
Applying Concept Formation Methods to Object Identification
In Procedural Code

Houari A. Sahraoui Walcélio Melo Hakim Lounis François Dumont
CRIM

1801, av McGill College,
#800 Montreal (QC),

Canada H3A 2N4
hsahraou@crim.ca

Oracle do Brasil and
Universidade Catolica

de Brasilia,
Dept. de Ciencia da

Computacao
wmelo@br.oracle.com

CRIM
1801, av McGill College,

#800 Montreal (QC),
Canada H3A 2N4
hlounis@crim.ca

CRIM
1801, av McGill College,

#800 Montreal (QC),
Canada H3A 2N4
fdumont@crim.ca

Abstract

Legacy software systems present a high level of
entropy combined with imprecise documentation. This
makes their maintenance more difficult, more time
consuming, and costlier. In order to address these issues,
many organizations have been migrating their legacy
systems to new technologies. In this paper, we describe a
computer-supported approach aimed at supporting the
migration of procedural software systems to the object-
oriented (OO) technology, which supposedly, fosters
reusability, expandability, flexibility, encapsulation,
information hiding, modularity, and maintainability. Our
approach relies heavily on the automatic formation of
concepts based on information extracted directly from
code to identify objects. The approach tends, thus, to
minimize the need for domain application experts. We
also propose rules for the identification of OO methods
from routines. A well-known and self-contained example
is used to illustrate the approach. We have applied the
approach on medium/large procedural software systems,
and the results show that the approach is able to find
objects and to identify their methods from procedures
and functions.

1. Introduction

Many sources agree that programmers' efforts are
mostly devoted to maintaining systems [4, 24]. Pressman
estimates that typical software development
organizations spend anywhere from 40 to 70 percent of
all dollars performing maintenance [21]. This is not
surprising when one considers the quantity of code to
maintain. For instance, the average Fortune-100

company maintains 35 millions lines of code and adds an
additional 10 percent each year, just in enhancements,
updates and normal maintenance. As a result of
maintenance alone, software inventories will double in
size every seven years.

This problem stems in part from the fact that most of
the software maintenance effort is spent changing legacy
software which suffers from a lack of up to date and
reliable documentation. In order to adequately maintain
such systems, software engineers need understandable,
consistent, and complete documentation about such
systems (e.g., requirements specification, design
documents, change requests, bugs reports, etc.).
However, most of the documentation that software
engineers have is the source code of the system they are
supposed to maintain. After such code has been put
through a number of changes over the years, it can
present a high level of entropy; that is, the source code
may become ill-structured, highly redundant, poorly self-
documented, and weakly modular. Documents describing
the architecture and design of such systems may present
an inaccurate representation of “what is” actually
implemented. Higher level of entropy combined with
imprecise documentation about the design and
architecture of legacy software systems make their
maintenance more difficult, time consuming, and costly.

In order to address these issues, many organizations
have been migrating their legacy systems to emerging
technologies, e.g., object-oriented technology. Lehman
and Belady present this migration as an economical
choice through their three laws on the evolution of large
systems [13].

The object oriented paradigm is the target
architecture of choice for the reorganization of systems,
since object-oriented (OO) representations are supposed
to be much easier to understand than their classical
“structured” counterparts. Further, encapsulation limits
the complexity of maintenance. Presumably
modifications in the implementation of an object (class)
does not affect other objects since only the object's
interface is visible.

OO approaches and languages have become quite
popular, partially because of their potential benefits in
terms of maintenance (reusability, separation of concerns
and information hiding). However, the vast majority of
the software available today is not OO. The effort
necessary to simply rewrite them from scratch using an
OO approach would be prohibitive, and significant
expertise recorded in the procedural software would be
lost. The cost of manual conversion would also be
prohibitive. A tool (or a tool set) that would support the
conversion of procedural code to OO, even in a semi-
automatic fashion, would ease the introduction of OO
technology in many organizations. This kind of
reengineering tool could be especially helpful to integrate
existing systems with new ones developed with OO
approaches.

Several tools have been built in the last ten years that
support the migration of legacy software systems to OO
technology. The main difference between these tools is
the level of involvement of domain experts in the
migration process. Some tools are called domain
dependent in the sense that, in addition to the source
code, they need domain knowledge as input (see for
example [6]).

The other category of tools is called domain
independent. The only input required for them is the
source code, although, they need some domain
knowledge to make some decisions (see for example [3]).
Domain dependent approaches need domain expertise
that is not always available for the legacy systems, and
even when it is, its cost may be very high. But because
such tools are guided by domain models, the results are
more reliable. Domain independent tools do not need
domain expertise; they use heuristics to make the
necessary decisions when identifying objects, and the
results are not always reliable.

In this paper, we describe a computer-based approach
aimed at supporting the migration of procedural software
systems to the object-oriented technology. The approach
relies heavily on the automatic formation of concepts [9].
To do so, the approach uses exclusively information
extracted directly from code. The approach tends, thus, to
minimize the need for application domain experts.

However, when available, application domain experts can
make decisions about the objects discovered by our
approach. The approach consists of identifying objects in
procedural code, a first step towards an object-oriented
design. We also propose rules for the identification of
OO methods from procedures/functions. In order to
present our approach, we use a self-contained example
already used to illustrate other approaches.

Furthermore, we have applied our approach on a
sample of large-scale commercial software systems
written in C. The results show that our approach can
automatically find potential objects in non-OO code.

Section 2 presents some existing works on graph-
based object identification. Section 3 describes our
approach trough an example. Section 4 discusses the
limitations of the approach and lessons learned. Section 5
concludes and enumerates future work.

2. Related work

Procedural code does not contain an explicit
representation of objects. It contains only global
variables, data structure (records) and routines (functions
and procedures). However, often the designer isolates the
access and modification of a data structure to a limited
number of routines in order to foster design modularity.
The identification of such a grouping of routines and
records is the intuition behind many of the object
identification techniques in the literature [1]. The other
type of grouping involves routines and global variables.

Liu & Wilde [16] have proposed to group data
structures with routines that use them as parameters or
return value. Later some heuristics were proposed to
enhance Liu & Wilde’s work [20, 15, 11]. In [25], Yeh &
al. combine data structures with global variables in order
to form groups of routines, data structures and global
variables. Each group would consist of an object where
the routines will be methods and data structures and
global variables signatures of such methods. In [7], Gall
& Klösch present another approach which focuses on the
file access to identify the data structures that should
provide candidate objects.

Other algorithms use reference graphs as introduced
in [5]. In [3], Canfora & al. propose an algorithm that
decomposes a reference graph into a set of strongly
connected sub-graphs. Each sub-graph represents an
object. This decomposition is based on the notion of
connectivity.

Finally, concept formation methods have been applied
in software engineering for remodularization (see [23
and 14]). In these two projects, Galois (concept) lattices
are used to identify modules in legacy code.

3. Concept formation based approach

3.1 principle of Galois lattice

Our approach relies heavily on the automatic concept
formation [9]. It is based exclusively on information
extracted directly from code. To do so, we have used
Galois (or concept) lattices. In this section we present the
basic definitions for Galois lattices, proposed by Godin in
[9]. Algorithms based on this method are described in
[10].

Let us take two finite sets E and E' and a binary
relationship R between the two sets. The Galois lattice
(see example of fig. 1) is the set of elements (X, X'),
where X ∈ P(E) and X' ∈ P(E'). P(S) is the powerset of S.
Each element (X, X') must be complete.

A couple (X, X') from P(E) × P(E') is complete if it
satisfies the two properties :

1. X' = f(X) where f(X) = {x' ∈ E' | ∀ x ∈ X, xRx' }

2. X = f'(X') where f'(X') = {x ∈ E | ∀ x' ∈ X', xRx' }

E'
R a b c d e f g h i
1 1 0 1 0 0 1 0 1 0

E 2 1 0 1 0 0 0 1 0 1
3 1 0 0 1 0 0 1 0 1
4 0 1 1 0 0 1 0 1 0
5 0 1 0 0 1 0 1 0 0

Figure 1.a. Representation of binary relation R
({1,2,3,4,5},Ø)

({1,2,3},{a}) ({1,2,4},{c}) ({4,5},{b}) ({2,3,5},{g})

({1,2},{a,c})

({2,3},{a,g,i}) ({1,4},{c,f,h}) ({5},{b,e,g})

({1},{a,c,f,h}) ({2},{a,c,g,i}) ({3},{a,d,g,i}) ({4},{b,c,f,h})

(Ø ,{a,b,c,d,e,f,g,h,i})

Figure 1.b. Galois lattice for relation R

Given two elements N1 = (X1, X'1) and N2 = (X2, X'2)
of a Galois lattice G, N1 < N2 implies that X2 ⊂ X1 and
X'1 ⊂ X'2 .

This property defines a partial order between
elements of G. A graph is constructed using this partial
order (see figure 1.b). There is an edge between N1 and
N2 if

1. N1 < N2

2. there does not exist N3 | N1 < N3 < N2

N1 is said more general than N2. Edges are directed
from up to down.

3.2 Applicability to object identification

In an OO design, an application is modeled by a set
of objects where objects are composed of a set of data and
a set operations that manipulate this data. Most of graph
based approaches to object identification group data with
the routines that use them

Using this grouping approach, Galois lattices can
provide all significant groups. Let E (c.f. 3.1) be the set
of global variables, and E' the set of routines, and let R be
the relation defined as ∀ v ∈ E and ∀ f ∈ E', vRf means
that the function f uses (refers to) the variable v, then the
resulting Galois lattice has the following properties :

1. Each node (X, X') denotes a group of data (X)
relatively to a set of functions (X') which can be taken
as a candidate object (the criteria are defined in 3.4).

2. There does not exist (Y, Y') ≠ (X, X') | Y ⊆ X and Y' ⊆
X'. Only significant groups are in the lattice.

3. An edge between two nodes N1 = (X1, X'1) and N2 =
(X2, X'2) can be interpreted either as

• a generalization/specialization link. From a
behavioral point of view, the set of functions in N1

is a subset of the set of functions in N2 (X'1 ⊂ X'2).

• or an aggregation link. From a data point of view,
the set of data in N2 is a subset of the set of data in
N1 (X2 ⊂ X1).

3.3 An example

To illustrate our approach, let us take the well-known
example introduced in [3] (call it collections). This
example presents a part of a C program (see the
following code). The program manipulates a stack, a
queue and a list. For each function, the body is replaced
by a comment that indicates the list of data used by the
function. This example has the advantage of being self-
contained, well-known in the literature, small, and yet
relatively complex. Later, we will provide an actual
example which shows that our approach is able to deal
with large-scale software systems.

#define MAXDIM 99

typedef int ELEM_T;

typedef int BOOL;

ELEM_T stack_struct[MAXDIM];

int stack_point;

ELEM_T queue_struct[MAXDIM];

int queue_head, queue_tail, queue_num_elem;

struct list_struct

{ ELEM_T node_content;

struct list_struct * next_node; } list;

main()

{/* this program exploits a stack, a queue, and

a list of items of type */}

/* list of fuctions with as comment the list of

global variables referenced */

void stack_push(el) {/* stack_point and

stack_struct */}

ELEM_T stack_pop() {/* stack_point and

stack_struct */}

ELEM_T stack_top() {/* stack_point and

stack_struct */}

BOOL stack_Empty() {/* stack_point */}

BOOL stack_full() {/* stack_point */}

void queue_insert(el) {/* queue_struct,

queue_head and queue_num_elem */}

ELEM_T queue_extract() {/* queue_struct,

queue_tail and queue_num_elem */}

BOOL queue_Empty() {/* queue_num_elem */}

BOOL queue_full() {/* queue_num_elem */}

void list_add(el) {/* list */}

void list_elim(el) {/* list */}

BOOL list_is_in() {/* list */}

BOOL list_empty() {/* list */}

void global_init() {/* stack_point, list,

queue_head, queue_tail and queue_num_elem */}

void stack_to_list() {/* stack_point,

stack_struct and list */}

void stack_to_queue() {/* stack_point,

stack_struct, queue_struct, queue_head

and queue_num_elem */}

void queue_to_stack() {/* queue_struct,

queue_tail, queue_num_elem, stack_point

and stack_struct */}

void queue_to_list() {/* queue_struct,

queue_tail, queue_num_elem, and list */}

void list_to_stack() {/* list, stack_point and

stack_struct */}

void list_to_queue() {/* list, queue_struct,

queue_head and queue_num_elem */}

From this program, a reference graph is extracted
(figure 2) [3]. Functions are represented by ellipses and
global variables by rectangles. Edges are always directed
from functions to global variables.

3.4 The approach

The object identification approach we propose in this
paper consists of four steps. First, we extract the

reference graph from the source code (we propose an
improved version of this graph). Then, we identify
candidate objects from the corresponding Galois lattice.
In the third step, we identify objects. Finally, we identify
the methods of these objects.

stack_struct

stack_point

list

queue_num_elem

queue_struct

queue_head
queue_tail

stack_top stack_push stack_pop

stack_fullstack_empty

list_elim
list_is_in

list_add

list_empty

queue_full queue_empty

queue_extract

queue_insert

global_init

stack_to_queue

stack_to_list

queue_to_stack

list_to_stack

list_to_queue

queue_to_list

Figure 2. Reference graph for collections program

3.4.1 Graph extraction

In [3], the relationship between a function and a
global variable simply indicates that the function uses the
variable. In our case, the way in which the function uses
the variable is important. We define three modes :
modification or write mode (m) when the function
modifies the value of the variable, access or read mode
(a) when it access its value to compute something else,
and predicate mode (p) when the variable is used to
control the execution of the function (in a predicate).
This classification is based on some work on module
coupling [19, 17]. This improvement can help us for two
reasons :

1. A global variable in the reference graph that has no
link in m mode can be considered as a constant, and
removed from the graph (such decisions are not easy
to make when pointer arithmetic is used).

2. When we identify methods, the mode can be
considered in conflict situations (see 3.4.4).

The extraction process is performed in two steps.
First, an abstract syntax tree (AST) is built from the
program. Then, this AST is used by a pattern recognition
and transformation program to extract the necessary
information (in our case the reference graph). The result
of this process (a file) is a set of facts refers_to(f, v, t, m)
where f is a function, v is a global variable, t is the type
of v, and m is the usage mode. For example, in
collections, refers_to ("stack_push", "stack_point", "int",
"m") means that the function stack_push uses the
variable stack_point which is an integer in modification
mode.

R' b. stack_struct c. stack_point d. list e. queue_tail f. queue_head g. queue_struct h. queue_num_elem

2. stack_push 1 1

3. stack_top 1 1

4. stack_pop 1 1

5. stack_empty 1

6. stack_full 1

7. stack_to_queue 1 1 1 1 1

8. global_init 1 1 1 1 1

9. list_is_in 1

10. list_empty 1

11. stack_to_list 1 1 1

12. list_to_stack 1 1 1

13. list_add 1

14. list_elim 1

15. queue_to_stack 1 1 1 1 1

16. queue_extract 1 1 1

17. queue_full 1

18. queue_empty 1

19. queue_insert 1 1 1

20. list_to_queue 1 1 1 1

21. queue_to_list 1 1 1 1

Figure 3. Matrix representation of reference graph for collections program

3.4.2 Candidate object identification

As presented above, E is the set of global variables, E'
the set of functions and R the relation which indicates
that v ∈ E is used by f ∈ E'. Figure 3 shows the matrix
representation of R' instead of R (for the collections
program) for readability reasons. For the same reasons,
names of functions and global variables are replaced by
codes (number for a function and letter for variables)
when building the Galois lattice. The Galois lattice
constructed from R presents all the significant groups of
data (see figure 4 for the collections program). The goal
of this step is to identify candidate objects. To this end,
we define some criteria to select a subset of groups.

In order to identify candidate objects from the Galois
lattice, we first define the set NS that contains the not-
yet-selected variables. In the initial state NS = E. The
identification process stops when NS = ∅. In the
identification process, groups are checked starting from
the bottom up. This order is motivated by the fact that the
deeper a group is in the lattice the higher is the
cardinality of its function set (X'). In other words, our
hypothesis is that a group of variables can be considered
as a candidate object if these variables are simultaneously
accessed by a large number of functions. In case of a tie
(same cardinality of functions sets), groups are ordered
by the cardinality of their variables sets (X) in a

descendant mode. This is done to avoid large objects.
These two criteria define a static order. If two groups
have the same rank in this order, a priority is given to the
one that has the higher cardinality of the set
ns = X ∩ NS. This defines a dynamic order. Each time a
group is selected, the variables it contains are removed
from NS. A group with ns = ∅ is ignored. The last
criterion for selection is if a group has only one variable,
the type of this variable must be non basic type (e.g. int,
char, etc).

({b,c,d,e,f,g,h},Ø)

({b,c,f,g,h},{7}) ({d,f,g,h},{20}) ({c,d,e,f,h},{8}) ({b,c,e,g,h},{15}) ({d,e,g,h},{21})

({b,c,d},{11,12})

({f,g,h},{7,19,20})
({e,g,h},{15,16,21})

({b,c},{2,3,4,7,11,12,15})

({d},{8,9,10,11,12,13,14,20,21})

({c},{2,3,4,5,6,7,8,11,12,15})

({h},{7,8,15,16,17,18,19,20,21})

(Ø,{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21})

Figure 4. Galois lattice for reference relation (collections
program)

The application of these criteria to the example of
figure 4 gives the following four candidate objects :

co1 = {b,c} = {stack_struct, stack_point}

co2 = {d} = {list}

co3 = {f,g,h} = {queue_head, queue_struct,
queue_num_elem}

co4 = {e,g,h} = {queue_tail, queue_struct,
queue_num_elem}

3.4.3 Object identification

If we consider candidate objects co3 and co4, we
notice that they share two variables out of three. Such
situations motivate the introduction of a new step that
automatically merges these two objects. To detect these
situations, we apply the same technique (Galois lattice)
with a new relation. In this step, E is the set of candidate
objects found in step 2. E' is the set of global variables.
We define the relation R as

∀ g ∈ E and ∀ v ∈ E', gRv means that g contains v.

 Figure 5 shows that co3 and co4 can be grouped in
the same object. This decision is made relative to the
cardinality of the set of variables in ({co3, co4},{g, h})
which is fixed to 2 by default in our prototype. However,
in our prototype an expert can be involved to make
decisions based on her knowledge about the application
domain, like merging candidate objects, or breaking a
candidate object in two or more objects.

In the collections program example, we obtain the
following objects:

o1 = co1 = {b,c} = {stack_struct, stack_point}

o2 = co2 = {d} = {list}

o3 = co3 ∪ co4 = {e,f,g,h} = {queue_tail, queue_head,
queue_struct, queue_num_elem}

({co1,co2,co3,co4},Ø)

({co3,co4},{g,h})({co1},{b,c})

({co2},{d})

({co4},{e,g,h})({co3},{f,g,h})

(Ø,{b,c,d,e,f,g,h})

Figure 5. Galois lattice for grouping relation (collections
program)

3.4.4 Method identification

So far, we have identified the structure of the objects
(variables). To be complete, an object must have a
behavior (i.e. methods). In our approach, we identify
methods from functions. In the remainder of this section,
we present an overview of the rules we use to form
methods from procedures/functions. A detailed
description of method identification process is beyond the
scope of this paper. Some ideas we exploit can be found
in [18].

Let O be the set of identified objects, F the set of
functions in the legacy code, and V the set of global
variables. For each function f, we define two sets ref(f)
and modif(f) as follows:

∀ f ∈ F,

ref(f) = {oi ∈ O | ∃ vj ∈ V and vj in oi and viRf} where R
denotes the relation is used by.

modif(f) = {oi ∈ O | ∃ vj ∈ V and vj in oi and viMf} where
M denotes the relation is modified by.

The relation M is derived from R with the condition that
the mode of usage is m (see 3.4.1).

There are three possible cases :

1. cardinality of ref(f) = 1

2. cardinality of ref(f) > 1 and cardinality of modif(f) = 1

3. cardinality of modif(f) > 1

For each case we define a rule.

Rule 1: For a function f, if cardinality of ref(f) = 1,
then f becomes a method of the unique object in ref(f).

The first case is trivial. For example in collections,
ref(stack_full) = {o1}. stack_full becomes a method of o1.

Rule 2: For a function f, if cardinality of ref(f) > 1 and
cardinality of modif(f) = 1, then f becomes a method of
the unique object in modif(f).

This rule is motivated by the fact that conceptually we
consider a function as a behavior of an object if it
modifies its state. For example, ref(stack_to_list) = {o1,
o2} and modif(stack_to_list) = {o2}, stack_to_list
becomes a method of o2. stack_to_list is a conversion
function. In object oriented programming, there are two
possibilities to convert an object o1 into another object o2
: (1) ask o1 to become o2 (e.g. in smalltalk, method
asPolyline in Circle class which convert a circle into a
polyline), and (2) create o2 from o1 (e.g. in smalltalk,
method fromDays: in Date class which create a date from
an integer). With our approach the second solution is
automatically taken. When available, an expert can make
such a decision.

Rule 3: For a function f, if cardinality of ref(f) > 1 and
cardinality of modif(f) > 1, then f must be sliced when
possible to create a method for each object in modif(f).

For example, ref(global_init) = {o1, o2, o3} and
modif(global_init) = {o1, o2, o3}. global_init can be
sliced to create three methods init_stack, init_list,
init_queue. Actually, it is not always possible to break a
function into cohesive methods. Other solutions can be
used depending on the target OO language. In C++ for
example, it is possible to define a function independently
from any class. In other languages, a method can be
associated to more than one class. Finally, it is possible
to define a new object that aggregates the objects
involved in modif(f), and put f as a method in that object.

3.5 Complexity

Let n be the cardinality of the set E (c.f. 3.1), and
assume that there is a finite upper bound K on the
number of relations for an element of E, formally
K Max Cardinality f x x= ({ (())| ∈ Ε}) , Godin & al.
show that in this case, the worst case complexity of the
Galois lattice (number of nodes nl) is linearly with
respect to n : nl n≤ 2 Κ [9].

In the same time, it is proved that the relations R and
R' gives the same lattice. We can then replace n by n'
(cardinality of the set E') and K by K' (the upper bound
of the number of relations for an element of E').

In our case n' indicates the number of routines in the
reference graph, and K' the maximum number of
variables that can be referenced by a routine. The
increase of the size of a program can increase the number
of routines n, but the maximum number K of variables
referenced by a routine is in general stable. K depends
much more on other factors (programming style for
example) than the size of the program.

4. Discussion and lessons learned

We developed a prototype (named COBOI) to
implement our approach. This prototype was developed
using a graphical-description based application generator
(MÉTAGEN [22]) and a pattern recognition extractor
generator. Figure 6 shows a graphical editor of our
prototype which allows to display and manipulate Galois
lattices.

Using this prototype, we have applied our approach to
different C applications (sizes between 3,000 and 47,000
lines of code). To illustrate the advantages and
limitations of our approach, we present two examples of
the applications we have studied. The first (and the
larger) one is a system for education record processing

(Proverbe). We applied the approach without any expert
intervention. The resulting Galois lattice was very large.
Identified candidate objects were numerous and generally
too large to be thought of as objects. Due to a lack of
space and confidentiality considerations, figure 6 is not
complete. It just gives an idea about the size of the Galois
lattice. It also shows the capability of our prototype to be
applied to large software applications.

During validation with the expert, we noticed that a
number of global variables are related to the windows
interface library (e.g. DLL handles), and identified object
are composed of both domain data and library data.

Actually, there are two problems with this case : (1)
the code of the library is not available, and (2) in object
oriented programming, the user interface of an
application is generally dissociated from the model. We
decided to remove from the reference graph all the
variables related to the graphical library, since the goal is
not to migrate the library, but the application which uses
the library. The size of the resulting Galois lattice was
reduced considerably. According to the expert evaluation,
the identified objects were more meaningful (see figure
7).

The main lesson we learned from this case is that we
need human intervention to decide which data are
domain related. Our tool is not able to know
automatically which components under analysis belong
to either a domain independent library or to the
application domain. We consider, however, that this kind
of information can be easily obtained from the
maintainers. Once we know which routines should not be
analyzed (since they belong to the library), our prototype
is able to work properly without further help from the
maintainer. Of course, we should tell COBOI which
routines should not be considered when building the
Galois lattice.

The second case is a library that allows to recognize
geometric objects. It is medium size (12,000 lines). Since
the first step, we noticed that there were very few global
variables. This limits the applicability of our approach.
We decided to use the same approach with a different
graph as an input, data visibility graph. Like reference
graph, this one has two types of nodes (data and
functions) and a single type of edge (function refers to
data). The difference is that the data consist of both
global variables and the local variables that are
transmitted as parameter to other functions. A variable v
is visible to the function f in which it is declared and all
the functions that receive it as parameter, either directly
from f, or via other functions recursively.

Figure 6. An overview of Galois lattice for a large example

Figure 7. An overview of the same Galois lattice as figure 6 without library related variables

The main lesson learned from this case is that
applications are different depending on the domain and
programming style. Any approach of finding objects
must be flexible. This leads us to introduce a preliminary
step which defines the profile of the application based on
metrics (e.g. average number of functions per global
variable). Depending on this profile, different graphs can
be used as an input (reference, data visibility or type
visibility graph which includes types rather than data
[25]).

5. Conclusion and future work

In this paper, we propose a technique for identifying
objects in procedural code. It differs from other work by

the fact that it borrows part of its inspiration from the
artificial intelligence sub-field of concept formation. The
main difficulty in graph based approaches is the
identification of the sub-graphs that can be interpreted as
groups of data and related functions. In our case, the
identification of significant groups is automatic using
Galois lattices. The part that can be improved is the set of
criteria that determine witch groups can be selected as
candidate objects. The prototype we built can work in an
automatic fashion. It is also open to human intervention
when an expert is available. The approach can take
different types of bipartite graphs depending on the
profile of the application at hand.

The cases we have studied show that there is room for
improvement. In the near future, we will develop an
incremental version of our approach to help the expert
validate the results by reducing the complexity of the
resulting models. To do that, we will use an incremental
algorithm for building Galois lattices (see [10]). Another
project we have started is the effective migration of code.
We are currently implementing slicing algorithms (see
[26, 8, 12, 2]) which allows us to generate two or more
methods from a function according to the results of
method identification step.

Acknowledgment

The authors would like to thanks professors R. Godin,
H. Mili, and C. Hamzaoui for their comments on this
work.

References
[1] R. S. Arnold, Software Reengineering, IEEE Computer

Society Press, 1994.

[2] G. Canfora, A. Cimitile, A. De Lucia, & A. Di Lucca,
Software Salvaging Based on Conditions, In Proc. of
ICSM’94, IEEE Computer Society Press, pp. 424-433,
September 1994.

[3] G. Canfora, A.Cimitile, and M.Munro, An Improved
Algorithm for Identifying Objects in Code, Software
Practice and Experience, 26(1):25-48, January 1996.

[4] T.A. Corbi. Program understanding: Challenge for the
1990s, IBM System Journal, 28(2):294–306, 1989.

[5] M. F. Dunn and J. C. Knight, Automating the Detection of
Reusable Parts in Existing, In Proc. of International
Conference on Software Engineering, pp 381-390,
Baltimore, Maryland, 1993, IEEE Computer Society Press.

 [6] H. C. Gall, R. R. Klösch and R. T. Mittermeir,
Architectural Transformation of Legacy Systems, Workshop
on Program Transformation for Software Evolution, ICSE,
1995.

[7] H. C. Gall and R. R. Klösch, Finding objects in procedural
programs, In L.Wills, P.Newcomb, and E.Chikofsky,
editors, Second Working Conference on Reverse
Engineering, pp. 208–217, Los Alamitos, California, July
1995. IEEE Computer Society Press.

[8] K.B. Gallagher & J.R. Lyle, Using Program Slicing in
Software Maintenance, IEEE Transactions on Software
Engineering, 17(8): 751-761, August 1991.

[9] R. Godin, G. Mineau, R. Missaoui, M. St-Germain and N.
Faraj, Applying Concept Formation Methods to Software
Reuse, International Journal of Knowledge Engineering
and Software Engineering, 5(1): 119-142, 1995.

[10] R. Godin, R. Missaoui and H. Alaoui, Incremental
Concept Formation Algorithms Based on Galois (Concept)
Lattices, Computational Intelligence, 11(2): 246-267, 1995.

[11] D. Harris, H.Reubenstein, and A.S. Yeh. Recognizers for
extracting architectural features from source code. In

L.Wills, P.Newcomb, and E.Chikofsky, editors, Second
Working Conference on Reverse Engineering, pp. 252–261,
Los Alamitos, California, July 1995. IEEE Computer
Society Press.

[12] F. Lanubile and G. Visaggio, Function Recovery Based on
Program Slicing, In Proc. of ICSM’93, IEEE Computer
Society Press, pp. 396-404, Montreal, September 1993.

[13] M. M. Lehman and L. A. Belady, Program evolution,
Academic Press, New York, 1985.

[14] C. Lindig and G. Snelting, Assessing Modular Structure of
Legacy Code Based on Mathematical Concept Analysis, In
Proc. of International Conference on Software
Engineering, ACM Press, Boston, 1997, pp 349-359.

[15] P.E. Livadas and P.K. Roy, Program dependence analysis,
In Conference on Software Maintenance 1992, pp 356–365,
1992.

[16] S.S. Liu and N.Wilde. Identifying objects in a conventional
procedural language: An example of data design recovery.
In Conference in Software Maintenance, pp. 266–71. IEEE
Computer Society Press, November 1990.

[17] H. Lounis, W. Melo, Identifying and Measuring Coupling
in Modular Systems, 8th International Conference on
Software Technology ICST’97, Curitiba, Brazil, June 1997.
To appear

[18] H. Mili, On Behavioral Description in Object-Oriented
Modeling, The Journal of Systems and Software, 34(2):105-
121, August 1996.

[19] J. Offutt, M. J. Harrold and P. Kolte, A Software Metric
System for Module Coupling, The Journal of Systems and
Software, 20(3):295-308, March 1993.

[20] R.M. Ogando, S.S. Yau, and N.Wilde. An object finder for
program structure understanding, In Journal of Software
Maintenance, 6(5):261–83, September-October 1994.

[21] R.Pressman, Software Engineering: a Practioner’s
approach, McGraw-Hill, second edition, 1987.

[22] N. Revault, H.A. Sahraoui, G. Blain and J.F. Perrot, A
Metamodeling technique: The METAGEN system,
Proceedings of TOOLS 16, pp. 127-139, Versailles, march
1995.

[23] M. Siff, T. Reps, Identifying Modules via Concept
Analysis, In Proc. of ICSM’97,

[24] I.Sommerville, Software Engineering, Addison Wesley,
fourth edition edition, 1992.

[25], A. S. Yeh, D. R. Harris, and H. B. Reubenstein,
Recovering Abstract Data Types and Object Instances from
a Conventional Procedural language, In L.Wills,
P.Newcomb, and E.Chikofsky, editors, Second Working
Conference on Reverse Engineering, pp. 252–261, Los
Alamitos, California, July 1995. IEEE Computer Society
Press.

[26] M. Weiser, Program Slicing, IEEE Transactions on
Software Engineering, 10(4): 352-357, July 1984.

