Applying Concept Formation Methods to Object Identification
In Procedural Code

Houari A. Sahraoui Walcélio Melo Hakim Lounis Frangois Dumont
CRIM Oracle do Brasil and CRIM CRIM
1801, av McGill College, Universidade Catolica 1801, av McGill College, 1801, av McGill College,
#800 Montreal (QC), de Brasilia, #800 Montreal (QC), #800 Montreal (QC),
Canada H3A 2N4 Dept. de Ciencia da Canada H3A 2N4 Canada H3A 2N4
hsahraou@crim.ca Computacao hlounis@crim.ca fdumont@crim.ca

wmelo@br.oracle.com

Abstract company maintains 35 millions lines of code and adds an

i additional 10 percent each year, just in enhancements,
Legacy software systems present a high level of,ngates and normal maintenance. As a result of

entropy combined with imprecise documentation. This paintenance alone, software inventories will double in
makes their maintenance more difficult, more time gj,¢ every seven years.

consuming, and costlier. In order to address these issues,
many organizations have been migrating their legacy
systems to new technologies. In this paper, we describe
computer-supported approach aimed at supporting the
migration of procedural software systems to the object-
oriented (OO) technology, which supposedly, fosters
reusability, expandability, flexibility, encapsulation,

information hiding, modularity, and maintainability. Our

approach relies heavily on the automatic formation of
concepts based on information extracted directly from
code to identify objects. The approach tends, thus, to
minimize the need for domain application experts. We
also propose rules for the identification of OO methods
from routines. A well-known and self-contained example

is used to illustrate the approach. We have applied thed ted. and K dular. D s d b
approach on medium/large procedural software systems, ocumented, and weaxly modular. Documents describing
the architecture and design of such systems may present

and the results show that the approach is able to find . . N -
an inaccurate representation of “what is” actually

j i ify thei h f . : . .
Zgjde?lic?ir;?lsto identify their methods from procedures|mplemented. Higher level of entropy combined with

imprecise documentation about the design and
architecture of legacy software systems make their
maintenance more difficult, time consuming, and costly.

In order to address these issues, many organizations

Many sources agree that programmers' efforts arehave been migrating their legacy systems to emerging
mostly devoted to maintaining systems [4, 24]. Pressmantechnologies, e.g., object-oriented technology. Lehman
estimates that typical software development and Belady present this migration as an economical
organizations spend anywhere from 40 to 70 percent ofchoice through their three laws on the evolution of large
all dollars performing maintenance [21]. This is not systems [13].
surprising when one considers the quantity of code to
maintain. For instance, the average Fortune-100

This problem stems in part from the fact that most of
éhe software maintenance effort is spent changing legacy
software which suffers from a lack of up to date and
reliable documentation. In order to adequately maintain
such systems, software engineers need understandable,
consistent, and complete documentation about such
systems (e.g., requirements specification, design
documents, change requests, bugs reports, etc.).
However, most of the documentation that software
engineers have is the source code of the system they are
supposed to maintain. After such code has been put
through a number of changes over the years, it can
present a high level of entropy; that is, the source code
may become ill-structured, highly redundant, poorly self-

1. Introduction

The object oriented paradigm is the target However, when available, application domain experts can
architecture of choice for the reorganization of systems,make decisions about the objects discovered by our
since object-oriented (OO) representations are supposedpproach. The approach consists of identifying objects in
to be much easier to understand than their classicaprocedural code, a first step towards an object-oriented
“structured” counterparts. Further, encapsulation limits design. We also propose rules for the identification of
the complexity of maintenance. Presumably OO methods from procedures/functions. In order to
modifications in the implementation of an object (class) present our approach, we use a self-contained example
does not affect other objects since only the object'salready used to illustrate other approaches.

interface is visible. Furthermore, we have applied our approach on a
OO approaches and languages have become quitsample of large-scale commercial software systems

popular, partially because of their potential benefits in written in C. The results show that our approach can

terms of maintenance (reusability, separation of concernsautomatically find potential objects in non-OO code.

and information hiding). However, the vast majority of Section 2 presents some existing works on graph-
the software available today is not OO. The effort hased object identification. Section 3 describes our
necessary to simply rewrite them from scratch using aNgpproach trough an example. Section 4 discusses the

OO approach would be prohibitive, and significant |imijtations of the approach and lessons learned. Section 5
expertise recorded in the procedural software would begncludes and enumerates future work.

lost. The cost of manual conversion would also be

prohibitive. A tool (or a tool set) that would support the 2. Related work

conversion of procedural code to OO, even in a semi-) o

automatic fashion, would ease the introduction of 00 Procedural code does not contain an explicit

technology in many organizations. This kind of rep_resentatlon of objects. It contains _only glopal

reengineering tool could be especially helpful to integrateva”ablesv data structure (records) and routines (functions

existing systems with new ones developed with OO and procedures). However, often the designer isolates the
approaches. access and modification of a data structure to a limited

number of routines in order to foster design modularity.

Several too_Is ha}ve been builtin the last ten years thatI'he identification of such a grouping of routines and
support the migration of legacy software systems to OOrecords is the intuition behind many of the object

technology. The main difference bet.ween these.tools 'Sidentification techniques in the literature [1]. The other
the level of involvement of domain experts in the

i i . type of grouping involves routines and global variables.
migration process. Some tools are calledmain yp grouping g

dependentn the sense that, in addition to the source LU & Wilde [16] have proposed to group data

code, they need domain knowledge as input (see forStructures with routines that use them as parameters or
example [6]). return value. Later some heuristics were proposed to

The other category of tools is calledomain enhance Liu & Wilde’s work [20, 15, 11]. In [25], Yeh &

. .) . al. combine data structures with global variables in order

independent The only input required for them is the. to form groups of routines, data structures and global

source code, although, the_y need some domamvariables. Each group would consist of an object where

knowlc_edge to make some decisions (see for example [3.])the routines will be methods and data structures and

Sgtn?slnnc()jteglt\a/\r/f;n;v?a\?lgg:c%?sthgeleed adcorr;alsr;er?]épearltr:s lobal variables signatures of such methods. In [7], Gall
gacy sy ’ & Klbsch present another approach which focuses on the

even when it is, |_ts cost may b.e very high. But becauseﬁle access to identify the data structures that should
such tools are guided by domain models, the results ar

. . rovide candidate objects.
more reliable. Domain independent tools do not need%)

domain expertise; they use heuristics to make the Other algorithms use reference graphs as introduced

necessary decisions when identifying objects, and thdn [5]- In [3], Canfora & al. propose an algorithm that
results are not always reliable. decomposes a reference graph into a set of strongly

. . connected sub-graphs. Each sub-graph represents an
In this paper, we describe a computer-based approac%bject_ This decomposition is based on the notion of

aimed at supporting the migration of procedural SOﬂwareconnectivity.

systems to the object-oriented technology. The approach . .
relies heavily on the automatic formation of concepts [9]. Finally, concept formation methods have been applied

To do so, the approach uses exclusively informationin Software engineering fqr remodulgrization (see [23
extracted directly from code. The approach tends, thus, t@nd 14]). In these two projects, Galois (concept) lattices
minimize the need for application domain experts. &€ used to identify modules in legacy code.

3. Concept formation based approach

3.1 principle of Galois lattice

1.N; < N,

2. there does not exibk | N; < N3 <N,

N; is said more general thax,. Edges are directed

Our approach relies heavily on the automatic concept/Tom up to down.

formation [9]. It is based exclusively on information

extracted directly from code. To do so, we have used
Galois (or concept) lattices. In this section we present the

basic definitions for Galois lattices, proposed by Godin in

3.2 Applicability to object identification

In an OO design, an application is modeled by a set
of objects where objects are composed of a set of data and

[9]. Algorithms based on this method are described ina set operations that manipulate this data. Most of graph

[10].

based approaches to object identification group data with

Let us take two finite sets E and E' and a binary the routines that use them

relationship R between the two sets. The Galois lattice

(see example of fig. 1) is the set of elemefs X),
whereX O P(E) andX' O P(E"). P(S)is the powerset db.
Each elemengX, X') must be complete.

A couple (X, X") from P(E) x P(E'") is complete if it
satisfies the two properties :
1. X' =f(X)wheref(X) ={x' OE' | Ox O X, xRx"}
2. X=f(X)wheref(X)={xOE|Ox 0OX', xRx"}

o oo|lo
ororkr|o
cor oolaM
~ oo oolo
orocor| .
R O PR - Ola
or oor|>
oo r Rk o|—

abhwN |0
OOFrR o

Figure 1.a. Representation of binary relation R

({1,23,4,51,.9)

N\

({4,54{bh

({1,23%{ah ({1,241{ch ({2,35}4{ah

({1.24{a.ch

({23t{a.aih ({14 {cfhh) ({5h{b.eah

(aniadaiy /@bt

({24{ac.aih)

({1 {act.hh

(@ {ab.cdefahid

Figure 1.b. Galois lattice for relation R

Given two elementsl; = (Xq, X)) andN, = (X5, X%)
of a Galois latticeG, N; < N, implies that X, 0 X; and
X1 O0X'5.

This property defines a partial order between
elements ofG. A graph is constructed using this partial
order (see figure 1.b). There is an edge betwéeand
N, if

Using this grouping approach, Galois lattices can
provide all significant groups. L& (c.f. 3.1) be the set
of global variables, anH' the set of routines, and IBtbe
the relation defined as v E andO f O E', vRfmeans
that the functiorf uses (refers to) the variablethen the
resulting Galois lattice has the following properties :

1. Each node(X, X') denotes a group of dataX)(
relatively to a set of function&{) which can be taken
as a candidate object (the criteria are defined in 3.4).

. There does not exig¥, Y)£ (X, X") | YO XandY'[O
X'. Only significant groups are in the lattice.

. An edge between two nodeg = (X3, X%) andN, =
(Xo, X%) can be interpreted either as

* a generalization/specialization link. From
behavioral point of view, the set of functionsNh
is a subset of the set of functiondNp(X'; O X%).

e oOr an aggregation link. From a data point of view,
the set of data i, is a subset of the set of data in
N (Xo O Xy).

a

3.3 Anexample

To illustrate our approach, let us take the well-known
example introduced in [3] (call itollectiong. This
example presents a part of a C program (see the
following code). The program manipulates a stack, a
queue and a list. For each function, the body is replaced
by a comment that indicates the list of data used by the
function. This example has the advantage of being self-
contained, well-known in the literature, small, and yet
relatively complex. Later, we will provide an actual
example which shows that our approach is able to deal
with large-scale software systems.

#define MAXDIM 99

typedef int ELEM_T;

typedef int BOOL;

ELEM_T stack_structfMAXDIM];
int stack_point;

ELEM_T queue_structfMAXDIM];

int queue_head, queue_tail, queue_num_elem;
struct list_struct
{ ELEM_T node_content;

struct list_struct * next_node; } list;
main()
{/* this program exploits a stack, a queue, and
a list of items of type */}
[* list of fuctions with as comment the list of
global variables referenced */
void stack_push(el) {/* stack_point and
stack_struct */}
ELEM_T stack_pop() {/* stack_point and
stack_struct */}
ELEM_T stack_top() {/* stack_point and
stack_struct */}
BOOL stack_Empty() {/* stack_point */}
BOOL stack_full() {/* stack_point */}
void queue_insert(el) {/* queue_struct,
queue_head and queue_num_elem */}
ELEM_T queue_extract() {/* queue_struct,
queue_tail and queue_num_elem */}
BOOL queue_Empty() {/* queue_num_elem */}
BOOL queue_full() {/* queue_num_elem */}
void list_add(el) {I* list */}
void list_elim(el) {/* list */}
BOOL list_is_in() {I* list */}
BOOL list_empty() {I* list */}
void global_init() {/* stack_point, list,
queue_head, queue_tail and queue_num_elem */}
void stack_to_list() {/* stack_point,
stack_struct and list */}
void stack_to_queue() {/* stack_point,
stack_struct, queue_struct, queue_head
and queue_num_elem */}
void queue_to_stack() {/* queue_struct,
queue_tail, queue_num_elem, stack_point
and stack_struct */}
void queue_to_list() {/* queue_struct,
queue_tail, queue_num_elem, and list */}
void list_to_stack() {/* list, stack_point and
stack_struct */}
void list_to_queue() {/* list, queue_struct,
queue_head and queue_num_elem */}

reference graph from the source code (we propose an
improved version of this graph). Then, we identify
candidate objects from the corresponding Galois lattice.
In the third step, we identify objects. Finally, we identify
the methods of these objects.

Gueue_to_satp Tqueve D> —reue_ewiy>
3 stack_struct \
queue_num_elem
Ctack 10> TSk pust> - sfack pop
b aveue siuct |
stack_point ‘v‘
“ queue_insel
ok 10 queE
=y
stack_to_list
ist_to_stacl .m
LoD
Cumete o TR

Figure 2. Reference graph foollectionsprogram

3.4.1 Graph extraction

In [3], the relationship between a function and a
global variable simply indicates that the function uses the
variable. In our case, the way in which the function uses
the variable is important. We define three modes
modification or write mode (m) when the function
modifies the value of the variable, access or read mode
(a) when it access its value to compute something else,
and predicate mode (p) when the variable is used to
control the execution of the function (in a predicate).
This classification is based on some work on module
coupling [19, 17]. This improvement can help us for two
reasons :

1. A global variable in the reference graph that has no
link in m mode can be considered as a constant, and
removed from the graph (such decisions are not easy
to make when pointer arithmetic is used).

2. When we identify methods, the mode can be
considered in conflict situations (see 3.4.4).

The extraction process is performed in two steps.
First, an abstract syntax tree (AST) is built from the
program. Then, this AST is used by a pattern recognition
and transformation program to extract thecessary

~ From this program, a reference graph is extractedinformation (in our case the reference graph). The result
(figure 2) [3]. Functions are represented by ellipses andof this process (a file) is a set of factders_to(f, v, t, m)
global variables by rectangles. Edges are always directeqyheref is a functiony is a global variable, is the type

from functions to global variables.

3.4 The approach

of v, and m is the usage mode. For example, in

collections refers_to ("stack_push", "stack_point", "int",
"m") means that the functiorstack pushuses the

The object identification approach we propose in this variablestack _pointwhich is aninteger in modification
paper consists of four steps. First, we extract themode.

R' b. stack_strugt c. stack_point Idt | e.queue_tai| f. queue_head g. queue_stjuct h. queue_num)| elem
. stack_push 1
. stack_top
. stack_pop
. stack_empty
. stack_full 1
. stack_to_queue 1 1 1 1 1
. global_init 1

PRl

1
1
1

Olo|N|o|Oa|ld~lwW|DN

list_is_in
. list_empty
. stack_to_list

=
o

[N
[N

[
N

. list_to_stack
. list_add

. list_elim

. queue_to_stac 1 1 1 1 1
. queue_extract 1 1 1
. queue_full

. queue_empty
. queue_insert 1
. list_to_queue 1 1 1 1
. queue_to_list 1 1 1 1

=
w

[N
Plelal]

[N
N

=
(4]

=
[e)]

[N
~

=
[ee]

=
[(e]

N
o

N
=

Figure 3. Matrix representation of reference graplcédiectionsprogram

. S e descendant mode. This is done to avoid large objects.
3.4.2 Candidate object_ldenuﬂcatlon) These two criteria define a static order. If two groups
As presented above, is the set of global variableS;, haye the same rank in this order, a priority is given to the
the set of functions anB the relation which indicates gne that has the higher cardinality of the set
thatv L E is used byf [E'. Figure 3 shows the matrix ns = X n NS This defines a dynamic order. Each time a
representation oR' instead of R (for thecollections group is selected, the variables it contains are removed
program) for readability reasons. For the same reasonsgom NS. A group with ns =1 is ignored. The last
names of functions and global variables are replaced byiterion for selection is if a group has only one variable,

codes (number for a function and letter for variables) ihe type of this variable must be non basic type (e.g. int,
when building the Galois lattice. The Galois lattice chay etc).

constructed from R presents all the significant groups of
data (see figure 4 for thevllectionsprogram). The goal

of this step is to identify candidate objects. To this end,
we define some criteria to select a subset of groups. (efanm) (@ionem /(edeine) boegmnis) ez

In order to identify candidate objects from the Galois
lattice, we first define the s&S that contains the not-
yet-selected variables. In the initial st&d& = E The
identification process stops wheNS = [. In the
identification process, groups are checked starting from
the bottom up. This order is motivated by the fact that the
deeper a group is in the lattice the higher is the
cardinality of its function set X'). In other words, our
hypothesis is that a group of variables can be considered (eH{23:4,56.7.811,12.05)
as a candidate object if these variables are simultaneously
accessed by a large number of functions. In case of a tie

(same cardinality of functions sets), groups are orderedrigure 4. Galois lattice for reference relatioollections
by the cardinality of their variables setX)(in a program)

({b,c.d.ef,g,h},B)

({b,c.d},{11,12})

(0.} (7.19,20)) ({e,9,h},{15,16,21})

{b,c}{2,3,4,7,11,12,15})

({d},{8,9,10,11,12,13,14,20,21}) ({h}.{7,8.15,16,17,18,19,20,21})

(2{2,3,45,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21})

The application of these criteria to the example of 3.4.4 Method identification

figure 4 gives the following four candidate objects : So far, we have identified the structure of the objects
col = {b,c} = {stack_struct, stack point} (variables). To be complete, an object must have a
o2 = {d} = {list} behavior (i.e. methods). In our approach, we identify

methods from functions. In the remainder of this section,
we present an overview of the rules we use to form
methods from procedures/functions. A detailed
description of method identification process is beyond the
scope of this paper. Some ideas we exploit can be found
3.4.3 Object identification in [18].

If we consider candidate objects co3 and co4, we Let O be the set of identified object§, the set of
notice that they share two variables out of three. Suchfunctions in the legacy code, and the set of global
situations motivate the introduction of a new step thatvariables. For each functiohn we define two setsef(f)
automatically merges these two objects. To detect thesendmodif(f) as follows:
situations, we apply the same technique (Galois lattice); ¢ F,

with a new relation. In this stef, is the set of candidate _ :
objects found in step E' is the set of global variables. ref(f) ={o DO | DVJ UVandyin g and vRi} whereR
denotes the relatias used by.

We define the relatioR as _ _
0gOE andJv O E', gRvmeans thag containsv. modif(f) = {q U O | v 'V and yin o and yMf} where
' M denotes the relatios modified by.

Figure 5 shows that co3 and co4 can be grouped i
the same object. This decision is made relative to thnThe relationM is derived fromR with the condition that
the mode of usage s (see 3.4.1).

cardinality of the set of variables in ({co3, ¢o@y, h})
which is fixed to 2 by default in our prototype. However, There are three p035|ble cases :
in our prototype an expert can be involved to make 1. cardinality of ref(f) =
decisions based on her knowledge about the application, cardinality of ref(f) > 1 and cardinality of modif(f) =
domain, like merging candidate objects, or breaking a3 dinality of modif(d > 1
candidate object in two or more objects. cardinality of modi @

In the collections program example, we obtain the For each case we define a rule.
following objects: Rule X For a function f, if cardinality of ref(f) = 1
then f becomes a method of the unique object in ref(f).

co3 = {f,g,h} = {queue_head, queue_struct,
queue_num_elem}

co4 = {e,g,h} = {queue_tail, queue_struct,
queue_num_elem}

0l = col = {b,c} = {stack_struct, stack_point}
02 = co2 = {d} = {list} The first case is trivial. For example icollections

03 = co30 co4 = {e.f,g,h} = {queue_tail, queue_head, ref(stack_full) = {q}. stack_fullbecomes a method of.

queue_struct, queue_num_elem} Rule 2 For a function f, if cardinality of ref(f) > 1 and
cardinality of modif(f) = 1, then f becomes a method of

the unigue object in modif(f).
({col €02,c03,c04},9)

This rule is motivated by the fact that conceptually we
\ consider a function as a behavior of an object if it
({co2}4d}) modifies its state. For example, ref(stack_to_list) = {o1,

({co1}, {b ch) ({c03 co4} {g.h) 02} and modif(stack to list) = {32 stack to_list

becomes a method of 02. stack to list is a conversion
function. In object oriented programming, there are two

({co3}, {f g,h}) ({c04} {e,g,h}) possibilities to convert an object ol into another object 02
: (1) ask ol to become 02 (e.g. in smalltalk, method

asPolyline in Circle class which convert a circle into a

polyline), and (2) create 02 from ol (e.g. in smalltalk,
(@.{b,c,d,ef,g,h} method fromDays: in Date class which create a date from

_ _ _ _ _ _ an integer). With our approach the second solution is
Figure 5. Galois lattice for grouping relatiaollections automatically taken. When available, an expert can make
program) such a decision.

Rule 3 For a function f, if cardinality of ref(f) > 1 and (Proverbe). We applied the approach without any expert
cardinality of modif(f) > 1, then f must be sliced when intervention. The resulting Galois lattice was very large.

possible to create a method for each object in modif(f). Identified candidate objects were numerous and generally
too large to be thought of as objects. Due to a lack of
space and confidentiality considerations, figure 6 is not

complete. It just gives an idea about the size of the Galois
lattice. It also shows the capability of our prototype to be

applied to large software applications.

For example,ref(global_init) = {0, 0, 03} and
modif(global_init) = {q, 0, 03}. global_init can be
sliced to create three methodsit_stack, init_list,
init_queue Actually, it is not always possible to break a
function into cohesive methods. Other solutions can be) L) _
used depending on the target OO language. In C++ for During validation v_wth the expert, we noticed Fhat a
example, it is possible to define a function independently"Umber of global variables are related to the windows
from any class. In other languages, a method can pdnterface library (e.g. DLL hqndles), and _|dent|f|ed object
associated to more than one class. Finally, it is possiblé2'® composed of both domain data and library data.
to define a new object that aggregates the objects Actually, there are two problems with this case : (1)
involved inmodif(f), and puf as a method in that object. the code of the library is not available, and (2) in object

oriented programming, the user interface of an
3.5 Complexity application is generally dissociated from the model. We

Let n be the cardinality of the set E (c.f. 3.1), and decjded fo remove from th? reference _graph all thg
assume that there is a finite upper boudon the vanableg related to.the graphical I|brar.y, since th.e goal is
number of relations for an element of E, formally not to migrate thelllbrary, but the gpphcatlo_n Wh'.Ch uses
K = Mag{ Cardinality fx(())x 0E}), Godin & al. the library. The size of the rgsultmg Galois lattice was

. . . reduced considerably. According to the expert evaluation,
ShOW_ that In this case, the worst case <_:ompIeX|ty_ of thethe identified objects were more meaningful (see figure
Galois lattice (number of nodesl) is linearly with 7).
respect ta : nl s 2*?7_ [_9]' _ The main lesson we learned from this case is that we

Ir_\ the same time, it is proved that the relations R andneed human intervention to decide which data are
R’ gives the same lattice. We can then repladgy n’ domain related. Our tool is not able to know
(cardinality of the set E) anid by K (the upper bound g ;tomatically which components under analysis belong
of the number of relations for an element of E'). to either a domain independent library or to the

In our casen' indicates the number of routines in the application domain. We consider, however, that this kind
reference graph, an&' the maximum number of of information can be easily obtained from the
variables that can be referenced by a routine. Themaintainers. Once we know which routines should not be
increase of the size of a program can increase the numbeinalyzed (since they belong to the library), our prototype
of routinesn, but the maximum numbeéf of variables is able to work properly without further help from the
referenced by a routine is in general staBledepends maintainer. Of course, we should tell COBOI which
much more on other factors (programming style for routines should not be considered when building the
example) than the size of the program. Galois lattice.

The second case is a library that allows to recognize
geometric objects. It is medium size (12,000 lines). Since

We developed a prototype (named COBOI) to the first step, we noticed that there were very few global
implement our approach. This prototype was developedval’iab|es. This limits the applicability of our approach.
using a graphical-description based application generatoMWe decided to use the same approach with a different
(METAGEN [22]) and a pattern recognition extractor graph as an inputjata visibility graph Like reference
generator. Figure 6 shows a graphical editor of ourgraph, this one has two types of nodes (data and
prototype which allows to display and manipulate Galois functions) and a single type of edge (function refers to
lattices. data). The difference is that the data consist of both

Using this prototype, we have applied our approach togIObaI 'varlables and the local var!ables thaj[are
different C applications (sizes between 3,000 and 47 000transmltted as parameter to other functions. A variable
lines of code). To illustrate the a(,jvantages émdis visible to the functior in which it is declared and all
limitations of ou.r approach, we present two examples Ofthe functio_ns that recei_/e it as par_ameter, either directly
the applications we have studied. The first (and thefromf’ or via other functions recursively.
larger) one is a system for education record processing

4. Discussion and lessons learned

e g Z,_‘:-
- = Fe | o ——
= i 1 L
i
il
"
.I T
¥ - T
", !
'y i g o : i
', 4 ; n
), ""\,‘_ - [3] ¥
o *
! H“'\. . k p - J
1 .
|I] r
L ¥
o y !
M
e M
|‘I:.‘{E"'.-'"
I
(R
O
o "
ST T L SR) TR P = [= m= = I | Cinin .

Figure 6. An overview of Galois lattice for a large example

| — .

Figure 7. An overview of the same Galois lattice as figure 6 without library related variables

The main lesson learned from this case is thatthe fact that it borrows part of its inspiration from the
applications are different depending on the domain andartificial intelligence sub-field of concept formation. The
programming style. Any approach of finding objects main difficulty in graph based approaches is the
must be flexible. This leads us to introduce a preliminary identification of the sub-graphs that can be interpreted as
step which defines the profile of the application based ongroups of data and related functions. In our case, the
metrics (e.g. average number of functions per globalidentification of significant groups is automatic using
variable). Depending on this profile, different graphs can Galois lattices. The part that can be improved is the set of
be used as an input (reference, data visibility or typecriteria that determine witch groups can be selected as
visibility graph which includes types rather than data candidate objects. The prototype we built can work in an

[25]). automatic fashion. It is also open to human intervention
_ when an expert is available. The approach can take
5. Conclusion and future work different types of bipartite graphs depending on the

In this paper, we propose a technigue for identifying profile of the application at hand.

objects in procedural code. It differs from other work by

The cases we have studied show that there is room for L.Wills, P.Newcomb, and E.Chikofsky, edito&gcond
improvement. In the near future, we will develop an Working Conference on Reverse Engineerpyg,252-261,
incremental version of our approach to help the expert Los Alamitos, California, July 1995. IEEE Computer
validate the results by reducing the complexity of the SOciety Press.
resulting models. To do that, we will use an incremental [12] F. Lanubile and G. Visaggio, Function Recovery Based on
algorithm for building Galois lattices (see [10]). Another ~ Program Slicing, In Proc. of ICSM'93, IEEE Computer
project we have started is the effective migration of code. ~ SCCi€ly Press, pp. 396-404, Montreal, September 1993.
We are currently implementing slicing algorithms (see [13] M. M. Lehman and L. A. Belad;rogram evolution
[26, 8, 12, 2]) which allows us to generate two or more Academic Press, New York, 1985.
methods from a function according to the results of [14] C. Lindig and G. Snelting, Assessing Modular Structure of

method identification step. Legacy Code Based on Mathematical Concept Anallysis,
Proc. of International Conference on Software
Acknowledgment Engineering ACM Press, Boston, 1997, pp 349-359.

The authors would like to thanks professors R. Godin, [15] P.E. Livadas and P.K. Roy, Program dependence analysis,
H. Mili, and C. Hamzaoui for their comments on this In Conference on Software Maintenance 1942 356-365,
work. 1992.
[16] S.S. Liu and N.Wilde. Identifying objects in a conventional

References procedural language: An example of data design recovery.
[1] R. S. Arnold,Software ReengineerintEEE Computer In Conference in Software Maintenanpp. 266-71. IEEE
Society Press, 1994. Computer Society Press, November 1990.
[2] G. Canfora, A. Cimitile, A. De Lucia, & A. Dliucca, [17] H. Lounis, W. Melo, Identifying and Measuring Coupling
Software Salvaging Based on ConditionsPhoc. of in Modular Systems8" International Conference on
ICSM'94, IEEE Computer Society Press, pp. 424-433, Software Technology ICST'9Curitiba, Brazil, June 1997.
September 1994. To appear
[3] G. Canfora, A.Cimitile, and M.Munro, An Improved [18] H. Mili, On Behavioral Description in Object-Oriented
Algorithm for Identifying Objects in Cod&oftware Modeling, The Journal of Systems and Softw&4(2):105-
Practice and Experienc@6(1):25-48, January 1996. 121, August 1996.
[4] T.A. Corbi. Program understanding: Challenge for the [19] J. Offutt, M. J. Harrold and P. Kolte, A Software Metric
1990s,|BM System Journal8(2):294-306, 1989. System for Module Coupling;he Journal of Systems and
[5] M. F. Dunn and J. C. Knight, Automating the Detection of Software 20(3):295-308, March 1993.
Reusable Parts in Existinigy Proc. of International [20] R.M. OgandoS.S. Yau, and N.Wilde. An object finder for
Conference on Software Engineeripgp 381-390, program structure understandirig,Journal of Software
Baltimore, Maryland, 1993, IEEE Computer Society Press. Maintenance6(5):261-83, September-October 1994,

[6] H. C. Gall, R. R. Klgsch and R. T. Mittermeir, [21] R.PressmarSoftware Engineering: a Practioner’s

Architectural Transformation of Legacy Systems, Workshop approach McGraw-Hill, second edition, 1987.
on Program Transformation for Software Evolution, ICSE, [22] N. Revault, H.A. Sahraoui, G. Blain and J.F. Perrot, A

1995.) o) _ Metamodeling technique: The METAGEN system,
[7] H. C. Gall and R. R. Kl&ésch, Finding objects in procedural Proceedings of TOOLS 1pp. 127-139, Versailles, march
programs, In L.Wills, P.Newcomb, and E.Chikofsky, 1995.

editors,Second Working Conference on Reverse

Engineering pp. 208-217, Los Alamitos, California, July

1995. IEEE Computer Society Press.))))
[8] K.B. Gallagher & J.R. Lyle, Using Program Slicing in [24] 1.Sommerville Software EngineeringAddison Wesley,

Software MaintenancéEEE Transactions on Software fourth edition edition, 1_992')
Engineering 17(8): 751-761, August 1991. [25], A. S. Yeh, D. R. Harris, and H. B. Reubenstein,
. : . . . Recovering Abstract Data Types and Object Instances from
[O]R. Gc_)dm, G'. Mineau, R. M|ssao_U|, M. St-Germain and N. a Conventional Procedural language, In L.Wills,
Faraj, Applying Concept Formation Methods to Software P.Newcomb, and E.Chikofsky, editors, Sectiarking
Reuse]nternational Journal of Knowledge Engineering ’ ! ;

. .) Conference on Reverse Engineeripg. 252-261, Los
and Software Engineering(1): 119-142, 1995. Alamitos, California, July 1995. IEEE Computer Society
[10] R. Godin, R. Missaoui and H. Alaoui, Incremental Press.

Concept Formation Algorithms Based on Galois (Concept)

Lattices,Computational Intelligencel1(2): 246-267, 1995.

[11] D. Harris, H.Reubenstein, and A.S. Yeh. Recognizers for
extracting architectural features from source code. In

[23] M. Siff, T. Reps, Identifying Modules via Concept
Analysis, InProc. of ICSM’97,

[26] M. Weiser, Program SlicingEEE Transactions on
Software Engineerindl0(4): 352-357, July 1984.

