Chapter 5
The LC-2

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction o di splay.

Instruction Set Architecture

ISA = All of the programmer-visible components

and operations of the computer

¢ memory organization
@ address space -- how may locations can be addressed?
@ addressibility -- how many bits per location?

* register set
@ how many? what size? how are they used?

¢ instruction set
@ opcodes
@ data types
@ addressing modes

ISA provides all information needed for someone that wants to
write a program in machine language
(or translate from a high-level language to machine language).

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

LC-2 Overview: Memory and Registers
Memory

« address space: 2'¢ |ocations (16-bit addresses)
¢ addressibility: 16 bits

Registers
* temporary storage, accessed in a single machine cycle
@accessing memory generally takes longer than a single cycle
« eight general-purpose registers: RO - R7
@each 16 bits wide
@how many bits to uniquely identify a register?
« other registers

@not directly addressible, but used by (and affected by)
instructions

@PC (program counter), condition codes
5.y

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or i splay.

LC-2 Overview: Instruction Set

Opcodes
* 16 opcodes
« Operate instructions: ADD, AND, NOT
« Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
« Control instructions: BR, JSR, JSRR, RET, RTI, TRAP
* some opcodes set/clear condition codes, based on result:
@N = negative, Z = zero, P = positive (> 0)
Data Types
* 16-bit 2’s complement integer
Addressing Modes
* How is the location of an operand specified?
¢ non-memory addresses: immediate, register
« memory addresses: direct, indirect, base+offset

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

‘Copyright © The McGraw-Hil Companies, Inc. Permission required for reproduction o di splay.

Operate Instructions
Only three operations: ADD, AND, NOT

Source and destination operands are registers
¢ These instructions do not reference memory.

« ADD and AND can use “immediate” mode,
where one operand is hard-wired into the instruction.

Will show dataflow diagram with each instruction.

« illustrates when and where data moves
to accomplish the desired operation

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction o di splay.

NOT (Register)

HOT [1 0 0 1| bst | 8rc |1 111 1 1

Register File

Note: Src and Dst
could be the same register.

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

ADD/AND (Register)

ADD [o TR | sret [olo o] srez |

r this zero means “register mode”

mlﬂ'!.ﬂl DstlSrcllﬁ!C‘ ﬂlﬂrc?l

Register File
3 Sred

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or i splay.

ADD/AND (Immediate)

l* this one means “immediate mode”

ADD [0 0 0 1] psr | seer (2] zmms |

AND [0 1 0 1] pst | srct [1] zwms |

Fagigter Fite
Dt -,—
Note: Immediate field is
sign-extended. =y
IRJ:0) o E]
i . ._1_
— NALU
Instruction Reg 3

http://www.fineprint.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Using Operate Instructions
With only ADD, AND, NOT...

* How do we subtract?

¢ How do we OR?

« How do we copy from one register to another?

« How do we initialize a register to zero?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Data Movement Instructions

Load -- read data from memory to register
e LD: direct mode
* LDR: base+offset mode
e LDI: indirect mode

Store -- write data from register to memory
e ST: direct mode
* STR: base+offset mode
e STI: indirect mode

Load effective address -- compute address,
save in register

* LEA: immediate mode

« does not access memory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Direct Addressing Mode

Want to specify address directly in the instruction
« But an address is 16 bits, and so is an instruction!

« After subtracting 4 bits for opcode
and 3 bits for register, we have 9 bits available for address.

Solution:
« Upper 7 bits of address are specified (implicitly) by the PC.

Think of memory as collection of 512-word pages.
« Upper 7 bits identify which page — the page number.
« Lower 9 bits identify which word within the page — the page offset.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Memory Pages

x0000

Page x00 ——x3B24
40200 0011101100100100
FaceeL Page number (7 bits): x1D
R—— *0400 Page offset (9 bits): x124

{ X3A00
512 words Page x1D

Direct mode addressing
gets page number from PC[15:9]
and page offset from IR[8:0].

x3C00
Page x1E

XFEOO
Page x7F

http://www.fineprint.com

Practice LD (Direct)
What is the page number and page offset LD [0 0 1 0] Dst S EfanES
for each of these addresses?
Br Register Fila Pdemory
I o]
Address Page Number Page Offset e
e b L]

x3102 i :

x3002

x4321 1 B

XF3FE - Req

MaS %
MDA
5\ Y 5-\¢
ST (Direct) Base + Offset Addressing Mode
g | 80 1 L] B S EfanES With direct mode, can only addres; word§
on the same memory page as the instruction.
Pr Register Fila Memory ¢ What about the rest of memory?
| I
5o | .
Pelisa| Solution:

i « Use aregister to generate a full 16-bit address.

4 bits for opcode, 3 for src/dest register,
ﬁﬁlﬂ 3 bits for base register -- remaining 6 bits are used
as an unsigned offset.

Instructan Reg

« Offset is zero-extended before adding to base register.

Mas

MDR

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction o di splay.

LDR (Base+Offset)

LDR [o 1. 1 0| pet | Base | indexé

Register Fila Pdemory

Note: Offset field is e I

zero-extended.

1
1RE:Q *, &
AL
L 4
Instruction Reg 7
— 4
Mas %

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

STR (Base+Offset)

STR |0 1. 1 1| Sre | Base | indexé

Register Fila Pdemory

—— i

‘Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Indirect Addressing Mode

Another way to have a full 16-bit address:

* Read address from memory location,
then load/store to that address.

First address is generated from PC and IR

(just like direct addressing), then

content of that address is used as target for load/store.
« Advantage: Doesn't consume a register for base address.
« Disadvantage: Extra memory operation (and no offset).

1
180 5\ ;
N AU K
1 S
Instruction Reg 7
——~
MAR r
MDA
5-1A
Copytight © The McGraw-Hil Comparies, nc. Permission equied o reproducionor i splay.
LDI (Indirect)
IDI |1 0 1 o] Det pgaffeaty
Bo Registar File Mamaory
- = A |
)15 8| (i
: 0]
1 BEl

Instruction Reg
MAR l 3 v
MD-'!T *

5-Y.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

STI (Indirect) Load Effective Address
Concatenates current page number (PC[15:9])

BTT|1 a0 11| 8 ffsatl)
l s B with page offset (IR[8:0]),
pr Registar File Mamary and stores the result into a register.
= T
s a) ' I S| Note: The address is stored in the register,

&

i not the contents of the memory location.

m—"""

Instruction Reg
MAR l's v
MD-'{l
5-v) 5-YY
LEA (Immediate) Example
LER | T
11 1 1 0] Dst l pgoffeeth | Address Instruction Comments
FC Reqister File x30F6 1110001011110100 R1 - x30F4
] Dt x30F7 0001010001101 110 R2-RL+14=x3102
PeiISal x30F8 0011010011110100 M[x30F4] = R2
3 x30F9 01 01010010100000 R2- 0
x30FA. 0001010010100101 R2- R2+5=5
M[R1+14] = R2
x30FB 0111010001001110 M[x3102] = 5
1 [] R3 -~ M[M[x30F4]]
Xx30FC 1 010011011110100 R3 -~ M[x3102]
Instruction Reg R3-5
opcode
5-YY 5-Y¢

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Control Instructions

Used to alter the sequence of instructions
(by changing the Program Counter)

Conditional Branch
¢ branch is taken if a specified condition is true
@offset is concatenated with upper bits of PC to yield new PC
« else, the branch is not taken
@PC is not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
« always changes the PC

TRAP
« changes PC to the first instruction in an OS “service routine”
« when routine is done, will execute next instruction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Condition Codes

LC-2 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

Set by any instruction that stores a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times
« Based on the last instruction that altered a register

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Branch Instruction
Branch specifies one or more condition codes

If the set bit is specified, the branch is taken
« PCis set to the address specified in the instruction

« Like direct mode addressing,
target address is made by concatenating
current page number (PC[15:9]) with offset (IR[8:0])

* Note: Target must be on same page as BR instruction.

If the branch is not taken,
the next sequential instruction (PC+1) is executed.

5.1

BR

BR |0 0 0 o0 nl=]g] pgoffeats

2
IRja-0]
1] R
Instruction Reg

5-YA

What happens if bits [11:9] are all zero? All one?

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Using Branch Instructions

Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

RL - x3100
RB -0
R - 12
\
Rt - MRI]
R3 - R3+R4
NO Rl - R1+1
R - R-1
YES \—

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Sample Program

5-Y4
Jump Instructions
Jump is an unconditional branch -- always taken.
Direct
« Concatenate page number (PC[15:9]) and offset (IR[8:0]).
« Works if target is on same page.
Base + Offset
« Address is register plus unsigned offset (IR[5:0]).
« Allows any target address.
Link bit converts JMP to JSR (Jump to Subroutine).
Will discuss later.
5-1)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

Address Instruction Comments
x3000 111000112100000000 R1- x3100
x3001 0101011011100000 R3- 0
x3002 0101010010100000 R2- 0
x3003 0001010011101100 R2- 12
x3004 0000010000001 0001 If Z, goto x3009
x3005 01 1010000100000 0 Loadnextvalueto R4
x3006 0001011011000001 Add to R3
x3007 0002100100211 00001 IincrementR1 (pointer)
X3008 000101001011 1111 nDecrementR2((counter)
x3009 0000111000000100 Goto x3004
5-Y
JMP (Direct)
JMP o 1 0 ololo o pgoffeat
PC
1 Ir[119)
Instruction Reg
5-Y'Y

http://www.fineprint.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

JMPR (Base + Offset)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

TRAP

TRAP [1 1 1 1]o 0 0 6] erapveces |

Calls a service routine, identified by 8-bit “trap vector.”

vector |routine

X23 |input a character from the keyboard

X21 |output a character to the monitor

X25 | halt the program

When routine is done,
PC is set to the instruction following TRAP.
(We'll talk about how this works later.)

JMPR [1 1 o ololo o Basa | indexe |
Register File
PC g
F
-
1
1
+ Zext _l_
RS0 & S
- . ALU
Instruction Reg
5-¥Y
Copyrght O The McGraw:HilCorpanie,Inc. Permisionrequied forepoducton o sply.
Another Example
Count the occurrences of a character in a file
« Program begins at location x3000
« Read character from keyboard
¢ Load each character from a “file”
@ File is a sequence of memory locations
@ Starting address of file is stored in the memory location
immediately after the program
« If file character equals input character, increment counter
« End of file is indicated by a special ASCIl value: EOT (x04)
¢ At the end, print the number of characters and halt
(assume there will be less than 10 occurrences of the character)
A special character used to indicate the end of a sequence
is often called a sentinel.
« Useful when you don't know ahead of time how many times
to execute a loop.
5-ye

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Flow Chart

Convert count to
ASCII character
(RO =30, RO = R2 + R0)

Count =0
(R2=0)

Ptr = 1st file character
(R3 = M[x3012])

Print count
(TRAP x21)
HALT
(TRAP x25)

Input char

from keybd
(TRAP x23)

Incr Count
(R2=R2+1)
Load next char from file
(R3=R3+1, R1=M[R3))

Load char from file
(R1=M[R3))

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Program (1 of 2) Program (2 of 2)
Address Instruction Comments Address Instruction Comments
x3000 01 01010010100000 R2 = 0 (counter) Xx300A 0001010010100001 R2- R2+1
x3001 0010011000010010 R3- M[x3102](ptr) x300B 0001011011100001 R3- R3+1
x3002 1 1110000001000 11 InputtoRO(TRAPx23) x300C 0110001011000000 R1- M[R3]
x3003 0110001011000000 R1- M[R3] x300D 0000111000000100 Goto x3004
x3004 0001100001111100 R4~ R1-4(EOT) Xx300E 0010000000010011 RO - M[x3013]
x30056 0000010000001 110 If Z, goto x300E x300F 0001000000000010O0 RO~ RO +R2
x3006 1001001001111111 R1- NOTR1 x3010 111100000010000 1 PrintRO(TRAP x21)
x3007 0001001001100001 Rl1- R1+1 x3011 1111000000100101 HALT (TRAP x25)
X3008 0001001001000000 R1- R1+RO X3012 Starting Address of File
x3009 0000101000001 011 IfNorP,gotox300B x3013 0000000000110000 ASCII x30 (‘0")
5-vv 5-YA
LC-2 Data Path Components
Data Path e | . Global bus
Revisited special set of wires that carry a 16-bit signal to many
components
¢ inputs to the bus are “tri-state devices,”
that only place a signal on the bus when they are enabled
« only one (16-bit) signal should be enabled at any time
@control unit decides which signal “drives” the bus
Filled arrow « any number of components can read the bus
= info to be processed. @register only captures bus data if it is write-enabled by the
Unfilled arrow control unit
= control signal.
Memory and 1/0

« Control and data registers for memory and I/O devices
*« memory: MAR, MDR (also control signal for read/write)
« input (keyboard): KBSR, KBDR

« output (monitor): CRTSR, CRTDR

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Data Path Components
ALU

« Accepts inputs from register file
and from sign-extended bits from IR (immediate field).
« Output goes to bus.

@used by condition code logic, register file, memory and 1/O
registers

Register File
* Two read addresses, one write address
¢ Input from bus

@result of ALU operation or memory (or 1/0) read
« Two 16-bit outputs

@used by ALU, PC, memory address
@data for store instructions passes through ALU

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Data Path Components
PC and PCMUX
¢ Fourinputs to PC, controlled by PCMUX
1. current PC plus 1 -- normal operation

2. PC[15:9] and IR[8:0] -- BR instruction (and JSR, discussed
later)

3. register file -- RET instruction (discussed later)
4. bus -- TRAP, JSRR instructions (discussed later)

MAR and MARMUX
¢ Three inputs to MAR, controlled by MARMUX
1. PC[15:9] and IR[8:0] -- direct addressing mode
2. Register File plus zero-extended offset -- base+offset mode
3. Zero-extended IR[7:0] -- TRAP instruction (discussed later)

5-tY

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or di splay.

Data Path Components

Condition Code Logic
« Looks at value on bus and generates N, Z, P signals
« Registers set only when control unit enables them

@only certain instructions set the codes
(anything that loads a value into a register:
ADD, AND, NOT, LD, LDI, LDR, LEA)

Control Unit
« Decodes instruction (in IR)

« On each machine cycle, changes control signals for next phase
of instruction processing

@who drives the bus?
@which registers are write enabled?

@which operation should ALU perform?
a...

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

N

http://www.fineprint.com

