UNIVERSIDAD BERNARDO O HIGGINS ESCUELA DE INGENIERIA COMERCIAL

TEOREMA DEL BINOMIO

1. 1.- Simplifique la expresión racional dada:

$$\frac{6!}{9!}$$
 b) $\frac{12!}{8! \cdot 6!}$ c) $\frac{3! + 4!}{7!}$ d) $\frac{8!}{6! \cdot 7!}$

c)
$$\frac{3!+4}{7!}$$

d)
$$\frac{8!}{6! \cdot 7!}$$

2. Determine el número:

$$\binom{9}{4}$$

b)
$$\binom{5}{1}$$

b)
$$\binom{5}{1}$$
 c) $\binom{12}{9}$ d) $\binom{50}{48}$

d)
$$\binom{50}{48}$$

3. Encuentre y simplifique los primeros tres términos de

$$\left(a^2 + 4b^3\right)^{12}$$

4. Desarrollar los siguientes binomios :

• 1.
$$(3x + 2y)^2$$

$$2.(2x - y)^5$$

• 3.
$$(1 - xy)^{\frac{1}{2}}$$

• 1.
$$(3x + 2y)^4$$
 2. $(2x - y)^5$
• 3. $(1 - xy)^7$
• $(2/3x - 3/(2x))^6$

5.
$$(1/2 + a)^8$$
 6. $(1-1/x)^{10}$

6.
$$(1-1/x)^{10}$$

6. Desarrolle y simplifique cada una de las siguientes expresiones:

$$\left(2x^3 - \frac{1}{x}\right)^5$$

b)
$$\frac{(x+h)^4 - x^4}{h}$$

7. En cada una de las expresiones siguientes encuentre el término que no contiene a "h" en el desarrollo, después de simplificar

$$\frac{(x+h)^n - x^n}{h}$$

b)
$$\frac{(x+h)^{10} + 2(x+h)^4 - x^{10} - 2x^4}{h}$$

- 8. Encuentre el décimo término de $(\sqrt{t} t^{-1/2})^{15}$
- 9. Calcular el término independiente de x en el desarrollo de:

$$\left(x-\frac{1}{x}\right)^{12}$$

b)
$$(3x - 2\sqrt{x})^{10}$$

- 10. Si x^r se encuentra en el desarrollo de $(x + 1/x)^n$, hallar su coeficiente.
- 11. Hallar el término independiente de x en $(x 1/x^2)^{3n}$.
- 12. Los 2° , 3° y 4° términos del desarrollo de $(x + y)^n$ son 240, 720 y 1080, respectivamente; hallar x, y, n

- 13. Sea $n \in IN_o$. En el desarrollo de $\left(x^2 + \frac{1}{\sqrt{x}}\right)^n$ encontrar:
- n, si la suma de los coeficientes del segundo y tercer término es 55
- 14. Si x^r se encuentra en el desarrollo de $(x + 1/x)^n$, hallar su coeficiente.
- 15. Hallar el término independiente de x en $(x 1/x^2)^{3n}$.
- 16. Los 2°, 3° y 4° términos del desarrollo de (x + y)ⁿ son 240, 720 y 1080, respectivamente; hallar x, y, n.
- 17. 14.- En el desarrollo de $(1-x)^{50} \left(\frac{1}{x} + 1 + x^2\right)$, determinar el coeficiente del término que contiene x^{25} .
- 18. En el binomio $\left(\frac{4x}{5} + \frac{5}{3x}\right)^{12}$, encontrar el quinto término.
- 19. Encontrar el valor de *n* para que los terceros términos de $\left(x^2 + \frac{1}{x}\right)^n$ y $\left(x^3 + \frac{1}{x^2}\right)^n$ sean iguales.
- 20. Encontrar el término independiente de *x* en:

a)
$$\left(\frac{3x}{2} - 2\right)^4$$
 b) $\left(\sqrt{x} + \frac{1}{3x^2}\right)^{10}$ c) $\left(\frac{6x^2}{5} - \frac{1}{3x}\right)^7$ d) $\left(x^2 - \frac{1}{x}\right)^9$

21. En el desarrollo de $\left(ax + \frac{1}{bx^2}\right)^n$, determinar la condición que debe cumplir n para que exista el término independiente de x.