
Process centered SEE and Adele
�

Jacky Estublier Noureddine Belkhatir Mohamed A. Nacer Walcelio L. Melo y

L.G.I. BP 53X, 38041 Grenoble Cedex, France

fbelkhatir,jacky,nacer,wmelog@hoggar.imag.fr

Abstract

This paper presents the role and the evolu-

tion of Software Engineering Environment(SEE) and

Computer Aided Software Engineering Environments

(CASE Environments) in large software development

and maintenance. We emphasize the drawbacks of the

current state of the art, advocating improved struc-

tural and behavioral modeling and the introduction of

team support to meet software engineering require-

ments: what we need is a Process centered SEE its

trigger mechanism with its data model to solve some

team support problems.

Key-words: CASE; Software engineering environ-

ments, process modeling; programming in the large;

active software database; product modeling;

1 Introduction

The development and maintenance of large systems

is a complex task, where versioned documents of di�er-

ent types (design, program, test, etc.), actors (playing

several roles), tools, methods, and policies must be

managed and parallel activities must be coordinated.

In this soft of context, everything changes, not only

the managed objects (versions), but also the users,

tools, methods and policies. The problem is to deal

with this complexity in order to improve the quality

�Published in the Proc. of the 5th Int'l Workshop on

Computer-Aided Software Engineering (CASE'92), Montreal,

Quebec, Canada, July 6{10, 1992. IEEE Press
yMelo is supported by Technological and Scienti�c Develop-

ment National Council of Brazil (CNPq).

of the produced system, the e�ciency of the teams in-

volved and the predictability of the schedule. Many

Computer Aided Software Engineering environments

(CASE) have been built to solve these problems; but

they are not fully satisfactory. In order to support

programming in the large activities, a CASE environ-

ment needs to be able to deal with two main kinds

of information.The static information models software

components: design, documentation, set of tests, pro-

grams, etc, their relationships, and their evolution

versions. Dynamic information (behavior model, ac-

tivity control) describes how to develop and main-

tain the product, share and synchronize the activities

among users, integrate foreign tools, control tool ex-

ecution, and �nally how to describe and enforce poli-

cies (methods, procedures, conventions, etc). This pa-

per presents a synthesis of CASE environments show-

ing the di�erent evolution for modeling information.

The di�erent approaches are described with emphasis

on the di�erent issues proposed to solve integration

problems as well as the evolution of the techniques

for software engineering. Finally we present the Adele

environment as an example of customizable CASE en-

vironment.

2 CASE Environment Evolution:

CASE environments have evolved during the last

20 years. Among the available CASEs, we can dis-

tinguish three major evolution steps: The �le System

step (where the systems were built from scratch us-

ing standard File Management Systems); the database

step (where systems were built upon classical DBMS);

and the CASE step where systems were ad hoc or

built from specialized kernels with custom-built CASE

tools.

2.1 File system approach

These systems were the �rst to be built, and also

the �rst to tackle programming-in-the-large problems.

They progressed at least in three directions:

� Version management. Sccs de�ned the concept of

revision, and solved the disk space problem (the

delta mechanism), the history problem and the

multi-user problem (freezing mechanism).

� Tool control and rebuilding. The Make tool rep-

resented a breakthrough in 1976 and this popular

tool is still much used.

� System structure. The concept of System Model,

proposed by Gandalf inuenced all the following

SEEs. Environments like Cedar [Swi86], Dsee

[Leb84], Nse [Sun88], and Jasmine [Mar86] use

this concept. It de�nes the structure of large soft-

ware product in terms of components intercon-

nected by \dependency" relationships, describing

the relations between components, the informa-

tion on the versions and the rules of software

building. Reasoning on this \dependency" infor-

mation leads to a better understanding of soft-

ware structure.

These systems use a standard File Management

System (Unix, Sccs, Rcs) or a slightly extended one

(Gandalf) as a repository. As a consequence, little is

known about object characteristics and its intercon-

nections.

A signi�catn drawback with this approach is that

little was done to take account of dynamic aspects.

In line with these aspects, two sub-generations can be

distinguished: the toolkit generation where the only

mechanism provided for activity coordination was the

operating system language; and the hardwired gener-

ation where prede�ned and inexible policies are used

to enforce coordination and team communication, and

to control shared resources e.g. Dsee, Infuse and Nse.

2.2 Data Base approach

The concepts developed so far, such as the system

model, are easily modeled by objects and relation-

ships. Since classical databases provide such concepts,

using a data base as the basic platform seems to be a

logical approach.

Unfortunately, most work in this direction failed

because of a mismatch between the DB technology

(relational) available at that time (early 80s) and SEE

requirements. The experimentations conducted on the

relational DBMS showed that they are not adapted to

support SEEs [Pen91, Ber87, Unl89], because they are

developed mainly for commercial applications. As a

result, these systems were not satisfactory for example

when managing �les (long �elds), revisions, system

rebuild, schema evolution, and distributed work (work

space control).

2.3 The current CASE

CASE environments tried to provide a wider scope,

more life cycle phases and better support for workers

by making the software process explicit. This evolu-

tion led to two results:

� the kernel oriented CASE where the emphasis is

on a specialized kernel with independent tools

around it (Pcte[Bou88], Cais[Obe88], Adele1,

Atis). Such CASEs do not provide enough fa-

cilities for software processes management.

� the monolithic CASE tool which integrates object

management and prede�ned policies along with a

prede�ned set of tools. Almost all currently used

CASEs are in this group. They use a commer-

cial database as support (Andromede), an ad hoc

database, or even a standard �le management sys-

tem. The emphasis of these systems can be one

or more of the following topics: version control

(Dsee, Rcs), long transactions (Nse), con�gura-

tion building (Adele1, Aide-de-camp).

� The PSEE, Process centered SEE, that integrate

the static aspects (data and product modeling)

and the dynamic aspect (process modeling and

enacting). This integration signi�cantly increases

power and represents a new approach to software

development paradigms. Adele 2, SoftBench, Ar-

cadia, Epos, Alf and Marvel are the early results

of this new approach.

It looks as if there is a consensus on the capabilities

a PSEE must provide, namely:

� A versioned repository where all software arte-

facts can be stored and fetched. A repository

must be driven by a data model incorporating

mainly ERA and OO concepts. The �rst one is

better adapted to modeling software structures,

and the second one to modeling the behavioral

aspects of the SEEs.

� Executable formalisms for the explicit description

of the activities and their decomposition.

� A Long Transaction facility, in order to imple-

ment Work Space control and sub database.

Projects which try to integrate aspects of products

and tasks into a single object model are for instance

Epos, Alf/Pcte and Adele .

Rather than modify the OMS of Pcte, Alf [Zuc91]

extends it to process aspects. This development envi-

ronment is based on the knowledge of the plan of the

software development and of various existing projects.

Epos is a CASE prototype built around an object-

oriented database, a con�guration manager, and a pro-

cess manager, all sharing the same data model: an

extension of the ERA model to the object oriented

concepts.

The Adele data model (ERA) has been extended to

support Object Oriented models and complex object

management. An Adele 2 prototype has been devel-

oped which integrates those aspects and mechanisms

for process management [Bel91a, Bel91b]. In the sec-

tion 4, we present Adele 2 in greater detail showing

how it can be used as a customizable PSEE.

3 The technology evolution

CASE environment evolution can also be consid-

ered from the point of view of the evolution of tech-

niques. The major technologies involved are:

� The Database technology,

� The Software Engineering technology,

� The Process Modeling and AI technology.

3.1 The Database towards Software Engi-

neering

Many projects were interested in the database tech-

nology because of their modeling power and commer-

cial availability. In other words, objects and relation-

ships are explicitly modeled. Experience has clari�ed

the following drawbacks of these projects:

� it is di�cult to model complex objects. Relational

Databases have an unstructured view of the ob-

jects.

� Lack of encapsulation. The operations applicable

to an object are not identi�ed, their semantic are

left completely to the applications.

� In general, a lack of mechanisms for dealing with

dynamic aspects (events, constraints, triggers,

methods, etc) making it possible to manage com-

plex applications.

Most authors agree that currently available

databases do not provide the following SEE require-

ments: (1) most objects have a name, they are com-

plex (aggregate management); (2) objects are evolv-

ing (version management on heterogeneous objects);

(3) users, tools, methods, and policies are evolv-

ing (schema evolution); (4) consistency (or rather

inconsistency) management (complex relationships);

(5) structuring of teams, products, and work envi-

ronments (types and instances); (6) powerful view-

ing mechanisms (encompassing active paradigms); (7)

broad scope of knowledge (tools, users, methods, ob-

jects, etc.); (8) deep interconnection between Con�gu-

ration Management, Data and Process as (CM/PM);

(9) transactional model (long transactions).

Databases evolved mainly in two directions: the

Object Oriented DBs O2 [Lec89], Orion [Kim88], in-

tegrating OO programming languages with DB, and

the semantic models extending the ERA paradigm

Damokles [Dit89] more closely connected with soft-

ware engineering.

3.2 Software Engineering towards the

Database.

Software engineers designed databases for their own

purposes. Logically these DBs can be seen as File Sys-

tem extensions to integrate Entity Relationship con-

cepts. Pcte, Cais, Atis and Adele are platforms of this

type. The basic idea is that a �le system is concep-

tually too low and its modeling power not su�cient,

and that tool integration can only be e�ective when

sharing a common data schema.

This evolution led to a sharp boundary between the

platform (a passive object server) and the tools and

activities that must be built on top of it. No real

services are provided for activity control (this is why

projects such as ALF are under way), not for the tool

control.

From another point of view, the modeling power

of these platforms is not that high; no Object Ori-

ented concept is provided and di�culties remain at

least in versioning, complex object management, and

team support. Both database and software engineer-

ing results led to a new kernel generation. The solu-

tions considered in most kernel development projects

try to make a compromise between recent database

technology and the integration of mechanisms proper

to programming environments.

In the current trends, DB for software engineer-

ing integrate both approaches : ERA DB extended

with OO features with better support for versioning

[Zdo86], structuring and consistency control. Prod-

ucts like PCTE+ [Gal86] and Adele 2 [Est92] are of

that class. The PSEE approach usually starts from

such a platform and adds process modeling.

3.3 Process modeling towards Software

Engineering

Over the last years, studies have concluded that

better control of the processes involved in development

and maintenance is a necessary condition for obtaining

better products [Dow91, Tho91]. We lack methods

and tools for developing large products and managing

their evolution. In other words, we need to control

software processes.

In order to introduce some degree of discipline into

the process, policies must be formalized and enforced

to control, monitor and assist teams to perform their

activities. A process model must provide mechanisms

to:

� describe the di�erent activities carried out during

the software process;

� control the ordering, synchronization and concur-

rency among activities;

� model the objects produced and consumed by ac-

tivities;

� integrate tools used by the activities;

� de�ne and control users involved in the activities.

Process modeling is a fashionable topic and, despite

the large number of current projects (more than 30 all

around the world), little practical results have been

arrived so far. However signi�cant progress has been

made over the last two years and practical results will

be available soon.

Several prototype systems have been built to sup-

port these dynamic aspects, but for the time being,

no consensus has been reached on the paradigms and

approaches to use. It seems that no single approach

can solve all the problems. The current paradigms are

the following:

3.3.1 Rule-based paradigm.

In this approach, the knowledge about the activities

and tasks of a generic software development process

is explicitly modeled by rules using AI techniques are

used (planning, blackboards). The tools are integrated

into the environment through the utilization of pre

and postcondition over their inputs and outputs. The

rules may be di�erent depending on the implemen-

tation chosen by the system (backward and/or for-

ward reasoning, static or dynamic planning, hierar-

chic and sequential/parallel planning). This approach

is mainly used for high level tasks and is employed

by Marvel[Kai90], Merlin[Emm91], Grapple [Huf88]

,Agora PM[Bis88].

Marvel [Kai90] is one of earliest PM systems based

on production rules to allow the modeling and con-

trol of process executions. A rule is composed of:

a precondition and a postcondition that are de�ned

in terms of attributes of objects in the object base;

and an operator part used to integrate tools. Mar-

vel manages rule execution by backward and forward

reasoning. The application of these two mechanisms

together is called opportunistic processing. The main

innovation of Marvel is to introduce the concept of

strategy[Kai90]. A strategy is a set of de�nitions

(rules, tools, object and relations type) which can be

imported or exported. Until now only menial soft-

ware development activities have been experimented,

and more complex activities which might involve many

users and require task decomposition are not handled.

In [Kai90] the authors have declared that the applica-

tion of the opportunistic processing mechanism may

render the object base inconsistent!

Merlin[Emm91] provides two types of production

rules to represent software process with di�erent ex-

ecution mechanisms. One rule type is used to model

the declarative part of process de�nition. Rules of

this type are executed by backward reasoning. Other

rule types are used to model procedural knowledge;

they describe tool activation ordering, the post con-

dition, and are executed by forward reasoning. It

reduces the inconsistency problems of Marvel oppor-

tunistic processing. Grapple[Huf88] extended Marvel

formalism to support task decomposition, i.e. a rule

may be composed of other rules, in this way a high-

level task may be decomposed into a set of subtasks.

Agora-PM[Bis88] uses goal and constraint formalism

(instead of production rules) to model task building,

loading, and running for heterogeneous parallel sys-

tems.

3.3.2 Process programming

Process programming is an approach to software pro-

cess modeling proposed by Osterweil [Ost87]. Here,

the complete software process is de�ned as a meta-

program. It is described by means of a formal lan-

guage, which is written by the environment admin-

istrator before process activation. This description

is considered as a speci�cation of how a develop-

ment process is to be conducted. Arcadia[Sut90] and

Triad[Sar91] are examples of this approach. Both sys-

tems have extended the Ada language with new capa-

bilities for supporting software processes. The main

drawback of this approach is that no algorithm of

a particular software process can be described com-

pletely in advance.

The

Arcadia project aims to build a process program-

ming environment, based on a prototype Ada-like

process programming description language, called

Appl/A [Sut90] and supported by an object base

[Pen91]. The principal extensions of Appl/A over Ada

are relations among software artifacts, trigger upon

relation operations, integrity semantic constraints on

relation, and some transaction constructs. Software

derivation tasks are embedded in relation de�nitions,

and are automatically executed after software change.

Triggers are used to propagate updates on relations.

The triggers, constraints, and transaction statements

are still in speci�cation state.

Triad is another research prototype system heav-

ily inuenced by Arcadia ideas. Software development

policies are described by an imperative language called

CML (Conceptual Modeling Language) which is also

based on Ada. CML is composed of: 1) an object ori-

ented semantic data model which allows trigger de�-

nition on data types; 2) a tool model; 3) user model

describing the di�erent role types played by the user

team; and 4) an activity model. The activity model is

used to describe the activity hierarchy, and how each

activity may be performed. CML provides primitives

to synchronize parallel activities.

Arcadia has a more advanced data model than

Triad, and semantic constraints may be more easily

described and handled. However, the activity model of

Triad is more suitable for describing software develop-

ment policies than Arcadia, because activity synchro-

nization and decomposition are explicitly modeled and

executed. Unfortunately Triad has been discontinued,

and no practical results have been produced.

3.3.3 Active data bases

The underlying database embeds Event-Condition-

Action (ECA) rules which models the development ac-

tivity. When an event occurs the action is executed if

the condition is satis�ed. Adele belongs to this group.

The next section gives an example of ECA rules in

Adele.

4 Adele 2: an example of PSEE

The Adele environment is composed of a software

engineering database Adele-DB, a con�guration man-

ager and an activity manager.

These three components are described and inte-

grated in the environment using the Adele language.

This language provides ways of de�ning the static

and dynamic aspects of the environment. The static

aspects are modeled by the Data Model (ERA ex-

tended with OO), while the dynamic aspects (behav-

ior model) are modeled by an event-action mechanism

associated with a simple imperative language.

4.1 Adele data model

In the Adele data model the basic entity belongs to

the \object" type. Each entity has a type descending

from the \object" type. Attributes, relationships and

triggers may be associated with each object.

This data model supports complex objects called

aggregates. An aggregate is an object related with

its components by relationships; the aggregate seman-

tics is de�ned by the relationship behavior, which is

user de�ned (see below). That way almost any kind

of aggregate with any behavior and consistency con-

straints can be de�ned. However for e�ciency reasons

a special case of aggregate, called hard aggregate,

since used for the versioning of objects, is hardwired

in the system. Hard aggregate components are not

sharable, their existence depends on the existence of

the aggregate; all the characteristics of the aggregate

instance (attributes, relationships, constraints, meth-

ods, rights) are inherited by each one of its compo-

nents.

Special attention is paid to relationship manage-

ment and control; they have a signi�cant role to play

in a SEE, where objects are strongly inter-related. For

example, for the relation \X program depends on Y

interface". As for object instances, relationships may

have attributes and constraints.

4.2 Adele behavior model

The dynamic aspects of the environments con-

structed on the Adele kernel (e.g. environment poli-

cies), are de�ned in the Adele's language using trigger

rule formalism. Adele triggers take the following form:

ON event DO Action ;

Where \event" is a predicate over the system state,

object state and the activities underway(query, navi-

gation as well as changes) occurring on objects.

EVENT delete = [command = rm] ;

An Action is a program in the Adele Language. An

Adele language instruction can be a logical expression,

an Adele command or a Unix command. This lan-

guage is a simple imperative language, tailored to ac-

cess Database information and navigate easily through

arbitrary relations. It is a meta-substitution language

(late binding of parameters and variables) that looks

like the Unix shell, except that variables are multi-

valued attributes, with provision for complex query

and operator set.

Trigger is a basic mechanism, useful mainly for

maintaining consistency constraints. This mechanism

becomes very powerful when integrated in both the

data model and the recovery mechanism.

Triggers and the data model

Triggers are de�ned into the type de�nition of ob-

jects and relations, and thus structured and inherited

along the type hierarchy. A trigger de�ned on an ob-

ject type is executed if the event is true for an instance

of the type or for an instance of any subtype. Triggers

cannot be overloaded, they are mandatorily inherited

by subtypes.

Triggers and transactions

In Adele, users can de�ne methods (i.e. action asso-

ciated with a given object type), as well as commands

(i.e. actions not related with any particular type).

Triggers are used to check the consistency of such

methods/commands. Some triggers will be executed

before the action, acting as pre conditions, others af-

ter the action, as post conditions. Since triggers are

(originally) intended to enforce consistency, any in-

consistency found by a trigger must be able to undo

(roll-back) the action. Thus for any action the follow-

ing instructions will be executed:

PRE list of triggers

Action (Command or Method)

POST list of triggers

The whole operation is always a single transaction,

even if the triggers or the action call other actions.

The execution of primitive \ABORT", anywhere in a

block (PRE/Action/POST) will undo everything that

was done in this block. After the transaction valida-

tion; \AFTER" triggers are executed; they are used

to execute an action when sure that the transaction

succeeded, as for instance sending noti�cations, or to

execute new actions whose failure must not undo the

main action. If the transaction failed, \ERROR" trig-

gers are executed.

Thus for each object and relation type, there are

�ve blocs:

PRE list of triggers

METHOD list of methods

POST list of triggers

AFTER list of triggers

ERROR list of triggers

The ordering of triggers of the same kind (all PRE

triggers or all POST triggers) is performed on the basis

of the priority declared in the event de�nition.

4.2.1 An example

Figure 1 presents an example of Adele's language

capacities for de�ning a simple environment policy:

In this body type description we �nd in lines 1 the

de�nition of attribute lines which represents the num-

ber of lines in the body. Lines is declared COMP

which means the value provided at instantiation is not

the attribute value but the program that, when exe-

cuted, will return the real attribute value. In line 9

the value of line is the result of the execution by Unix

shell of wc -l !�lename i.e the number of line in �le

!�lename.

Line 2 is a pre-condition which speci�es that if

the event delete official occurs, the command

which triggered this event must be aborted. Event

delete o�cial in de�ned line 12 occurs when the com-

mand delete is applied to an o�cial body (i.e. an ob-

ject body with attribute state equal to o�cial). Line

3 expresses a post-condition on event replace body c

de�ned in line 13. When the command replace is

applied to a c program body (an object with the at-

tribute language equal to c) this program must be

compiled. If compilation is successful (line 9) the bi-

nary object is recorded with its source code (line 10)

and the line numbers of the source object is computed

and recorded (line 11).

The relation comp relates a con�guration with its

components. Before replacing a component of a con-

�guration (line 5), the number of lines of the con�gu-

ration (!O refers to the origin of the relation i.e. the

con�guration), is reduced by the number of line of the

component (!D refers to the relation destination i.e.

the replaced component, !DD%lines is the value of

attribute lines of the component); after the replace

command (line 7), the actual number of line of the

component is added to the number of lines of the con-

�guration (line 8). That way, the number of line of all

con�gurations is always up to date and recursively.

4.2.2 Structuring and customization: parti-

tions and sub-projects

The Adele-DB is rather general, it is suitable for vari-

ous projects and an adaptation is produced for each of

them. For large projects, sub-projects can be highly

TYPEOBJECT body ;

DEFATTRIBUTE

1 lines COMP = INTEGER;

2 PRE ON delete_official DO ABORT;

3 POST ON replace_body_c DO

4 "store_binary %name" ;

END body;

TYPERELATION comp ;

5 PRE ON DEST replace_body_c DO

6 "modify_attr !O -a line-conf = %line-conf - ~!D%lines" ;

7 POST ON DEST replace_body_c DO

8 "modify_attr !O -a line-conf = %line-conf + ~!D%lines" ;

END comp ;

DEFACTION store_binary;

9 IF "cc -c !filename" THEN

10 {"replace %name -do" ;

11 "modify_attr %name -a lines = \"wc -l !filename\"" } ;

END store_binary;

DEFEVENT

12 delete_official = [!command=delete, state=official];

13 replace_body_c = [!command=replace, language = c];

END

Figure 1: An example of the Adele language

independent and therefore may have di�erent char-

acteristics. For example, consistency constraints, lan-

guages or tools can di�er for both the kernel and some

sub-systems; for con�gurations in maintenance and

those in development. A single data schema is not

su�cient, even if most of the de�nitions are shared

by the di�erent sub-systems. In order to be able to

de�ne multiple data schema, the partition notion is

provided.

A partition is a sub database (a set of soft-

ware component instances) that share the same data

schema. Partitions are organized in a partition tree,

where the project is the root. Each partition describes

the sub-schemas to be used by its components. This is

di�erent from PCTE where an SDS (Shared De�nition

Schema) is a view de�ned by a sub-set of types, but

the view is always applied to the database instances.

Each partition inherits de�nitions from its ancestor

partitions, and each partition may modify (re�ne or

enlarge) inherited de�nition. It is important to note

that the partition concept is di�erent from OO inher-

itance: a partition is not a re�nement of its ancestor

partition (or parent schema) but a customized schema

using an overloading mechanism.

For partition P0 father of partition P1, every type

de�ned in P0 and not de�ned in P1 is inherited in P1

without change. A new type can be declared in P1;

if the same type T is de�ned in both P0 and P1, the

OVERLOAD key-work means that only the new def-

inition of T is valid, otherwise the same inheritance

mechanism is applied between both de�nitions as be-

tween a type and its sub-types.

This mechanism allows to de�ne P1 (a new parti-

tion) only describing the di�erences relative to P0 (its

embedding partition).

It is not a classic inheritance mechanism since P1

can rede�ne (almost) P0 de�nitions freely, not just re-

�ne them; however some invariants must hold between

the de�nitions of the same type: the list of its super-

types and the domain of its attributes (i.e. integer,

string, enum, boolean..) must remain constant.

Adele allows the association between the partition

concept, which de�nes the relationship between the

same type in di�erent partitions, regardless of it super-

types, and subtyping concept which de�nes relation-

ship between a type and its sub-types in the same

partitions, regardless of super-partitions. Each parti-

tion contains a set of type de�nitions, the ones de�ned

locally and the ones inherited, taking into account the

overloading mechanism and then the subtyping rela-

tion.

A partition plays a double role: it allows the de�-

nition of what is common between a set of objects (its

common schema) and provides an abstraction mecha-

nism since a partition is an aggregate.

A sub-project is a partition with two additional

properties: (1)it de�nes an independent name space

for objects, and (2) it is the unit for network distribu-

tion; it is a clustering feature.

4.2.3 Data model evolution

It is easy to add new object or relation types to a

database; but very di�cult to modify existing types.

We choose the technical constraint to enable "any"

modi�cation of the schema. Objects may become in-

consistent, but they are not deleted and must remain

reachable. In Adele, each object is associated with

its control block in order to keep enough information

to handle it; even if the object is inconsistent regard-

ing its type de�nition, it remains manageable. In this

case, Adele just sends warning messages. However,

work is underway on schema evolution in order to al-

low the de�nition of multiple schemata, with dynamic

substitution of schema.

5 Conclusion

We have addressed the di�erent trends in SEE, em-

phasizing the evolution toward more powerfull data

modeling and the integration of process models. We

believe that this last aspect (process models) will rep-

resent a major step forward in the �eld by the produc-

tion of Process centered SEE (PSEE).

Simplifying a bit, we have shown that current state

of the technology is to provide either

� monolithic CASE with embedded tools, services

and policies;

� general platform supporting only data modeling.

We believe the next step will be to provide plat-

forms integrating data modeling with process model-

ing, with emphasis on tool integration. These plat-

forms are currently addressing some of the following

aspects:

1. Machine and OS independence

2. Tool and Application writer support

3. Tool inter-operability

4. Case builder support

Monolithic CASEs address only Application writer

support, Systems like PCTE are addressing points 1

and 2, Softbench points 2 and 3, Adele points 3 and 4.

PCTE proposes a system supposed to replace the op-

erating system (!), and thus provide a set of service for

all OS features. However the real progress is the Ob-

ject Manager System (OMS), allowing tools to share

data schemas. Tool inter-operability needs more than

data sharing, the Softbench Broadcast Message Server

is an example of tool integration by control; Motif as

a standard for User Interface integration.

Adele does not try to provide an interface for ap-

plication writers but for CASE builders. Its purpose

is to allow easy de�nition and building of SEE includ-

ing services for team support. Tool integration, inter-

operability, Work Environment control, team support

and policy programming are its primary goals (i.e

point 4). Adele addresses also point 1 and 2 by provid-

ing a PCTE interface (the Adele OMS is powerfully

enough to support PCTE OMS), and point 3 by its

trigger language and the integration of BMS.

However it is clear that considerable progress must

be made in several directions:

� Cooperating heterogeneous and distributed

repositories,

� Cooperating Cases (not only simple tools),

� Process and policy programming.

For the time being, we believe that the Adele inte-

gration of features until now usually independent like

ERA data bases, OO concepts, Triggers, Tool control,

Activity control is a real progress in the �eld of SEE,

and a step toward PSEE.

References

[Bel91a] N. Belkhatir; J. Estublier; W. Melo. Adele

2: A support to Large Software Development

Process. In [Dow91].

[Bel91b] N. Belkhatir; J. Estublier; W. Melo. Activity

coordination in Adele: a software production

kernel. In In [Tho91].

[Ber87] Ph. A. Bernstein. Database System Support

for Software Engineering: an Extended Ab-

stract. In 9th International Conference on

Software Engineering, March 1987.

[Bis88] R.Bisiani; F. Lecouat; V. Ambriola. A tool

to coordinate tools. IEEE Software, Novem-

ber 1988, pp. 17{25.

[Bou88] G. Boudier; R. Minot; I. M. Thomas. An

overview of PCTE and PCTE+. In ACM SIG-

PLAN Notices, 24(2):248{257, February 1989.

[Bux80] J.N. Buxton (Ed.). Stoneman: Requirements

for ADA Prog.Support Env. Technical Re-

port, U.S. Dept of Defense. Feb 1980.

[Cha90] Jean. Luc. Chauvet. Andromede et le controle

du tra�c aerien. Genie Logiciel & Systemes

experts. No21. Decembre 90.

[Con90b] R. Conradi; E. Osjord; P.H. Westby; C.

Liu. Software process modeling in Epos: de-

sign and initial implementation. In 3rd In-

ternational Workshop on Software Engineer-

ing and its Applications, December 3{7 1990,

Toulouse, France. pp. 365{381.

[Dei90] W. Deiters and V. Gruhn. Managing soft-

ware processes in the environment Melmac.

In SIGSOFT Software Engineering Notes ,

15(6):193{205.

[Dit89] K.R. Dittrich. The Damokles database system

for design applications: its past, its present,

and its future. In Software Engineering En-

vironments: Research and Practice, K. H.

Bennett (ed.). pages 151{171. Ellis Horwood

Books. 1989.

[Dow91] M. Downson. Proc. of the 1st Conference on

Software Process . Redondo Beach, CA, Oc-

tober 21{22 1991. IEEE Computer Society

Press.

[Emm91] W. Emmerich; G. Junkermann; B. Peuschel;

W. Shafer; S. Wolf. Merlin: knowledge-based

process modeling. In First European Work-

shop on Software Process Modeling. Milan,

Italy. May 30{31 1991. pp.181{186.

[Est92] J. Estublier and N. Belkhatir and W. L. Melo.

Cooperative Work in Large{Scale Software

Systems. In Journal of Software Maintenance:

Research and Practice, K. Bennett and M.

Colter (Eds.), 1992. To appear.

[Eur86] Requirements For a Tool Support Interface.

PCTE+ De�nition Phase Project/EURAC.

3rd edition, july 1986.

[Gal86] F. Gallo; R. Minot; I. Thomas. The Object

Management System of PCTE as a Software

Engineering Database Management System.

In 2nd ACM SIGSOFT/SIGPLAN. pages 12-

15, 1986.

[Huf81] K.E. Hu�. A Database Model for E�ective

Con�guration Management in the Program-

ming Environment In 5th Int. Conf. on Soft.

Engineering, March 1981.

[Huf88] K. E. Hu�, V. R. Lesser. A plan-based in-

telligent assistant that supports the software

development process. In ACM SIGPLAN No-

tices, 24(2):97{106, February 1989.

[Hud87] S. E. Hudson, R. King. Object-Oriented

Database Support for Software Environments.

Proc. ACM Sigmod 1987

[Lec89] C. Lecluse, P. Richard The O2 Database Pro-

gramming Language Proc. of the 15th VLDB

Conference, Amsterdam, The netherlands,

August 1989.

[Kai90] G. E. Kaiser; N. S. Barghouti; M. H. Sokolsky.

Preliminary experience with process modeling

in the Marvel software development environ-

ment kernel. In 23th Annual Hawaii Interna-

tional Conference on System Sciences. Jan-

uary 1990, Kona, HI. pp. 131-140.

[Kim88] Won Kim, Nat Ballou, Hong-Tai Chou,

Jorge F. Garza, Darell Woelk Integrating An

Object-Oriented Programming System with a

Data Base System OOPSLA'88 Proceedings

September 25-30, 1988.

[Leb84] D. B. Leblang, R. P. Chase. Computer-aided

Software Engineering in a Distributed Work-

station Environment. ACM SIGPLAN Soft-

ware Engineering Symposium On Practical

Software Development Environments. pages

104-112, 1984.

[Kim91] W. Kim; N. Ballou; J.F. Garza; D. Woelk.

A distributed object-oriented database sys-

tem supporting shared and private databases.

TOIS ,9(1):31{51, January 1991.

[Mar86] K. Marzullo, D. Wiebe. Jasmine: A Software

System Modeling Facility. In SIGPLAN No-

tices Vol.22, No1, Jan. 1987.

[Ost81] L. Osterweil. Software Environment: Re-

search Direction for the Next Five Years.

IEEE Computer, Vol. 14, No 4, April 1981.

[Ost87] L. J. Osterweil. Software processes are soft-

ware too. In 9th International Conference on

Software Engineering. March 1987. Monterey,

CA.

[Pen91] M.H. Penedo. Acquiring experiences with the

modeling and implementation of the project

life-cycle process. In IEE Software Enginneer-

ing Journal , vo6, no5, September 1991.

[Pri86] R. Prietro-Diaz, J. M. Neighbors. Module In-

terconnection Languages. Journal of Systems

and Software, 6,pp 307-334, 1986.

[Obe88] P. A. Oberndorf. The commomAda program-

ming support environment (APSE) interface

set (CAIS). IEEE TOSE, 14(6):742{748, June

1988.

[Rey88] M. J. Reynier. Utilisation de l'environnement

palas dans le cadre de la realisation indus-

trielle d'un logiciel critique temps reel embar-

que. In Le Genie Logiciel et ses applications.

Toulouse, France, 5-9 Decembre 1988.

[Sar91] V. Venugopal, S. Sarkar. A language-based

approach to building CSCW systems. In 24th

Annual Hawaii International Conference on

System Sciences. Kona, HI, 1991.

[Sel88] T. Sellis et al. Implementing Large Production

systems in a DBMS Environment: Concepts

and Algorithms. In ACM SIGMOD 1988.

[Sch88a] R.W. Schwanke, G.E. Kaiser. Living With

Inconsistency in Large Systems. Int. Work-

shop on Soft Version and Conf Control. Jan-

uary 1988, Grassau-FRG

[Sno86] R. Snodgrass, K. Shannon. Supporting Flex-

ible and e�cient Tool Integration. IFIP

WG2.4 International Workshop on Advanced

Prog. Env., Trondheim Norway, June1986.

Springer Verlag(ed.) LNCS 244, Feb. 1987.

[Sun88] Network Software Environment: Reference

Manual. Sun Microsystems, Inc., 2550 Gar-

cia Avenue, Mountain View, CA 94043, USA,

part no: 800-2095, March 1988.

[Sut90] S. M. Sutton, D. Heimbigner and L. J. Os-

terweil. Language constructs for managing

change in process-centered environments. In

ACM Software Engineering Notes, 15(6):206{

217, December 1990.

[Swi86] D.C. Swinehart, P.T. Zellweger, R.J.. Beach,

R.B. Hagmann. A structural View of The

Cedar Programming Environment. ACM

TOPLAS, 8(4):419-490, October 1986.

[Tho91] I. Thomas. Proc. of the 7th International

Software Process Workshop. San Francisco,

CA, October 16{18 1991. IEEE Computer So-

ciety Press.

[Tic82] W.F. Tichy. A Data Model For Programming

Support Environment and its Application.

Automated Tools For Information Syst. De-

sign and Dev. A. I. Wasserman (Ed.), North

Holland Ed., Amsterdam-1982.

[Unl89] R. Unland, G. Schlageter. An Object-

Oriented Programming Environment for Ad-

vanced Database Applications. COOP Ad-

vanced Databases Applications. May/june

1989.

[Zdo86] B. Zdonik. Version Management in an

Object-Oriented Database. IFIP WG2.4 Int.

Workshop on Advanced Prog. Env., Trond-

heim Norway, 16-18 June1986. Springer Ver-

lag(ed.) LNCS 244, Feb. 1987.

[Zuc91] J.-D. Zucker. ALF: accueil de logiciel futur. In

Proc. of the 5th Conference on Software En-

gineering Environments , Aberystwyth, UK,

March 25{27, 1991. pp. 21{52

