Project 1

Task 1

	The Design of a Computer

Controlled Electronic Dice
	

[image: image1.wmf]Introduction

In this first of three mini-projects, you are required to write a C program to implement an electronic dice. The C program will run on a standard PC and be used to control the micro-controller card you built earlier in the Project 1 module. You do not have to program the micro-controller, this has already been done for you. Your C program must work together with this micro-controller to implement the dice.

To do this task you will work in pairs. You are required to write the program and produce appropriate documentation. It is expected that all groups will be able to produce a working program, but the better groups should find ways to enhance overall operation.

What does the Dice do?

The micro-controller card is fitted with a push button switch and seven LEDs arranged in the shape needed to produce a dice face. When the switch changes state – it is pressed or released – it sends a character to the PC to show there has been a change. When the switch is pressed, it sends the character Y and when it is released it sends the character N.

Equally, characters received by the micro-controller card are used to determine the pattern displayed on the dice face (the 7 LEDs) as shown on the left.

Each bit of the ASCII character is used to control one of the LEDs in the display group. The standard ASCII code set has 7 bits, and the code set is given at the end of this document.

By sending different ASCII characters to the display, you can control which LEDs are turned on, and hence what pattern is displayed. Part of your task will be to work out which bit of the ASCII character controls each LED.

When running, your C program on the PC must monitor the status of the switch. When it is pressed, it must simulate the dice being rolled – the pattern displayed on the face must continually change. When the switch button is released, the display should continue to change for a short time and then display the final pattern (a number in the range 1 to 6 as shown below).

1
2
3
4
5
6

Initial Development
To start with, it is suggested that you simulate the action of the micro-controller card using the standard keyboard and display of the PC. Thus, pressing the switch on the controller card can be simulated by typing Y and releasing the switch can be simulated by typing N.

Similarly, patterns can be displayed on the consol to represent the dice face. In the simplest example, the digits 1 to 6 can displayed using the printf command. See the end of the sheet for formatting options.

You should start by trying to get your program to work with this standard i/o before moving on to looking at communicating with the micro-controller card. This will allow you to explore some of the structure problems you will encounter with your program.

A problem that you will encounter is that you will want to find out if a key has been pressed. Microsoft provide a function _kbhit in <conio.h> to do this.

Int _kbhit(void) returns zero if no key is pressed. Here is an example of using it. Notice how it uses _getch() to read the keyboard character rather than scanf and _cputs(“<string>”) to output text.

/* KBHIT.C: This program loops until the user

 * presses a key. If _kbhit returns nonzero, a

 * keystroke is waiting in the buffer. The program

 * can call _getch or _getche to get the keystroke.

 */

#include <conio.h>

#include <stdio.h>

void main(void)

{

 /* Display message until key is pressed. */

 while(!_kbhit())

 _cputs("Hit me!! ");

 /* Use _getch to throw key away. */

 printf("\nKey struck was '%c'\n", _getch());

 _getch();

}

Interfacing to the Micro-controller Card

All communications with the micro-controller card is via its RS-232 serial interface. This is connected to the COM port of the PC. To see how this works, you can use a Serial Communications utility like HyperTerminal, or any other, to talk direct to the micro-controller. Remember to set the RS232 link to 9600bps, 8-bit data, no parity and 1 stop bit.

Characters entered on the keyboard will be sent to the micro-controller, which will use it to control the LED display. Try typing in the space character. Reference to the ASCII code table at the end of this document will show you that the space character is 20hex. As only one bit is set in the character, only one of the LEDs comes on. Using this table, send different characters to work out the relationship between the bits of the character and the position of the LEDs.

When the button on the micro-controller is pressed, the ASCII character for Y should be received and displayed on the terminal screen. Also, when the button is released, the character N is received.

Programming the Serial Interface

Programming the serial interface is a lot more difficult than using standard consol i/o. You will be provided with some sample code to help you with this part of the project.

What you must do.

In completing this task you need to:

1. Take time to read this document and plan your project work.

2. Understand how ASCII characters are used to communicate with the micro-controller.

3. Develop a simplified version of the program using standard i/o

a. Understand the requirement and produce pseudocode for the basic program

b. Code (including comments) and test/debug your program

4. Understand how to program serial communications in C.

5. Extend your program to work with the micro-controller

a. Understand the requirement and produce pseudocode for the new program

b. Code (including comments) and test/debug your program

6. Produce the necessary documentation

7. Extend the functionality of the program (optional)

What you have to Submit

At the end of the allocated period (5weeks), you must demonstrate your working program to the supervisor. In addition to this, you need to submit documentation for the project (in week 20). The documentation should include:

1. A pseudocode description of the program

2. A listing of the program. The listing must include comments. At the beginning of each subroutine, you should state the function of the subroutine, the data (variables) passed to it and the data it returns.

3. A brief description of how the program works.

For the Better Groups

As was stated, it expected that all groups must complete a working program. Better groups should find ways to extend the functionality of the program. Ideas include:

1. Adding sound effects

2. Adding graphics on the PC screen

3. Design a different game – this could include using a dice in the game

The ASCII Code Set

The standard ASCII code defines 128 character codes (from 0 to 127), of which, the first 32 are control codes (non-printable), and the other 96 are representable characters:

	*
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	A
	B
	C
	D
	E
	F

	0
	NUL
	SOH
	STX
	ETX
	EOT
	ENQ
	ACK
	BEL
	BS
	TAB
	LF
	VT
	FF
	CR
	SO
	SI

	1
	DLE
	DC1
	DC2
	DC3
	DC4
	NAK
	SYN
	ETB
	CAN
	EM
	SUB
	ESC
	FS
	GS
	RS
	US

	2
	
	!
	"
	#
	$
	%
	&
	'
	(
)
	*
	+
	,
	-
	.
	/

	3
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	:
	;
	<
	=
	>
	?

	4
	@
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O

	5
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	[
	\
]
	^
	_

	6
	`
	a
	b
	c
	D
	e
	f
	g
	h
	i
	j
	k
	l
	m
	n
	o

	7
	p
	q
	r
	s
	T
	u
	v
	w
	x
	y
	z
	{
	|
	}
	~
	

* This panel is organized to be easily read in hexadecimal: row numbers represent the first digit and the column numbers represent the second one. For example, the A character is located at the 4th row and the 1st column, for that it would be represented in hexadecimal as 0x41 (65).

Here's a nice trick for sending control characters. On most keyboards, rows 4 and 5 (or rows 6 and 7) of the ASCII chart are mapped onto rows 0 and 1 by way of a modifier key, usually the control key on a keyboard. For example, to generate a linefeed, press control-J; to generate a carriage return, press control-M.

Some ASCII control codes can be generated in a printf statement by refering to them symbolically, e.g.

\b
backspace

\t
horizontal tab
\n
newline

\v
vertical tab

\f
form feed

\r
carriage return

These may help you format the display on the screen.

T&N3311

Page 2

