
Supporting Software Maintenance Evolution Processes in the

Adele System

Noureddine Belkhatir � Walc�elio L. Melo y Jacky Estublier Mohamed A. Nacer

Paper published in the Proc. of the 30th Annual ACM Southeast Conference, Raleigh, NC, April 8-10,
1992.

Abstract

One of the major problems encountered when de-
veloping large systems is related to maintaining an
operational and responsive software system, once it
has been accepted and put into production. This
problem is referred to as Software maintenance.
Evolution is central to Software Maintenance, re-
sponsible for ensuring a longer working life. Many
Software Engineering Environments (SEEs) have
been constructed in order to support maintenance
activities. In this paper, we will �rst present major
development in SEEs to support Maintenance. Af-
terwards, we will describe the main ideas behind the
design and implementation of the Adele system, a
third generation SEE. Following this, we will give
an example to illustrate the way a process model
can be described on top of Adele using an example
of evolution maintenance. This approach is heavily
based on event-condition-action formalism. We will
illustrate the way in which communication and co-
ordination of the activities carried out by di�erent
users are automated.

Key words CASE; software engineering environ-
ment; maintenance; software process; programming
in the large; cooperative work; event-condition-
action; trigger.

�Address: Laboratorie de Genie Logiciel, BP 53X, 38041
Grenoble, FRANCE. E-mail: fbelkhatir, wmelo, estublier,
nacerg@imag.imag.fr

yMelo is supported by Technological and Scienti�c Devel-
opment National Council of Brazil (CNPq).

1 Introduction

Controlling the evolution of software products in
order to extend their working life and reduce main-
tenance costs is a major commercial and scienti�c
challenge. Signi�cant academic and industrial stud-
ies have proved that maintenance evolution in large
software: (a) is an activity that involves di�erent
groups of people working over a long period of time;
(b) is an activity present in the whole software life
cycle, because software changes throughout its life;
(c) consumes much e�ort and is not su�ciently as-
sisted; (d) is centered on communication and coor-
dination concerns.
In this paper we will concentrate on the three

following aspects:

1. In order to support activities for large projects,
the environment designers are left with the fol-
lowing questions: \What is the structure of
the environment? How are policies and ac-
tivities supported and enforced ?". There-
fore, many Software Engineering Environments
(SEEs) have been constructed in response to
the following requirements: to guide and assist
project teams when carrying out their activi-
ties according to the project policies; to con-
trol the ordering, synchronization, communi-
cation, and concurrency among those activi-
ties; to take into account the objects produced
and consumed by activities; and to describe the
user's capacities and responsibilities in order to
control the di�erent roles they can play when
performing activities. We will present the main
developments, highlighting the recent approach
in software management.

2. A description of the main ideas behind the de-
sign and implementation of the Adele SEE.
Adele provides a language in which the static
aspects of a SEE are described (objects, re-
lationships among objects, etc.) as well as
the dynamic aspects (consistency rules, meth-

1

ods, etc.). The static aspects are de�ned by
the Adele data model which is based on the
entity-relationship model extended with ver-
sion, multiple inheritance, and schema parti-
tion supported by a distributed multi-user and
multi-version software engineering database.
The dynamic aspects of the objects and the
behavioral aspects of the SEE are described
by an event-condition-action (ECA) formalism
supported by a trigger mechanism.

3. An illustration of the way a process model can
be described on top of Adele. We give the
Adele solution for an example of evolution
maintenance to control the changes in the data
and processing environment. The emphasis is
on the programming-in-the-large problems. We
will illustrate the way in which communication
and coordination of the activities, carried out
by di�erent users, are automated.

2 Related works

Considering the work reported in the literature con-
cerning SEEs for the management of the software
process, we may distinguish three generations:

The toolkit generation. In the systems of this
generation, the tools surround the standard �le sys-
tem in order to support project life-cycle activities,
but without appropriate mechanisms to integrate
and coordinate them. The main advantage of such
SEEs is their low cost constructions, but since a
global process model and the mechanisms to sup-
port it do not exist, the policies concerned with co-
ordination and control of activities can neither be
expressed nor enforced automatically.

The hardwired generation The key idea of this
approach is the development of a basic support to
manage the objects produced during the software
life cycle. Here, an SEE is built from scratch and
custom-built tools are integrated around a common
object management system (OMS) and/or a com-
mon user interface system (UIS). In such systems
policies are enforced to control the use of system
capabilities, coordinate concurrent activities, and
enforce team communication policies, e.g. Dsee,
Interlisp, and Nse. However, such SEEs are typi-
cally quite inexible because the policies supported
by the system cannot be tailored.

The customizable environment generation

Many studies [9, 12] have highlighted the draw-
backs of the hardwired generation with its inabil-
ity to adapt to the constant changes in the soft-
ware process. Thus, in order to improve productiv-
ity and quality during maintenance, studies based
on the development of the customizable SEEs have
been conducted using DBMS (Data Base Manage-
ment Systems) technology. New conceptual models
adapted to Computer Aided Software Environments
(CASE) systems have been developed[7]. Semantics
and object oriented models are used[4]. The object
base evolves towards a DBMS which supports not
only the objects produced and consumed by activ-
ities but also methods and policies, users in their
di�erent roles, and the tools used to perform those
activities. The originality of this approach relies on
the integration of two aspects, the static aspects |
data and product modeling | and the dynamic as-
pects, i.e. the process modeling. Nowadays, the
software community agrees on the necessity of a
DBMS able to support all aspects of the software
process, and the research of an appropriate, gen-
eral and interpretable formalism for modeling such
aspects is underway [6, 10, 11].

3 Customizable environment

objectives

The customizable approach represents a signi�-
cant and novel approach to software development
paradigms. Gandalf was an early example of
this new approach, providing a general language,
based on attribute grammar, for the speci�cation
of the specialized programming SEE. However, it
only took into account the programming-in-the-
small problems (edition-compilation-interpretation-
debug). Now, since many other prototype systems
have been built, the requirements for a customiz-
able environment can be highlighted. In general a
customizable environment must support : (a) an
explicit description of data, users, tools, activities.
(b) all the software life cycle steps; (c) the mech-
anisms to describe and enforce the communication
and coordination policies; (d) and assist the users
when performing software activities;
In order to achieve these requirements, there is

agreement on the capabilities that must be provided
by such a system:

� A versioned repository where all software arti-
facts can be managed. Such a repository must
be driven by data model incorporating both

2

Entity-Relation and Object-Oriented concepts.
The former concept is better adapted to mod-
eling software structure, and the latter concept
to modeling behavioral aspects of the SEEs.

� The explicit description of the activities, activ-
ity breakdown, and the coordination policies
among them. Many formalisms have been pro-
posed for the description of these capabilities,
each one with its advantages and drawbacks.
Among the more signi�cant, we can distinguish
three approaches: (a) the prototyping and sim-
ulation approach, e.g., Melmac [3]; (b) the
planning and reasoning approach, e.g., Mar-
vel [5] and Epos [2]; (c) the communication
and synchronization approach, e.g., Appl/A
[11] and Adele [1];

� A Sub DataBases mechanism[7]. That is, a
central shared database, and a set of pos-
sibly overlapping Sub DataBases, supporting
Long Transactions, along with the mechanism
needed for their synchronization.

4 Adele background

Adele was, in its previous versions, mainly a con-
�guration manager and since 1987 it has been used
in European aeronautics (for instance the Airbus
and Ariane projects). Adele is now a commer-
cial product and it is used by industrial applications
and European projects (Airbus, Hermes, Rose, Re-
boot...).
The Adele [1] system is composed of:

� A multi-version and multi-user software engi-
neering database. This base may be distributed
on di�erent sites connected by a local network
and it can be used by application programs
through an RPC programmatic interface, by
a command language through the Unix shell
interface or by a graphical interface. Both
short and long transactions (based on check-
in/check-out mechanisms) are supported.

� A con�guration manager. The con�guration
manager is able to compute the list of objects
needed to build a con�guration based on a set
of constraints over the objects and using a mul-
tiple graph closure. De�ning a con�guration
takes only a few lines of constraints and not a
large user de�ned list of components.

� An activity manager (AM). This is the active
component of the Adele-DB. It is used as

a general purpose rule formalism to maintain
database integrity, to integrate external tools in
the Adele environment, to synchronize work
environments (WEs) and to monitor activities
that are carried out in the WEs. The AM is
based on a trigger mechanism allowing to exe-
cute actions in the database as well as to com-
municate with external tools. The user can
de�ne object behaviour as well as propagation
along relationships.

These components are integrated using the Adele
Modeling Language which provides ways to de�ne
the static and dynamic aspects of almost \any"
SEE. The static aspects are modeled by an \object-
relation" data model, which is derived from the
Entity-Relationship model extended with compos-
ite and versioned objects, and multiple inheritance.
This means that users can create new entity or re-
lationship types, to relate these types in a direct
acyclic graph, to de�ne new functions on these types
or inherit them from other types in the graph, and
to encapsulate those functions with the type.
In order to describe the dynamic aspects, an ECA

formalism is provided. With these two formalisms
(data model and ECA) we can program CASEs on
the top of the Adele kernel. For instance, the WE
manager is programmed by the ECA formalismand
modeled by entity and relation types.

Adele behavioral model

The dynamic aspects of the environments built
on the Adele kernel, i.e. environment policies, are
de�ned using the ECA formalism. This formalism
involves two basic concepts: events-condition and
actions. Events are used to control activities (navi-
gation as well as modi�cation) in the database. An
action is a set of operations activated by a trigger
when an event occurs. Actions can abort trans-
actions, or perform further modi�cations to the
database, which may in turn �re triggers.
Many other database systems have used trigger

formalisms in order to describe and automatically
enforce integrity constraints [8]. In our case, trig-
gers are used as a general enaction mechanism, for
consistency control, of course, but also for the en-
action and control of the Software Processes, as
is achieved in the Appl/A and Alf[12] projects.
Adele was one of the �rst systems to have experi-
mented triggers on full size projects. We extend the
traditional trigger mechanisms to deal with several
types of coupling modes. Trigger coupling is used
to determine when actions must be undertaken in
relation to the moment when the events occur. In
Adele four coupling modes can be speci�ed:

3

PRE mode. In this mode the actions are executed
before the execution of the operation that has
�red the trigger;

POST mode. In this mode the actions are exe-
cuted after the execution of the operation that
has �red the trigger, but before this operation
has been committed. Thus the operation can
be completely recovered .

AFTER mode. In this mode the actions are ex-
ecuted just after the operation has been com-
mited.

ERROR mode. In this mode the actions are ex-
ecuted in the event of an operation failure.

5 Software change process

management

In this section we shall demonstrate some of the
Adele system capabilities by using an example.
We shall be concerned with the description of
user coordination policies and policy enforcement
in large scale programming.

5.1 The software change example

The example is scoped as a relatively con�ned por-
tion of the software change process. It focuses on
design, coding, testing and managing a rather lo-
calized change in the software product. This is
prompted by a Change Request (CR, either for cor-
rections or enhancements). We shall assume that
the proposed CR has already been analyzed and
approved by the con�guration control board. The
Design WE determines on which con�guration base-
line the change is to be performed and which mod-
ules are to change. The Manager WE decides which
users will be involved in this change, which modules
each one will have to change. We shall assume that
some modules can be changed concurrently in di�er-
ent Work Environment. Each user works in a di�er-
ent \modify-code WE", sharing the same modules;
when all modify-code WE are resumed, the Test
WE can be initiated (see �gure 1).

We have concentrated mainly on programming-
in-the-large, therefore, we are not interested in how
the process steps are carried out, but in how we plan
the software process steps and how we coordinate
their execution. Thus, we do not check how the
software engineer modi�es the module, i.e. code-
edition-debug process, but how he coordinates his

DESIGN
WE

Unitary testing
WE

MT manager
WE

CODING
WE

CODING
WE

Module-1 Module-2 Module-3 Module-4 Module-5

Copied

WEWE

WE
WE

Copied

BASELINE

RELATION TYPE

Figure 1: Fragment of the software change process

activity with the other software process change ac-
tivities.

5.2 The Adele solution

We shall assume that the software product is man-
aged by the Adele database and that a set of Work
Environments supports the development. In WEs,
activities are carried out using tools such as com-
pilers, editors, etc.

Our solution uses ECA rules and customized com-
mands to control the synchronization of activities
amongWEs and between the WE and the database,
mainly at the beginning and at the end of each step.
A step is a long transaction, thus it is executed in
a Work Environment. We de�ne a type of WE for
each step of the change process model (manager,
design, modify code and test).

5.2.1 Product structure

The experiment has shown that the software devel-
opment process must be tightly coupled with a con-
�guration management system. Adele provides a
data model specially designed for managing the ob-
jects handled in the con�guration management con-
text. The basic type of this particular model is a
family. A family may be thought of as a high-level
module composed of a set of interfaces and a set
of realizations, where each interface and realization
may be versioned. Designs, tests, change request
planning, etc are kind of documents associated to

4

BODY
implem. implem.-by

n 1

FAMILY

Test
Package

Design

n n

include included-by

us
e

us
ed

-b
y

isaisa isa

INTERFACE

n n

n

n
co

m
po

se
co

m
po

se
d-

by

co
m

po
se

co
m

po
se

d-
by

Test
Results

nn
QA

Engineer
Design

Engineer
Project

Engineer

USER

seen-by see
n we

1

isaisa isa

Modify
Code

Modify
Design

Test
Unit

linkcopy

isa isa

CONFIGURATION

Figure 2: The Adele data model instance for management of the modular programmes

family objects, and they can also be versioned. Fig-
ure 2 shows this structure.

5.2.2 Process change modeling: code mod-

i�cation

The \modify code" step is carried out by the soft-
ware engineer. The goal of this step is the imple-
mentation of the solution proposed by the design
document. The source code must be compiled and
the corresponding binary must be recorded in the
database with the source. Several users can code
in parallel. The design and modify code steps can
begin together, but the modify code step can only
�nish after the design has been approved. The poli-
cies associated with this step are distributed inside
the following types:

� module data type de�ning the actions that
must be performed when a module is check-
in/check-out .

� copied relation type which stores the re-
lationships among objects and work environ-
ments. In other words, the modules are copied
to WEs to be manipulated by users, this infor-
mations is modeled in Adele by the copied

relation.

� WE relation type which links the Manager

WE with all the WEs performing the same logical
change.

The begin modify code action is used to create an
instance of modify code WE.

DEFACTION begin_modify_code;

create-we %user -t modify-code

-c %conf -o %module_to_change;

madele %user -t modify-code;

END begin_modify_code;

Then madele is called, an Adele tool that gen-
erates a make�le from a WE.
create-we is a user de�ned command that cre-

ates the WE from \%conf" con�guration compo-
nents baseline i.e. a physical copy of those compo-
nents which the current user is allowed to change
(-o %module to change), and a logical copy of all
other components. A \%copied" relationship is
instantiated between each copied module and the
work environment instance; the status attribute of
the copied relationship is defaulted to \UnderWay".

DEFACTION end_modify_code;

check-in -md;

delete_WE %name ;

END end_modify_code;

The end modify code command is used to �n-
ish the modify-code step. The de�nition above
says that when this command is executed a check-
in operation is executed on each modi�ed compo-
nent (-md option). If another user checked-in the
same module before, the merger tool will be auto-
matically started by Adele and the merged result
recorded. At the end modify code, the WE can be
deleted.

TYPEOBJECT module ;

DEFATTRIBUTE

state = debug, compiled := debug ;

design := !famname.design ;

PRE

1 ON begin_modify_code DO

5

IF [%design%state != completed] THEN

ABORT;

2 ON end_modify_code DO

IF [%design%state != approved] THEN

ABORT;

END module;

DEFRELATION copied;

DEFATTRIBUTE

status = valid, UnderWay := UnderWay;

PRE ON check_out DO

3 mail -s "warning" !sourcename%user

<<+ "...."

POST ON end_modify_code DO

4 IF [%status != valid] THEN ABORT;

AFTER ON end_modify_code DO

5 IF "compile %name" THEN

{cg_attr !destname -a state compiled;

ci_bin !sourcename; } ;

ELSE rm_attr !destname -a state

DEFRELATION WE;

6 POST ON true DO propage ;

This piece of program stipulates that:

1. the begin modify code command is aborted if
the design step has not �nished. In other
words, the modify-code step cannot be started
before the design has been completed; how-
ever it can begin before the design has been
approved;

2. the modify-code step cannot be closed before
the design document has been approved by the
sta�.

3. when a module is checked out in a WE, the
users of the other WE with a physical copy of
that module (i.e. they have a copied relation-
ship with it) will receive a warning message,
notifying possible change conicts.

4. an modify-code WE can be terminated only
when all its modules have valid status in all
the WE owning a physical copy of it.

5. At the end modify code command the module
is compiled. If the compilation succeeds the as-
sociated binary is also checked-in the database
and the state attribute is changed to comp

(compiled).

6. When events occurs in a WE, the manager WE
is informed using WE relationship propagation.

Manager Work Environment

The project manager works in the \Manager
Work Environment". The objective of this WE is to
monitor the process. Since relation WE is a prop-
agate relation, any event occuring on a WE will be
noticed in the manager WE. That way the manager
communicates with other WE and receives noti�ca-
tion when a WE completes.
The Manager WE can work in two di�erent

modes:

1. asynchronous coordination. In this case
communication between WE and the project
manager is achieved by mails. The coordina-
tion is handled manually;

2. synchronous coordination. Here, the co-
ordination is synchronized and expressed by
ECA rules associated with the project manager
type. These rules are executed when events are
triggered on the associated modify-code WE,
through the WE relationships. This is imple-
mented as follows:

TYPEOBJECT manager is WE ;

POST

ON end_design DO

1 IF [%design%state=completed]

THEN dispatch_work %CR_planning ;

AFTER ON delete_WE DO

2 IF NOT "lsr -r WE" THEN begin_test;

1. If an end design command is executed and
the associated design document state is
completed , the modify-code step can be-
gin. The dispatch work command anal-
yses the CR planning document and cre-
ates all needed modify-code WE (calling the
begin modify code command).

2. When a WE is completed, the associated WE
relationship is deleted. If no more \WE" rela-
tionship exist, all WE are completed; the test
step can begin.

Figure 3 shows the operations sequence of the
software process change example.

6 Conclusion

The activity manager was experimented for one
year. Two kinds of experiments were conducted:
local prototypes, as for instance the implementa-
tion of current systems such as NSE, DSEE on top
of Adele ; and industrial experiments, such as the

6

DESIGN
WE

TEST
WE

MANAGER
WE

MODIFY-CODE
WE

MODIFY-CODE
WE

Module-1 Module-2 Module-3 Module-4 Module-5

BASELINE

1 end_design 5 end_test

4 end_modify_code4 end_modify_code

3 check-in/out
3 check-in/out

2 dispatch_work

i sequencing of the operations

Figure 3: Operation sequencing of the software pro-
cess

HERMES (the European shuttle) software environ-
ment where thousands of ECA rules have been writ-
ten by the Hermes team to automate and simplify
the development of their speci�c CASE. From these
early experiments we can learn the following results.
We found the integration of ECA rules into the

Data Model very valuable. From Entity-Relation

model, we take advantage of the explicit use of re-
lations at the conceptual level. We think the use of
explicit relationships to model the context in which
an object is used is one of our major features. It
allows to de�ne the intrinsic behaviour of objects
independently, in the object type, and the context
behaviour, in the relationship type. It makes the
speci�cation of a system more comprehensive and
provides more exibility when extending or scaling
up the system.
From the Object Orientation approach, we

take advantage of inheritance, encapsulation, etc.
Clearly we obtain improved modeling both of ob-
ject behaviour (object inheritance) and of context
behaviour (relation inheritance). We extended the
Adele system with Methods (since inheritance is
di�erent between method (overloading) and trigger
(addition)), and di�erentiate the pre/post/after and
error triggers. It is clear now that most solutions
need to distinguish between pre, post, after and er-
ror triggers.
From Data Bases we take advantage of the

transaction concept, and we integrated triggers with
transactions. Pre-action-post is a single transac-
tion, while \after" and \error" triggers are exe-
cuted outside the main transaction. The transac-

tion concept allows the association of consistency
constraints with the objects and relationships di-
rectly or indirectly involved in an activity. The
activity itself may ignore these constraints. A
better separation of concern is achieved that way.
Methods/actions only describe the intended result,
the system dynamically checks the consistency con-
straints, depending on the actual context of the in-
volved objects.

In classical DBMS, events are simple predicates
and ECA are only used to enforce integrity con-
straints. This approach makes the use of triggers to
control the software process di�cult. In OODBMS,
integrity constraints are embedded in methods e.g.
Orion, Cactis...

The Adele language is simple and e�cient; in par-
ticular its late binding and delegation mechanism
proved helpful in de�ning the instance behaviour
at type level (dynamic substitution of context and
object characteristics).

However, di�culties were encountered:

1. The Adele language is low level. A higher level
language abstracting the details of the mecha-
nism is needed.

2. The fragmentation of the ECA rules into dif-
ferent types and relations makes it di�cult to
have a clear picture of a complete process de-
scription.

3. The control of triggers sometimes proved
tricky. There are risks of event explosion, of
looping and of action duplication. Clearly we
need a support for trigger programming and
debugging, as well as a programming method-
ology.

4. High level reasoning, learning and explaining
is almost impossible from a trigger description,
because of its low level abstraction and its frag-
mentation.

We are currently trying to solve the problems en-
countered our experiments, by de�ning a set of tools
for supporting event programming (validation, visu-
alization based on petri nets, debuggers); and the
de�nition of language(s), on top of our triggers, tai-
lored to our application: the building and tailoring
of Process-Oriented Software Engineering Environ-
ments.

7

References

[1] N. Belkhatir, J. Estublier, and W. L. Melo.
Adele 2: a support to large software develop-
ment process. In M. Downson, editor, Proc. of
the First International Conference on the Soft-
ware Process, pages 159{170, Redondo Beach,
CA, October 21{22 1991. IEEE Computer So-
ciety Press.

[2] R. Conradi, E. Osjord, P.H. Westby, and
C. Liu. Initial software process management
in Epos. IEE Software Engineering Journal,
6(5):275{284, September 1991.

[3] W. Deiters and V. Gruhn. Managing soft-
ware processes in the environment MELMAC.
In Proc. of the 4th ACM SIGSOFT Sympo-
sium on Software Development Environments,
Irvine, CA, December 3{5 1990. SIGSOFT
Software Engineering Notes, 15(6):193{205.

[4] S. E. Hudson and R. King. Cactis: A
self-adaptive, concurrent implementation of
an object-oriented database management sys-
tem. ACM Transactions on Database Systems,
14(3):291{321, September 1989.

[5] G. E. Kaiser, N. S. Barghouti, and M. H. Sokol-
sky. Preliminary experience with process mod-
eling in the Marvel software development envi-
ronment kernel. In 23th Annual Hawaii Inter-
national Conference on System Sciences, pages
131{140, Kona, HI, January 1990.

[6] T. Katayama. A hierarchical and functional
software process description and its enaction.
In Proc. of the 11th International Conference
on Software Engineering, pages 343{352, Pitts-
burgh, Pennsylvania, May 1989.

[7] W. Kim, N. Ballou J.F. Garza, and D. Woelk.
A distributed object-oriented database system
supporting shared and private databases. ACM
Transactions on Information Systems, 9(1):31{
51, January 1991.

[8] G.M. Lohman, B. Lindsay, H. Pirahesh, and
K.B. Schiefer. Extensions to Starburst: ob-
jects, types, functions, and rules. Communi-
cations of the ACM, 34(10):94{109, October
1991.

[9] N. H. Madhavji. The process cycle. IEE
Software Engineering Journal, 6(5):234{242,
Semptember 1991.

[10] N.H Madhavji and W. Schafer. Prism |
methodology and process-oriented environ-
ment. IEEE Transactions on Software Engi-
neering. 17(12):1270{1283, december 1991.

[11] S. M. Sutton, D. Heimbigner, and L. J. Oster-
weil. Language constructs for managing change
in process-centered environments. In Proc. of
the 4th ACM Symposium on Software Develop-
ment Environments, Irvine, CA, December 3{
5 1990. In ACM Software Engineering Notes,
15(6):206{217, December 1990.

[12] J.-D. Zucker. ALF: accueil de logiciel futur.
In F. Long, editor, Software Engineering En-
vironments - volume 3, pages 21{52. Ellis Hor-
wood Books, 1991. 5th Conference on Software
Engineering Environments, Aberystwyth, UK,
March 25{27, 1991.

8

