end of the kernel modules list. The new

module is marked as UNINITIALIZED. Figure 12.1 shows the list of kernel modules

See sys -

create module()

in kernel/-

module.c.after two modules, VFAT and VFAT have been loaded into the kernel. Not shown in the

p

diagram is the �rst module on the list, which is a pseudo-module that is only there

to hold the kernel's exported symbol table. You can use the command lsmod to list

all of the loaded kernel modules and their interdependencies. lsmod simply reformats

/proc/modules which is built from the list of kernel module data structures. The

memory that the kernel allocates for it is mapped into the insmod process's address

space so that it can access it. insmod copies the module into the allocated space and

relocates it so that it will run from the kernel address that it has been allocated.

This must happen as the module cannot expect to be loaded at the same address

twice let alone into the same address in two di�erent Linux systems. Again, this

relocation involves patching the module image with the appropriate addresses.

The new module also exports symbols to the kernel and insmod builds a table of

these exported images. Every kernel module must contain module initialization and

module cleanup routines and these symbols are deliberately not exported but insmod

must know the addresses of them so that it can pass them to the kernel. All being

well, insmod is now ready to initialize the module and it makes a privileged system call

passing the kernel the addresses of the module's initialization and cleanup routines.

See sys init -

module() in

kernel/-

module.c. When a new module is added into the kernel, it must update the kernel's set of

symbols and modify the modules that are being used by the new module. Modules

that have other modules dependent on them must maintain a list of references at the

end of their symbol table and pointed at by their module data structure. Figure 12.1

shows that the VFAT �le system module is dependent on the FAT �le system module.

So, the FAT module contains a reference to the VFAT module; the reference was

added when the VFAT module was loaded. The kernel calls the modules initialization

routine and, if it is successful it carries on installing the module. The module's

cleanup routine address is stored in it's module data structure and it will be called

by the kernel when that module is unloaded. Finally, the module's state is set to

RUNNING.

12.2 Unloading a Module

Modules can be removed using the rmmod command but demand loaded modules are

automatically removed from the system by kerneld when they are no longer being

used. Every time its idle timer expires, kerneld makes a system call requesting

that all unused demand loaded modules are removed from the system. The timer's

value is set when you start kerneld; my kerneld checks every 180 seconds. So,

for example, if you mount an iso9660 CD ROM and your iso9660 �lesystem is a

loadable module, then shortly after the CD ROM is unmounted, the iso9660module

will be removed from the kernel.

A module cannot be unloaded so long as other components of the kernel are depend-

ing on it. For example, you cannot unload the VFAT module if you have one or more

VFAT �le systems mounted. If you look at the output of lsmod, you will see that each

module has a count associated with it. For example:

Module: #pages: Used by:

msdos 5 1

vfat 4 1 (autoclean)

fat 6 [vfat msdos] 2 (autoclean)

The count is the number of kernel entities that are dependent on this module. In the

g

above example, the vfat and msdos modules are both dependent on the fat module

and so it has a count of 2. Both the vfat and msdos modules have 1 dependent,

which is a mounted �le system. If I were to load another VFAT �le system then the

vfat module's count would become 2. A module's count is held in the �rst longword

of its image.

This �eld is slightly overloaded as it also holds the AUTOCLEAN and VISITED
ags.

Both of these
ags are used for demand loaded modules. These modules are marked

as AUTOCLEAN so that the system can recognize which ones it may automatically

unload. The VISITED
ag marks the module as in use by one or more other system

components; it is set whenever another component makes use of the module. Each

time the system is asked by kerneld to remove unused demand loaded modules it

looks through all of the modules in the system for likely candidates. It only looks

at modules marked as AUTOCLEAN and in the state RUNNING. If the candidate has

its VISITED
ag cleared then it will remove the module, otherwise it will clear the

VISITED
ag and go on to look at the next module in the system.

Assuming that a module can be unloaded, its cleanup routine is called to allow it

to free up the kernel resources that it has allocated. The module data structure is

See sys -

delete module()

in

kernel/module.cmarked as DELETED and it is unlinked from the list of kernel modules. Any other

modules that it is dependent on have their reference lists modi�ed so that they no

longer have it as a dependent. All of the kernel memory that the module needed is

deallocated.

p

Chapter 13

The Linux Kernel Sources

This chapter describes where in the Linux kernel sources you should start

looking for particular kernel functions.

This book does not depend on a knowledge of the 'C' programming language or

require that you have the Linux kernel sources available in order to understand how

the Linux kernel works. That said, it is a fruitful exercise to look at the kernel sources

to get an in-depth understanding of the Linux operating system. This chapter gives

an overview of the kernel sources; how they are arranged and where you might start

to look for particular code.

Where to Get The Linux Kernel Sources

All of the major Linux distributions (Craftworks, Debian, Slackware, Red Hat etcetera)

include the kernel sources in them. Usually the Linux kernel that got installed on

your Linux system was built from those sources. By their very nature these sources

tend to be a little out of date so you may want to get the latest sources from one of

the web sites mentioned in chapter C. They are kept on ftp://ftp.cs.helsinki.fi

and all of the other web sites shadow them. This makes the Helsinki web site the

most up to date, but sites like MIT and Sunsite are never very far behind.

If you do not have access to the web, there are many CD ROM vendors who o�er

snapshots of the world's major web sites at a very reasonable cost. Some even o�er a

subscription service with quarterly or even monthly updates. Your local Linux User

Group is also a good source of sources.

The Linux kernel sources have a very simple numbering system. Any even number

kernel (for example 2.0.30) is a stable, released, kernel and any odd numbered

kernel (for example 2.1.42 is a development kernel. This book is based on the

stable 2.0.30 source tree. Development kernels have all of the latest features and

support all of the latest devices. Although they can be unstable, which may not be

exactly what you want it, is important that the Linux community tries the latest

kernels. That way they are tested for the whole community. Remember that it is

always worth backing up your system thoroughly if you do try out non-production

kernels.

Changes to the kernel sources are distributed as patch �les. The patch utility is used

to apply a series of edits to a set of source �les. So, for example, if you have the

151

p

2.0.29 kernel source tree and you wanted to move to the 2.0.30 source tree, you would

obtain the 2.0.30 patch �le and apply the patches (edits) to that source tree:

$ cd /usr/src/linux

$ patch -p1 < patch-2.0.30

This saves copying whole source trees, perhaps over slow serial connections. A good

source of kernel patches (o�cial and uno�cial) is the http://www.linuxhq.comweb

site.

How The Kernel Sources Are Arranged

At the very top level of the source tree /usr/src/linux you will see a number of

directories:

arch The arch subdirectory contains all of the architecture speci�c kernel code. It

has further subdirectories, one per supported architecture, for example i386

and alpha.

include The include subdirectory contains most of the include �les needed to build

the kernel code. It too has further subdirectories including one for every ar-

chitecture supported. The include/asm subdirectory is a soft link to the real

include directory needed for this architecture, for example include/asm-i386.

To change architectures you need to edit the kernel make�le and rerun the

Linux kernel con�guration program.

init This directory contains the initialization code for the kernel and it is a very

good place to start looking at how the kernel works.

mm This directory contains all of the memory management code. The architec-

ture speci�c memory management code lives down in arch/*/mm/, for example

arch/i386/mm/fault.c.

drivers All of the system's device drivers live in this directory. They are further

sub-divided into classes of device driver, for example block.

ipc This directory contains the kernels inter-process communications code.

modules This is simply a directory used to hold built modules.

fs All of the �le system code. This is further sub-divided into directories, one per

supported �le system, for example vfat and ext2.

kernel The main kernel code. Again, the architecture speci�c kernel code is in

arch/*/kernel.

net The kernel's networking code.

lib This directory contains the kernel's library code. The architecture speci�c library

code can be found in arch/*/lib/.

scripts This directory contains the scripts (for example awk and tk scripts) that are

used when the kernel is con�gured.

Where to Start Looking

A large complex program like the Linux kernel can be rather daunting to look at.

It is rather like a large ball of string with no end showing. Looking at one part of

the kernel often leads to looking at several other related �les and before long you

have forgotten what you were looking for. The next subsections give you a hint as

to where in the source tree the best place to look is for a given subject.

System Startup and Initialization

On an Intel based system, the kernel starts when either loadlin.exe or LILO has

loaded the kernel into memory and passed control to it. Look in arch/i386/-

kernel/head.S for this part. Head.S does some architecture speci�c setup and

then jumps to the main() routine in init/main.c.

Memory Management

This code is mostly in mm but the architecture speci�c code is in arch/*/mm. The

page fault handling code is in mm/memory.c and the memory mapping and page cache

code is in mm/filemap.c. The bu�er cache is implemented in mm/buffer.c and the

swap cache in mm/swap state.c and mm/swapfile.c.

Kernel

Most of the relevent generic code is in kernel with the architecture speci�c code

in arch/*/kernel. The scheduler is in kernel/sched.c and the fork code is in

kernel/fork.c. The bottom half handling code is in include/linux/interrupt.h.

The task struct data structure can be found in include/linux/sched.h.

PCI

The PCI pseudo driver is in drivers/pci/pci.cwith the system wide de�nitions in

include/linux/pci.h. Each architecture has some speci�c PCI BIOS code, Alpha

AXP's is in arch/alpha/kernel/bios32.c.

Interprocess Communication

This is all in ipc. All System V IPC objects include an ipc perm data structure and

this can be found in include/linux/ipc.h. System V messages are implemented in

ipc/msg.c, shared memory in ipc/shm.c and semaphores in ipc/sem.c. Pipes are

implemented in ipc/pipe.c.

Interrupt Handling

The kernel's interrupt handling code is almost all microprocessor (and often platform)

speci�c. The Intel interrupt handling code is in arch/i386/kernel/irq.c and its

de�nitions in include/asm-i386/irq.h.

p

Device Drivers

Most of the lines of the Linux kernel's source code are in its device drivers. All of

Linux's device driver sources are held in drivers but these are further broken out

by type:

/block block device drivers such as ide (in ide.c). If you want to look at how

all of the devices that could possibly contain �le systems are initialized then

you should look at device setup() in drivers/block/genhd.c. It not only

initializes the hard disks but also the network as you need a network to mount

nfs �le systems. Block devices include both IDE and SCSI based devices.

/char This the place to look for character based devices such as ttys, serial ports

and mice.

/cdrom All of the CDROM code for Linux. It is here that the special CDROM

devices (such as Soundblaster CDROM) can be found. Note that the ide CD

driver is ide-cd.c in drivers/block and that the SCSI CD driver is in scsi.c

in drivers/scsi.

/pci This are the sources for the PCI pseudo-driver. A good place to look at how

the PCI subsystem is mapped and initialized. The Alpha AXP PCI �xup code

is also worth looking at in arch/alpha/kernel/bios32.c.

/scsi This is where to �nd all of the SCSI code as well as all of the drivers for the

scsi devices supported by Linux.

/net This is where to look to �nd the network device drivers such as the DECChip

21040 PCI ethernet driver which is in tulip.c.

/sound This is where all of the sound card drivers are.

File Systems

The sources for the EXT2 �le system are all in the fs/ext2/ directory with data struc-

ture de�nitions in include/linux/ext2 fs.h, ext2 fs i.h and ext2 fs sb.h. The

Virtual File System data structures are described in include/linux/fs.h and the

code is in fs/*. The bu�er cache is implemented in fs/buffer.c along with the

update kernel daemon.

Network

The networking code is kept in net with most of the include �les in include/net.

The BSD socket code is in net/socket.c and the IP version 4 INET socket code is

in net/ipv4/af inet.c. The generic protocol support code (including the sk buff

handling routines) is in net/core with the TCP/IP networking code in net/ipv4.

The network device drivers are in drivers/net.

Modules

The kernel module code is partially in the kernel and partially in the modules pack-

age. The kernel code is all in kernel/modules.c with the data structures and ker-

nel demon kerneld messages in include/linux/module.h and include/linux/-

kerneld.h respectively. You may want to look at the structure of an ELF object �le

in include/linux/elf.h.

p

Appendix A

Linux Data Structures

This appendix lists the major data structures that Linux uses and which are described

in this book. They have been edited slightly to �t the paper.

block dev struct

block dev struct data structures are used to register block devices as available for

use by the bu�er cache. They are held together in the blk dev vector.
See

include/linux/

blkdev.h

struct blk_dev_struct {

void (*request_fn)(void);

struct request * current_request;

struct request plug;

struct tq_struct plug_tq;

};

bu�er head

The buffer head data structure holds information about a block bu�er in the bu�er

cache.
See

include/linux/

fs.h

/* bh state bits */

#define BH_Uptodate 0 /* 1 if the buffer contains valid data */

#define BH_Dirty 1 /* 1 if the buffer is dirty */

#define BH_Lock 2 /* 1 if the buffer is locked */

#define BH_Req 3 /* 0 if the buffer has been invalidated */

#define BH_Touched 4 /* 1 if the buffer has been touched (aging) */

#define BH_Has_aged 5 /* 1 if the buffer has been aged (aging) */

#define BH_Protected 6 /* 1 if the buffer is protected */

#define BH_FreeOnIO 7 /* 1 to discard the buffer_head after IO */

struct buffer_head {

/* First cache line: */

unsigned long b_blocknr; /* block number */

kdev_t b_dev; /* device (B_FREE = free) */

kdev_t b_rdev; /* Real device */

unsigned long b_rsector; /* Real buffer location on disk */

struct buffer_head *b_next; /* Hash queue list */

157

pp

struct buffer_head *b_this_page; /* circular list of buffers in one

page */

/* Second cache line: */

unsigned long b_state; /* buffer state bitmap (above) */

struct buffer_head *b_next_free;

unsigned int b_count; /* users using this block */

unsigned long b_size; /* block size */

/* Non-performance-critical data follows. */

char *b_data; /* pointer to data block */

unsigned int b_list; /* List that this buffer appears */

unsigned long b_flushtime; /* Time when this (dirty) buffer

* should be written */

unsigned long b_lru_time; /* Time when this buffer was

* last used. */

struct wait_queue *b_wait;

struct buffer_head *b_prev; /* doubly linked hash list */

struct buffer_head *b_prev_free; /* doubly linked list of buffers */

struct buffer_head *b_reqnext; /* request queue */

};

device

Every network device in the system is represented by a device data structure.
See

include/linux/

netdevice.h

struct device

{

/*

* This is the first field of the "visible" part of this structure

* (i.e. as seen by users in the "Space.c" file). It is the name

* the interface.

*/

char *name;

/* I/O specific fields */

unsigned long rmem_end; /* shmem "recv" end */

unsigned long rmem_start; /* shmem "recv" start */

unsigned long mem_end; /* shared mem end */

unsigned long mem_start; /* shared mem start */

unsigned long base_addr; /* device I/O address */

unsigned char irq; /* device IRQ number */

/* Low-level status flags. */

volatile unsigned char start, /* start an operation */

interrupt; /* interrupt arrived */

unsigned long tbusy; /* transmitter busy */

struct device *next;

/* The device initialization function. Called only once. */

int (*init)(struct device *dev);

/* Some hardware also needs these fields, but they are not part of

the usual set specified in Space.c. */

unsigned char if_port; /* Selectable AUI,TP, */

unsigned char dma; /* DMA channel */

struct enet_statistics* (*get_stats)(struct device *dev);

/*

* This marks the end of the "visible" part of the structure. All

* fields hereafter are internal to the system, and may change at

* will (read: may be cleaned up at will).

*/

/* These may be needed for future network-power-down code. */

unsigned long trans_start; /* Time (jiffies) of

last transmit */

unsigned long last_rx; /* Time of last Rx */

unsigned short flags; /* interface flags (BSD)*/

unsigned short family; /* address family ID */

unsigned short metric; /* routing metric */

unsigned short mtu; /* MTU value */

unsigned short type; /* hardware type */

unsigned short hard_header_len; /* hardware hdr len */

void *priv; /* private data */

/* Interface address info. */

unsigned char broadcast[MAX_ADDR_LEN];

unsigned char pad;

unsigned char dev_addr[MAX_ADDR_LEN];

unsigned char addr_len; /* hardware addr len */

unsigned long pa_addr; /* protocol address */

unsigned long pa_brdaddr; /* protocol broadcast addr*/

unsigned long pa_dstaddr; /* protocol P-P other addr*/

unsigned long pa_mask; /* protocol netmask */

unsigned short pa_alen; /* protocol address len */

struct dev_mc_list *mc_list; /* M'cast mac addrs */

int mc_count; /* No installed mcasts */

struct ip_mc_list *ip_mc_list; /* IP m'cast filter chain */

__u32 tx_queue_len; /* Max frames per queue */

/* For load balancing driver pair support */

unsigned long pkt_queue; /* Packets queued */

struct device *slave; /* Slave device */

struct net_alias_info *alias_info; /* main dev alias info */

struct net_alias *my_alias; /* alias devs */

/* Pointer to the interface buffers. */

struct sk_buff_head buffs[DEV_NUMBUFFS];

/* Pointers to interface service routines. */

int (*open)(struct device *dev);

int (*stop)(struct device *dev);

int (*hard_start_xmit) (struct sk_buff *skb,

pp

struct device *dev);

int (*hard_header) (struct sk_buff *skb,

struct device *dev,

unsigned short type,

void *daddr,

void *saddr,

unsigned len);

int (*rebuild_header)(void *eth,

struct device *dev,

unsigned long raddr,

struct sk_buff *skb);

void (*set_multicast_list)(struct device *dev);

int (*set_mac_address)(struct device *dev,

void *addr);

int (*do_ioctl)(struct device *dev,

struct ifreq *ifr,

int cmd);

int (*set_config)(struct device *dev,

struct ifmap *map);

void (*header_cache_bind)(struct hh_cache **hhp,

struct device *dev,

unsigned short htype,

__u32 daddr);

void (*header_cache_update)(struct hh_cache *hh,

struct device *dev,

unsigned char * haddr);

int (*change_mtu)(struct device *dev,

int new_mtu);

struct iw_statistics* (*get_wireless_stats)(struct device *dev);

};

device struct

device struct data structures are used to register character and block devices (they

hold its name and the set of �le operations that can be used for this device). Each

valid member of the chrdevs and blkdevs vectors represents a character or block

device respectively.
See

fs/devices.c

struct device_struct {

const char * name;

struct file_operations * fops;

};

�le

Each open �le, socket etcetera is represented by a file data structure.
See

include/linux/

fs.h

struct file {

mode_t f_mode;

loff_t f_pos;

unsigned short f_flags;

unsigned short f_count;

unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;

struct file *f_next, *f_prev;

int f_owner; /* pid or -pgrp where SIGIO should be sent */

struct inode * f_inode;

struct file_operations * f_op;

unsigned long f_version;

void *private_data; /* needed for tty driver, and maybe others */

};

�les struct

The files struct data structure describes the �les that a process has open.
See

include/linux/

sched.h

struct files_struct {

int count;

fd_set close_on_exec;

fd_set open_fds;

struct file * fd[NR_OPEN];

};

fs struct See

include/linux/

sched.h
struct fs_struct {

int count;

unsigned short umask;

struct inode * root, * pwd;

};

gendisk

The gendisk data structure holds information about a hard disk. They are used

during initialization when the disks are found and then probed for partitions.
See

include/linux/

genhd.h

struct hd_struct {

long start_sect;

long nr_sects;

};

struct gendisk {

int major; /* major number of driver */

const char *major_name; /* name of major driver */

int minor_shift; /* number of times minor is shifted to

get real minor */

int max_p; /* maximum partitions per device */

int max_nr; /* maximum number of real devices */

void (*init)(struct gendisk *);

/* Initialization called before we

do our thing */

struct hd_struct *part; /* partition table */

int *sizes; /* device size in blocks, copied to

blk_size[] */

int nr_real; /* number of real devices */

pp

void *real_devices; /* internal use */

struct gendisk *next;

};

inode

The VFS inode data structure holds information about a �le or directory on disk.
See

include/linux/

fs.h

struct inode {

kdev_t i_dev;

unsigned long i_ino;

umode_t i_mode;

nlink_t i_nlink;

uid_t i_uid;

gid_t i_gid;

kdev_t i_rdev;

off_t i_size;

time_t i_atime;

time_t i_mtime;

time_t i_ctime;

unsigned long i_blksize;

unsigned long i_blocks;

unsigned long i_version;

unsigned long i_nrpages;

struct semaphore i_sem;

struct inode_operations *i_op;

struct super_block *i_sb;

struct wait_queue *i_wait;

struct file_lock *i_flock;

struct vm_area_struct *i_mmap;

struct page *i_pages;

struct dquot *i_dquot[MAXQUOTAS];

struct inode *i_next, *i_prev;

struct inode *i_hash_next, *i_hash_prev;

struct inode *i_bound_to, *i_bound_by;

struct inode *i_mount;

unsigned short i_count;

unsigned short i_flags;

unsigned char i_lock;

unsigned char i_dirt;

unsigned char i_pipe;

unsigned char i_sock;

unsigned char i_seek;

unsigned char i_update;

unsigned short i_writecount;

union {

struct pipe_inode_info pipe_i;

struct minix_inode_info minix_i;

struct ext_inode_info ext_i;

struct ext2_inode_info ext2_i;

struct hpfs_inode_info hpfs_i;

struct msdos_inode_info msdos_i;

struct umsdos_inode_info umsdos_i;

struct iso_inode_info isofs_i;

struct nfs_inode_info nfs_i;

struct xiafs_inode_info xiafs_i;

struct sysv_inode_info sysv_i;

struct affs_inode_info affs_i;

struct ufs_inode_info ufs_i;

struct socket socket_i;

void *generic_ip;

} u;

};

ipc perm

The ipc perm data structure describes the access permissions of a System V IPC

object .
See

include/linux/

ipc.h

struct ipc_perm

{

key_t key;

ushort uid; /* owner euid and egid */

ushort gid;

ushort cuid; /* creator euid and egid */

ushort cgid;

ushort mode; /* access modes see mode flags below */

ushort seq; /* sequence number */

};

irqaction

The irqaction data structure is used to describe the system's interrupt handlers.
See

include/linux/

interrupt.h

struct irqaction {

void (*handler)(int, void *, struct pt_regs *);

unsigned long flags;

unsigned long mask;

const char *name;

void *dev_id;

struct irqaction *next;

};

linux binfmt

Each binary �le format that Linux understands is represented by a linux binfmt

data structure.
See

include/linux/

binfmts.h

struct linux_binfmt {

struct linux_binfmt * next;

long *use_count;

int (*load_binary)(struct linux_binprm *, struct pt_regs * regs);

int (*load_shlib)(int fd);

int (*core_dump)(long signr, struct pt_regs * regs);

};

pp

mem map t

The mem map t data structure (also known as page) is used to hold information about

each page of physical memory.
See

include/linux/

mm.h

typedef struct page {

/* these must be first (free area handling) */

struct page *next;

struct page *prev;

struct inode *inode;

unsigned long offset;

struct page *next_hash;

atomic_t count;

unsigned flags; /* atomic flags, some possibly

updated asynchronously */

unsigned dirty:16,

age:8;

struct wait_queue *wait;

struct page *prev_hash;

struct buffer_head *buffers;

unsigned long swap_unlock_entry;

unsigned long map_nr; /* page->map_nr == page - mem_map */

} mem_map_t;

mm struct

The mm struct data structure is used to describe the virtual memory of a task or

process.
See

include/linux/

sched.h

struct mm_struct {

int count;

pgd_t * pgd;

unsigned long context;

unsigned long start_code, end_code, start_data, end_data;

unsigned long start_brk, brk, start_stack, start_mmap;

unsigned long arg_start, arg_end, env_start, env_end;

unsigned long rss, total_vm, locked_vm;

unsigned long def_flags;

struct vm_area_struct * mmap;

struct vm_area_struct * mmap_avl;

struct semaphore mmap_sem;

};

pci bus

Every PCI bus in the system is represented by a pci bus data structure.
See

include/linux/

pci.h

struct pci_bus {

struct pci_bus *parent; /* parent bus this bridge is on */

struct pci_bus *children; /* chain of P2P bridges on this bus */

struct pci_bus *next; /* chain of all PCI buses */

struct pci_dev *self; /* bridge device as seen by parent */

struct pci_dev *devices; /* devices behind this bridge */

void *sysdata; /* hook for sys-specific extension */

unsigned char number; /* bus number */

unsigned char primary; /* number of primary bridge */

unsigned char secondary; /* number of secondary bridge */

unsigned char subordinate; /* max number of subordinate buses */

};

pci dev

Every PCI device in the system, including PCI-PCI and PCI-ISA bridge devices is

represented by a pci dev data structure.
See

include/linux/

pci.h

/*

* There is one pci_dev structure for each slot-number/function-number

* combination:

*/

struct pci_dev {

struct pci_bus *bus; /* bus this device is on */

struct pci_dev *sibling; /* next device on this bus */

struct pci_dev *next; /* chain of all devices */

void *sysdata; /* hook for sys-specific extension */

unsigned int devfn; /* encoded device & function index */

unsigned short vendor;

unsigned short device;

unsigned int class; /* 3 bytes: (base,sub,prog-if) */

unsigned int master : 1; /* set if device is master capable */

/*

* In theory, the irq level can be read from configuration

* space and all would be fine. However, old PCI chips don't

* support these registers and return 0 instead. For example,

* the Vision864-P rev 0 chip can uses INTA, but returns 0 in

* the interrupt line and pin registers. pci_init()

* initializes this field with the value at PCI_INTERRUPT_LINE

* and it is the job of pcibios_fixup() to change it if

* necessary. The field must not be 0 unless the device

* cannot generate interrupts at all.

*/

unsigned char irq; /* irq generated by this device */

};

request

request data structures are used to make requests to the block devices in the system.

The requests are always to read or write blocks of data to or from the bu�er cache.
See

include/linux/

blkdev.h

struct request {

volatile int rq_status;

#define RQ_INACTIVE (-1)

pp

#define RQ_ACTIVE 1

#define RQ_SCSI_BUSY 0xffff

#define RQ_SCSI_DONE 0xfffe

#define RQ_SCSI_DISCONNECTING 0xffe0

kdev_t rq_dev;

int cmd; /* READ or WRITE */

int errors;

unsigned long sector;

unsigned long nr_sectors;

unsigned long current_nr_sectors;

char * buffer;

struct semaphore * sem;

struct buffer_head * bh;

struct buffer_head * bhtail;

struct request * next;

};

rtable

Each rtable data structure holds information about the route to take in order to

send packets to an IP host. rtable data structures are used within the IP route

cache.
See

include/net/

route.h

struct rtable

{

struct rtable *rt_next;

__u32 rt_dst;

__u32 rt_src;

__u32 rt_gateway;

atomic_t rt_refcnt;

atomic_t rt_use;

unsigned long rt_window;

atomic_t rt_lastuse;

struct hh_cache *rt_hh;

struct device *rt_dev;

unsigned short rt_flags;

unsigned short rt_mtu;

unsigned short rt_irtt;

unsigned char rt_tos;

};

semaphore

Semaphores are used to protect critical data structures and regions of code. y
See

include/asm/

semaphore.h

struct semaphore {

int count;

int waking;

int lock ; /* to make waking testing atomic */

struct wait_queue *wait;

};

sk bu�

The sk buff data structure is used to describe network data as it moves between

the layers of protocol.
See

include/linux/

skbuff.h

struct sk_buff

{

struct sk_buff *next; /* Next buffer in list */

struct sk_buff *prev; /* Previous buffer in list */

struct sk_buff_head *list; /* List we are on */

int magic_debug_cookie;

struct sk_buff *link3; /* Link for IP protocol level buffer chains */

struct sock *sk; /* Socket we are owned by */

unsigned long when; /* used to compute rtt's */

struct timeval stamp; /* Time we arrived */

struct device *dev; /* Device we arrived on/are leaving by */

union

{

struct tcphdr *th;

struct ethhdr *eth;

struct iphdr *iph;

struct udphdr *uh;

unsigned char *raw;

/* for passing file handles in a unix domain socket */

void *filp;

} h;

union

{

/* As yet incomplete physical layer views */

unsigned char *raw;

struct ethhdr *ethernet;

} mac;

struct iphdr *ip_hdr; /* For IPPROTO_RAW */

unsigned long len; /* Length of actual data */

unsigned long csum; /* Checksum */

__u32 saddr; /* IP source address */

__u32 daddr; /* IP target address */

__u32 raddr; /* IP next hop address */

__u32 seq; /* TCP sequence number */

__u32 end_seq; /* seq [+ fin] [+ syn] + datalen */

__u32 ack_seq; /* TCP ack sequence number */

unsigned char proto_priv[16];

volatile char acked, /* Are we acked ? */

used, /* Are we in use ? */

free, /* How to free this buffer */

arp; /* Has IP/ARP resolution finished */

unsigned char tries, /* Times tried */

lock, /* Are we locked ? */

localroute, /* Local routing asserted for this frame */

pkt_type, /* Packet class */

pkt_bridged, /* Tracker for bridging */

ip_summed; /* Driver fed us an IP checksum */

pp

#define PACKET_HOST 0 /* To us */

#define PACKET_BROADCAST 1 /* To all */

#define PACKET_MULTICAST 2 /* To group */

#define PACKET_OTHERHOST 3 /* To someone else */

unsigned short users; /* User count - see datagram.c,tcp.c */

unsigned short protocol; /* Packet protocol from driver. */

unsigned int truesize; /* Buffer size */

atomic_t count; /* reference count */

struct sk_buff *data_skb; /* Link to the actual data skb */

unsigned char *head; /* Head of buffer */

unsigned char *data; /* Data head pointer */

unsigned char *tail; /* Tail pointer */

unsigned char *end; /* End pointer */

void (*destructor)(struct sk_buff *); /* Destruct function */

__u16 redirport; /* Redirect port */

};

sock

Each sock data structure holds protocol speci�c information about a BSD socket.

For example, for an INET (Internet Address Domain) socket this data structure

would hold all of the TCP/IP and UDP/IP speci�c information.
See

include/linux/

net.h

struct sock

{

/* This must be first. */

struct sock *sklist_next;

struct sock *sklist_prev;

struct options *opt;

atomic_t wmem_alloc;

atomic_t rmem_alloc;

unsigned long allocation; /* Allocation mode */

__u32 write_seq;

__u32 sent_seq;

__u32 acked_seq;

__u32 copied_seq;

__u32 rcv_ack_seq;

unsigned short rcv_ack_cnt; /* count of same ack */

__u32 window_seq;

__u32 fin_seq;

__u32 urg_seq;

__u32 urg_data;

__u32 syn_seq;

int users; /* user count */

/*

* Not all are volatile, but some are, so we

* might as well say they all are.

*/

volatile char dead,

urginline,

intr,

blog,

done,

reuse,

keepopen,

linger,

delay_acks,

destroy,

ack_timed,

no_check,

zapped,

broadcast,

nonagle,

bsdism;

unsigned long lingertime;

int proc;

struct sock *next;

struct sock **pprev;

struct sock *bind_next;

struct sock **bind_pprev;

struct sock *pair;

int hashent;

struct sock *prev;

struct sk_buff *volatile send_head;

struct sk_buff *volatile send_next;

struct sk_buff *volatile send_tail;

struct sk_buff_head back_log;

struct sk_buff *partial;

struct timer_list partial_timer;

long retransmits;

struct sk_buff_head write_queue,

receive_queue;

struct proto *prot;

struct wait_queue **sleep;

__u32 daddr;

__u32 saddr; /* Sending source */

__u32 rcv_saddr; /* Bound address */

unsigned short max_unacked;

unsigned short window;

__u32 lastwin_seq; /* sequence number when we last

updated the window we offer */

__u32 high_seq; /* sequence number when we did

current fast retransmit */

volatile unsigned long ato; /* ack timeout */

volatile unsigned long lrcvtime; /* jiffies at last data rcv */

volatile unsigned long idletime; /* jiffies at last rcv */

unsigned int bytes_rcv;

/*

* mss is min(mtu, max_window)

*/

unsigned short mtu; /* mss negotiated in the syn's */

volatile unsigned short mss; /* current eff. mss - can change */

volatile unsigned short user_mss; /* mss requested by user in ioctl */

volatile unsigned short max_window;

unsigned long window_clamp;

unsigned int ssthresh;

pp

unsigned short num;

volatile unsigned short cong_window;

volatile unsigned short cong_count;

volatile unsigned short packets_out;

volatile unsigned short shutdown;

volatile unsigned long rtt;

volatile unsigned long mdev;

volatile unsigned long rto;

volatile unsigned short backoff;

int err, err_soft; /* Soft holds errors that don't

cause failure but are the cause

of a persistent failure not

just 'timed out' */

unsigned char protocol;

volatile unsigned char state;

unsigned char ack_backlog;

unsigned char max_ack_backlog;

unsigned char priority;

unsigned char debug;

int rcvbuf;

int sndbuf;

unsigned short type;

unsigned char localroute; /* Route locally only */

/*

* This is where all the private (optional) areas that don't

* overlap will eventually live.

*/

union

{

struct unix_opt af_unix;

#if defined(CONFIG_ATALK) || defined(CONFIG_ATALK_MODULE)

struct atalk_sock af_at;

#endif

#if defined(CONFIG_IPX) || defined(CONFIG_IPX_MODULE)

struct ipx_opt af_ipx;

#endif

#ifdef CONFIG_INET

struct inet_packet_opt af_packet;

#ifdef CONFIG_NUTCP

struct tcp_opt af_tcp;

#endif

#endif

} protinfo;

/*

* IP 'private area'

*/

int ip_ttl; /* TTL setting */

int ip_tos; /* TOS */

struct tcphdr dummy_th;

struct timer_list keepalive_timer; /* TCP keepalive hack */

struct timer_list retransmit_timer; /* TCP retransmit timer */

struct timer_list delack_timer; /* TCP delayed ack timer */

int ip_xmit_timeout; /* Why the timeout is running */

struct rtable *ip_route_cache; /* Cached output route */

unsigned char ip_hdrincl; /* Include headers ? */

#ifdef CONFIG_IP_MULTICAST

int ip_mc_ttl; /* Multicasting TTL */

int ip_mc_loop; /* Loopback */

char ip_mc_name[MAX_ADDR_LEN]; /* Multicast device name */

struct ip_mc_socklist *ip_mc_list; /* Group array */

#endif

/*

* This part is used for the timeout functions (timer.c).

*/

int timeout; /* What are we waiting for? */

struct timer_list timer; /* This is the TIME_WAIT/receive

* timer when we are doing IP

*/

struct timeval stamp;

/*

* Identd

*/

struct socket *socket;

/*

* Callbacks

*/

void (*state_change)(struct sock *sk);

void (*data_ready)(struct sock *sk,int bytes);

void (*write_space)(struct sock *sk);

void (*error_report)(struct sock *sk);

};

socket

Each socket data structure holds information about a BSD socket. It does not exist

independently; it is, instead, part of the VFS inode data structure.
See

include/linux/

net.h

struct socket {

short type; /* SOCK_STREAM, ... */

socket_state state;

long flags;

struct proto_ops *ops; /* protocols do most everything */

void *data; /* protocol data */

struct socket *conn; /* server socket connected to */

struct socket *iconn; /* incomplete client conn.s */

struct socket *next;

struct wait_queue **wait; /* ptr to place to wait on */

struct inode *inode;

struct fasync_struct *fasync_list; /* Asynchronous wake up list */

struct file *file; /* File back pointer for gc */

};

pp

task struct

Each task struct data structure describes a process or task in the system.
See

include/linux/

sched.h

struct task_struct {

/* these are hardcoded - don't touch */

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */

long counter;

long priority;

unsigned long signal;

unsigned long blocked; /* bitmap of masked signals */

unsigned long flags; /* per process flags, defined below */

int errno;

long debugreg[8]; /* Hardware debugging registers */

struct exec_domain *exec_domain;

/* various fields */

struct linux_binfmt *binfmt;

struct task_struct *next_task, *prev_task;

struct task_struct *next_run, *prev_run;

unsigned long saved_kernel_stack;

unsigned long kernel_stack_page;

int exit_code, exit_signal;

/* ??? */

unsigned long personality;

int dumpable:1;

int did_exec:1;

int pid;

int pgrp;

int tty_old_pgrp;

int session;

/* boolean value for session group leader */

int leader;

int groups[NGROUPS];

/*

* pointers to (original) parent process, youngest child, younger sibling,

* older sibling, respectively. (p->father can be replaced with

* p->p_pptr->pid)

*/

struct task_struct *p_opptr, *p_pptr, *p_cptr,

*p_ysptr, *p_osptr;

struct wait_queue *wait_chldexit;

unsigned short uid,euid,suid,fsuid;

unsigned short gid,egid,sgid,fsgid;

unsigned long timeout, policy, rt_priority;

unsigned long it_real_value, it_prof_value, it_virt_value;

unsigned long it_real_incr, it_prof_incr, it_virt_incr;

struct timer_list real_timer;

long utime, stime, cutime, cstime, start_time;

/* mm fault and swap info: this can arguably be seen as either

mm-specific or thread-specific */

unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;

int swappable:1;

unsigned long swap_address;

unsigned long old_maj_flt; /* old value of maj_flt */

unsigned long dec_flt; /* page fault count of the last time */

unsigned long swap_cnt; /* number of pages to swap on next pass */

/* limits */

struct rlimit rlim[RLIM_NLIMITS];

unsigned short used_math;

char comm[16];

/* file system info */

int link_count;

struct tty_struct *tty; /* NULL if no tty */

/* ipc stuff */

struct sem_undo *semundo;

struct sem_queue *semsleeping;

/* ldt for this task - used by Wine. If NULL, default_ldt is used */

struct desc_struct *ldt;

/* tss for this task */

struct thread_struct tss;

/* filesystem information */

struct fs_struct *fs;

/* open file information */

struct files_struct *files;

/* memory management info */

struct mm_struct *mm;

/* signal handlers */

struct signal_struct *sig;

#ifdef __SMP__

int processor;

int last_processor;

int lock_depth; /* Lock depth.

We can context switch in and out

of holding a syscall kernel lock... */

#endif

};

timer list

timer list data structure's are used to implement real time timers for processes.
See

include/linux/

timer.h

struct timer_list {

struct timer_list *next;

struct timer_list *prev;

unsigned long expires;

unsigned long data;

void (*function)(unsigned long);

};

tq struct

Each task queue (tq struct) data structure holds information about work that has

been queued. This is usually a task needed by a device driver but which does not

have to be done immediately.
See

include/linux/

tqueue.h

struct tq_struct {

struct tq_struct *next; /* linked list of active bh's */

pp

int sync; /* must be initialized to zero */

void (*routine)(void *); /* function to call */

void *data; /* argument to function */

};

vm area struct

Each vm area struct data structure describes an area of virtual memory for a pro-

cess.
See

include/linux/

mm.h

struct vm_area_struct {

struct mm_struct * vm_mm; /* VM area parameters */

unsigned long vm_start;

unsigned long vm_end;

pgprot_t vm_page_prot;

unsigned short vm_flags;

/* AVL tree of VM areas per task, sorted by address */

short vm_avl_height;

struct vm_area_struct * vm_avl_left;

struct vm_area_struct * vm_avl_right;

/* linked list of VM areas per task, sorted by address */

struct vm_area_struct * vm_next;

/* for areas with inode, the circular list inode->i_mmap */

/* for shm areas, the circular list of attaches */

/* otherwise unused */

struct vm_area_struct * vm_next_share;

struct vm_area_struct * vm_prev_share;

/* more */

struct vm_operations_struct * vm_ops;

unsigned long vm_offset;

struct inode * vm_inode;

unsigned long vm_pte; /* shared mem */

};

Appendix B

The Alpha AXP Processor

The Alpha AXP architecture is a 64-bit load/store RISC architecture designed with

speed in mind. All registers are 64 bits in length; 32 integer registers and 32
oating

point registers. Integer register 31 and
oating point register 31 are used for null

operations. A read from them generates a zero value and a write to them has no e�ect.

All instructions are 32 bits long and memory operations are either reads or writes.

The architecture allows di�erent implementations so long as the implementations

follow the architecture.

There are no instructions that operate directly on values stored in memory; all data

manipulation is done between registers. So, if you want to increment a counter

in memory, you �rst read it into a register, then modify it and write it out. The

instructions only interact with each other by one instruction writing to a register

or memory location and another register reading that register or memory location.

One interesting feature of Alpha AXP is that there are instructions that can generate

ags, such as testing if two registers are equal, the result is not stored in a processor

status register, but is instead stored in a third register. This may seem strange at

�rst, but removing this dependency from a status register means that it is much

easier to build a CPU which can issue multiple instructions every cycle. Instructions

on unrelated registers do not have to wait for each other to execute as they would if

there were a single status register. The lack of direct operations on memory and the

large number of registers also help issue multiple instructions.

The Alpha AXP architecture uses a set of subroutines, called privileged architecture

library code (PALcode). PALcode is speci�c to the operating system, the CPU

implementation of the Alpha AXP architecture and to the system hardware. These

subroutines provide operating system primitives for context switching, interrupts,

exceptions and memory management. These subroutines can be invoked by hardware

or by CALL PAL instructions. PALcode is written in standard Alpha AXP assembler

with some implementation speci�c extensions to provide direct access to low level

hardware functions, for example internal processor registers. PALcode is executed in

PALmode, a privileged mode that stops some system events happening and allows

the PALcode complete control of the physical system hardware.

175

pp p

Appendix C

Useful Web and FTP Sites

The following World Wide Web and ftp sites are useful:

http://www.azstarnet.com/~axplinux This is David Mosberger-Tang's Alpha

AXP Linux web site and it is the place to go for all of the Alpha AXP HOW-

TOs. It also has a large number of pointers to Linux and Alpha AXP speci�c

information such as CPU data sheets.

http://www.redhat.com/ Red Hat's web site. This has a lot of useful pointers.

ftp://sunsite.unc.edu This is the major site for a lot of free software. The Linux

speci�c software is held in pub/Linux.

http://www.intel.com Intel's web site and a good place to look for Intel chip

information.

http://www.ssc.com/lj/index.html The Linux Journal is a very good Linux

magazine and well worth the yearly subscription for its excellent articles.

http://www.blackdown.org/java-linux.html This is the primary site for infor-

mation on Java on Linux.

ftp://tsx-11.mit.edu/~ftp/pub/linux MIT's Linux ftp site.

ftp://ftp.cs.helsinki.�/pub/Software/Linux/Kernel Linus's kernel sources.

http://www.linux.org.uk The UK Linux User Group.

http://sunsite.unc.edu/mdw/linux.html Home page for the Linux Documen-

tation Project,

http://www.digital.com Digital Equipment Corporation's main web page.

http://altavista.digital.com DIGITAL's Altavista search engine. A very good

place to search for information within the web and news groups.

http://www.linuxhq.com The Linux HQ web site holds up to date o�cial and

uno�cal patches as well as advice and web pointers that help you get the best

set of kernel sources possible for your system.

http://www.amd.com The AMD web site.

http://www.cyrix.com Cyrix's web site.

177

pp

Appendix D

The GNU General Public

License

Printed below is the GNU General Public License (the GPL or copyleft), under

which Linux is licensed. It is reproduced here to clear up some of the confusion

about Linux's copyright status|Linux is not shareware, and it is not in the public

domain. The bulk of the Linux kernel is copyright c
1993 by Linus Torvalds, and

other software and parts of the kernel are copyrighted by their authors. Thus, Linux

is copyrighted, however, you may redistribute it under the terms of the GPL printed

below.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge,

MA 02139, USA Everyone is permitted to copy and distribute verbatim copies of

this license document, but changing it is not allowed.

D.1 Preamble

The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee

your freedom to share and change free software{to make sure the software is free

for all its users. This General Public License applies to most of the Free Software

Foundation's software and to any other program whose authors commit to using

it. (Some other Free Software Foundation software is covered by the GNU Library

General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute

copies of free software (and charge for this service if you wish), that you receive

source code or can get it if you want it, that you can change the software or use

pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny

you these rights or to ask you to surrender the rights. These restrictions translate

to certain responsibilities for you if you distribute copies of the software, or if you

179

pp

modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,

you must give the recipients all the rights that you have. You must make sure that

they, too, receive or can get the source code. And you must show them these terms

so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you

this license which gives you legal permission to copy, distribute and/or modify the

software.

Also, for each author's protection and ours, we want to make certain that everyone

understands that there is no warranty for this free software. If the software is modi�ed

by someone else and passed on, we want its recipients to know that what they have

is not the original, so that any problems introduced by others will not re
ect on the

original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to

avoid the danger that redistributors of a free program will individually obtain patent

licenses, in e�ect making the program proprietary. To prevent this, we have made it

clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

D.2 Terms and Conditions for Copying, Distribu-

tion, and Modi�cation

0. This License applies to any program or other work which contains a notice

placed by the copyright holder saying it may be distributed under the terms of

this General Public License. The \Program", below, refers to any such program

or work, and a \work based on the Program" means either the Program or

any derivative work under copyright law: that is to say, a work containing

the Program or a portion of it, either verbatim or with modi�cations and/or

translated into another language. (Hereinafter, translation is included without

limitation in the term \modi�cation".) Each licensee is addressed as \you".

Activities other than copying, distribution and modi�cation are not covered

by this License; they are outside its scope. The act of running the Program is

not restricted, and the output from the Program is covered only if its contents

constitute a work based on the Program (independent of having been made by

running the Program). Whether that is true depends on what the Program

does.

1. You may copy and distribute verbatim copies of the Program's source code

as you receive it, in any medium, provided that you conspicuously and appro-

priately publish on each copy an appropriate copyright notice and disclaimer

of warranty; keep intact all the notices that refer to this License and to the

absence of any warranty; and give any other recipients of the Program a copy

of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may

at your option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,

thus forming a work based on the Program, and copy and distribute such

modi�cations or work under the terms of Section 1 above, provided that you

also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating that

you changed the �les and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or

in part contains or is derived from the Program or any part thereof, to

be licensed as a whole at no charge to all third parties under the terms of

this License.

c. If the modi�ed program normally reads commands interactively when run,

you must cause it, when started running for such interactive use in the

most ordinary way, to print or display an announcement including an

appropriate copyright notice and a notice that there is no warranty (or

else, saying that you provide a warranty) and that users may redistribute

the program under these conditions, and telling the user how to view a

copy of this License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on the

Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able

sections of that work are not derived from the Program, and can be reasonably

considered independent and separate works in themselves, then this License,

and its terms, do not apply to those sections when you distribute them as

separate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be

on the terms of this License, whose permissions for other licensees extend to

the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights

to work written entirely by you; rather, the intent is to exercise the right to

control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with

the Program (or with a work based on the Program) on a volume of a storage

or distribution medium does not bring the other work under the scope of this

License.

3. You may copy and distribute the Program (or a work based on it, under Section

2) in object code or executable form under the terms of Sections 1 and 2 above

provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source

code, which must be distributed under the terms of Sections 1 and 2 above

on a medium customarily used for software interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to give any

third party, for a charge no more than your cost of physically performing

source distribution, a complete machine-readable copy of the correspond-

ing source code, to be distributed under the terms of Sections 1 and 2

above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the o�er to dis-

tribute corresponding source code. (This alternative is allowed only for

pp

noncommercial distribution and only if you received the program in object

code or executable form with such an o�er, in accord with Subsection b

above.)

The source code for a work means the preferred form of the work for making

modi�cations to it. For an executable work, complete source code means all

the source code for all modules it contains, plus any associated interface de�-

nition �les, plus the scripts used to control compilation and installation of the

executable. However, as a special exception, the source code distributed need

not include anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the operating

system on which the executable runs, unless that component itself accompanies

the executable.

If distribution of executable or object code is made by o�ering access to copy

from a designated place, then o�ering equivalent access to copy the source code

from the same place counts as distribution of the source code, even though third

parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as

expressly provided under this License. Any attempt otherwise to copy, modify,

sublicense or distribute the Program is void, and will automatically terminate

your rights under this License. However, parties who have received copies, or

rights, from you under this License will not have their licenses terminated so

long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. How-

ever, nothing else grants you permission to modify or distribute the Program

or its derivative works. These actions are prohibited by law if you do not ac-

cept this License. Therefore, by modifying or distributing the Program (or any

work based on the Program), you indicate your acceptance of this License to

do so, and all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),

the recipient automatically receives a license from the original licensor to copy,

distribute or modify the Program subject to these terms and conditions. You

may not impose any further restrictions on the recipients' exercise of the rights

granted herein. You are not responsible for enforcing compliance by third

parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement

or for any other reason (not limited to patent issues), conditions are imposed

on you (whether by court order, agreement or otherwise) that contradict the

conditions of this License, they do not excuse you from the conditions of this

License. If you cannot distribute so as to satisfy simultaneously your obligations

under this License and any other pertinent obligations, then as a consequence

you may not distribute the Program at all. For example, if a patent license

would not permit royalty-free redistribution of the Program by all those who

receive copies directly or indirectly through you, then the only way you could

satisfy both it and this License would be to refrain entirely from distribution

of the Program.

If any portion of this section is held invalid or unenforceable under any par-

ticular circumstance, the balance of the section is intended to apply and the

section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or

other property right claims or to contest validity of any such claims; this section

has the sole purpose of protecting the integrity of the free software distribution

system, which is implemented by public license practices. Many people have

made generous contributions to the wide range of software distributed through

that system in reliance on consistent application of that system; it is up to the

author/donor to decide if he or she is willing to distribute software through

any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a

consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries

either by patents or by copyrighted interfaces, the original copyright holder

who places the Program under this License may add an explicit geographical

distribution limitation excluding those countries, so that distribution is permit-

ted only in or among countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the

General Public License from time to time. Such new versions will be similar in

spirit to the present version, but may di�er in detail to address new problems

or concerns.

Each version is given a distinguishing version number. If the Program speci�es

a version number of this License which applies to it and \any later version", you

have the option of following the terms and conditions either of that version or

of any later version published by the Free Software Foundation. If the Program

does not specify a version number of this License, you may choose any version

ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose

distribution conditions are di�erent, write to the author to ask for permission.

For software which is copyrighted by the Free Software Foundation, write to the

Free Software Foundation; we sometimes make exceptions for this. Our decision

will be guided by the two goals of preserving the free status of all derivatives of

our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-

TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED

IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM \AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-

ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO

THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME

pp

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-

TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED

TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER

PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM

AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-

CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-

TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE

THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA

OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO

OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER

OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

END OF TERMS AND CONDITIONS

D.3 Appendix: How to Apply These Terms to Your

New Programs

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone

can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them

to the start of each source �le to most e�ectively convey the exclusion of warranty;

and each �le should have at least the \copyright" line and a pointer to where the full

notice is found.

hone line to give the program's name and a brief idea of what it does.i

Copyright c
19yy hname of authori

This program is free software; you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by the

Free Software Foundation; either version 2 of the License, or (at your

option) any later version.

This program is distributed in the hope that it will be useful, but WITH-

OUT ANY WARRANTY; without even the implied warranty of MER-

CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,

675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts

in an interactive mode:

pp y

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision

comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This

is free software, and you are welcome to redistribute it under certain

conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate

parts of the General Public License. Of course, the commands you use may be called

something other than `show w' and `show c'; they could even be mouse-clicks or

menu items{whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if

any, to sign a \copyright disclaimer" for the program, if necessary. Here is a sample;

alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

`Gnomovision' (which makes passes at compilers) written by James Hacker.

hsignature of Ty Cooni, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into pro-

prietary programs. If your program is a subroutine library, you may consider it more

useful to permit linking proprietary applications with the library. If this is what you

want to do, use the GNU Library General Public License instead of this License.

pp

Glossary

Argument Functions and routines are passed arguments to process.

ARP Address Resolution Protocol. Used to translate IP addresses into physical

hardware addresses.

Ascii American Standard Code for Information Interchange. Each letter of the

alphabet is represented by an 8 bit code. Ascii is most often used to store

written characters.

Bit A single bit of data that represents either 1 or 0 (on or o�).

Bottom Half Handler Handlers for work queued within the kernel.

Byte 8 bits of data,

C A high level programming language. Most of the Linux kernel is written in C.

CPU Central Processing Unit. The main engine of the computer, see also micro-

processor and processor.

Data Structure This is a set of data in memory comprised of �elds,

Device Driver The software controlling a particular device, for example the NCR

810 device driver controls the NCR 810 SCSI device.

DMA Direct Memory Access.

ELF Executable and Linkable Format. This object �le format designed by the Unix

System Laboratories is now �rmly established as the most commonly used

format in Linux.

EIDE Extended IDE.

Executable image A structured �le containing machine instructions and data.

This �le can be loaded into a process's virtual memory and executed. See

also program.

Function A piece of software that performs an action. For example, returning the

bigger of two numbers.

IDE Integrated Disk Electronics.

Image See executable image.

IP Internet Protocol.

IPC Interprocess Communiction.

187

pp y

Interface A standard way of calling routines and passing data structures. For

example, the interface between two layers of code might be expressed in terms

of routines that pass and return a particular data structure. Linux's VFS is a

good example of an interface.

IRQ Interrupt Request Queue.

ISA Industry Standard Architecture. This is a standard, although now rather dated,

data bus interface for system components such as
oppy disk drivers.

Kernel Module A dynamically loaded kernel function such as a �lesystem or a

device driver.

Kilobyte A thousand bytes of data, often written as Kbyte,

Megabyte A million bytes of data, often written as Mbyte,

Microprocessor A very integrated CPU. Most modern CPUs are Microprocessors.

Module A �le containing CPU instructions in the form of either assembly language

instructions or a high level language like C.

Object �le A �le containing machine code and data that has not yet been linked

with other object �les or libraries to become an executable image.

Page Physical memory is divided up into equal sized pages.

Pointer A location in memory that contains the address of another location in

memory,

Process This is an entity which can execute programs. A process could be thought

of as a program in action.

Processor Short for Microprocessor, equivalent to CPU.

PCI Peripheral Component Interconnect. A standard describing how the peripheral

components of a computer system may be connected together.

Peripheral An intelligent processor that does work on behalf of the system's CPU.

For example, an IDE controller chip,

Program A coherent set of CPU instructions that performs a task, such as printing

\hello world". See also executable image.

Protocol A protocol is a networking language used to transfer application data

between two cooperating processes or network layers.

Register A location within a chip, used to store information or instructions.

Routine Similar to a function except that, strictly speaking, routines do not return

values.

SCSI Small Computer Systems Interface.

Shell This is a program which acts as an interface between the operating system

and a human user. Also called a command shell, the most commonly used shell

in Linux is the bash shell.

SMP Symmetrical multiprocessing. Systems with more than one processor which

fairly share the work amongst those processors.

Socket A socket represents one end of a network connection, Linux supports the

BSD Socket interface.

Software CPU instructions (both assembler and high level languages like C) and

data. Mostly interchangable with Program.

System V A variant of UnixTM produced in 1983, which included, amongst other

things, System V IPC mechanisms.

TCP Transmission Control Protocol.

Task Queue A mechanism for deferring work in the Linux kernel.

UDP User Datagram Protocol.

Virtual memory A hardware and software mechanism for making the physical

memory in a system appear larger than it actually is.

pp y

Bibliography

[1] Richard L. Sites. Alpha Architecture Reference Manual Digital Press

[2] Matt Welsh and Lar Kaufman. Running Linux O'Reilly & Associates, Inc, ISBN

1-56592-100-3

[3] PCI Special Interest Group PCI Local Bus Speci�cation

[4] PCI Special Interest Group PCI BIOS ROM Speci�cation

[5] PCI Special Interest Group PCI to PCI Bridge Architecture Speci�cation

[6] Intel Peripheral Components Intel 296467, ISBN 1-55512-207-8

[7] Brian W. Kernighan and Dennis M. Richie The C Programming Language Pren-

tice Hall, ISBN 0-13-110362-8

[8] Steven Levy Hackers Penguin, ISBN 0-14-023269-9

[9] Intel Intel486 Processor Family: Programmer's Reference Manual Intel

[10] Comer D. E. Interworking with TCP/IP, Volume 1 - Principles, Protocols and

Architecture Prentice Hall International Inc

[11] David Jagger ARM Architectural Reference Manual Prentice Hall, ISBN 0-13-

736299-4

191

