
In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

Identifying and Measuring Coupling on Modular Systems

Hakim Lounis and Walcelio Melo
CRIM

1801, McGill College Avenue, suite 800
Montréal, Canada H3A2N4

hlounis, wmelo@crim.ca

Abstract: Low module coupling is considered to be a desirable quality for modular programs to
have. This paper proposes a comprehensive suite of measures to quantify the level of coupling in a
modular system. This suite takes into account the different coupling mechanisms provided by the
C language but it can be tailored to other languages. The different measures in our suite thus
reflect different hypotheses about the different mechanisms of coupling in modular systems, and
we have precisely defined the measures of coupling so that they can be determined algorithmically.

Keywords: Coupling, Modular systems, C language.

1. Introduction

Modularity has been considered an important software product quality criterion from an
engineering point of view. For instance, in [SO88], modularity has been cited as a criterion which
can impact several software quality factors, e.g. efficiency, flexibility, interoperability,
maintainability, reusability, and verifiability. A software product is considered modular if its
components exhibit a high cohesion and its components are weakly coupled [CY79]. A module
has high cohesion if all of its elements are related strongly. Such elements, like statements,
procedures or declarations cooperate to achieve a common goal which is the function of the
module. On the other hand, coupling characterises a module's relationship to other modules of the
system. It measures the interdependence of two modules (e.g. module M calls a procedure
provided by module N or accesses a variable declared by module N). Figure 1 provides an
illustration of two software systems with different module's coupling levels.

Figure 1 :
Different Module’s

Coupling

A B

C

S1

A B

C
S2

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

It seems obvious that we would like that a module exhibits low module's coupling. This believe
stems from the fact that we suppose that a module will be easier to understand, modify, test or
reuse if the module is weakly coupled with other modules. In addition, we believe that an error in
a module will propagate less into other modules of a system if the module is low coupled with the
others modules of the system. Moreover, a low coupling module has a strong change to be less
error-prone that a higher coupled module.

Given the importance of coupling on software quality, it would seem reasonable to measure the
cohesion and coupling of a software system. By doing that, we may able to understand better the
relationship between modularity (a software engineering design and implementation criterion) and
software quality factors. Once we can measure the level of coupling and cohesion of a software
system, we will be able to better characterise its quality, assess it with regard to other systems, and
predict its product quality, e.g. maintenance effort's costs and error-proneness.

The goal of this work is two folds. Firstly, we are concerned on identifying the different forms
coupling can appear in a modular software system. As point out in [PJ80], there are many different
kinds of coupling. Each kind of coupling may have different impacts on software quality.
Secondly, we are engaged in measuring the different kinds of coupling and evaluating its impact
on error-proneness (a software quality attribute).

This paper is organised as follows. The next section describes related works. In section 3 we
introduce some basic definitions, then define the context in which our study takes place, and finally
identify the different levels of interconnection between modules. For each level of interconnection,
we list and define a set of interesting modules’ interconnection cases, and we propose simple and
automated measures to quantify such cases for module’s units, modules, and software systems.
Finally, conclusions and directions for future research are outlined.

2. Related Works

Chidamber and Kemerer [CK94] have proposed a suite of OO design metrics, called MOOSE
metrics, which have been validated in [BBM96]. They provide a very simple coupling measure,
called CBO. A class is coupled to another one if it uses its member functions and/or instance
variables. CBO provides the number of classes to which a given class is coupled. Similarly to
MOOSE, MOOD [AC94] includes a coupling measure, called Coupling Factor. In MOOD, a
class, A, is coupled with another one, B, if A sends a message to B. Both MOOSE and MOOD
coupling measures are very simple and only take into account message exchange among classes.
Recently, [BDM97] have defined a suite of coupling metrics for the design of OO systems. In this
work a suite of 24 kinds of OO design coupling measures have been defined. These coupling
measures take into account different kinds of coupling which can exist in an OO oriented design.
Regarding code coupling, in [PJ80] it has been proposed eight different levels of coupling. For
each coupling level, the shared data (parameters, global variables, etc.) are classified by the way
they are used. In a more recent work, [OHK93] extended the eight levels of coupling to twelve,
offering a more detailed measure of coupling. The coupling levels are defined between pairs of
units, say P and Q. For each coupling level, the call/return parameters are classified by the way

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

they are used. These uses are classified into computation uses (C-uses), predicate uses (P-uses),
and indirect uses (I-uses). We will detail these three kind of uses in the next section of the paper.
Our work is expired from the work presented in [OHK93]. In addition, we have used the same
measurement framework proposed in [BDM97]. In fact, our work is complementary to the one
described in [BDM97] in which OO design coupling measure have been defined. Here, we are
mainly concerned with coding coupling measure.

3. Modules’ Coupling

Before using notions of software system, module, and modular system , let us introduce them. We
adopt in the following, basic definitions proposed by [BMB96].

3.1. Basic definitions

- System : a system S is represented as a pair <E, R>, where E represents the set of elements of S
and R is a binary relation on E (R ⊆ ExE) representing the relationships between S’s elements.

Ex : E represents the set of code statements and declarations and R the set of control flows from
one statement to another.

- Module : a module M of S is the pair <EM, RM>, where EM is a sub-set of E and RM is a sub-set
of EM x EM and of R.

Ex : a module M could represent a code segment, a procedure, or a set of such procedures
packaged in a same file.

M’s elements are connected to others system’s elements by incoming InputR(M) and outcoming
OutputR(M) relations:

InputR(M)={<e1, e2> ∈ R | e2 ∈ EM and e1 ∈ E-EM}= the set of relationships from elements
outside M to those inside M.
OutputR(M)={ <e1, e2> ∈ R | e1 ∈ EM and e2 ∈ E-EM } = the set of relationships from elements
inside M to those outside M.

- Modular system : a modular system is the 3-tuple MS=<E, R, MC> if S is a system and MC a
collection of S’ modules.

∀e ∈ E (∃ M ∈ MC (M=<EM, RM> et e ∈ EM)) et,
∀Mi=<EMi, RMi> ∈ MC et ∀Mj=<EMj, RMj> ∈ MC, EMi ∩ EMj=∅

Ex : figure 2 shows the type of modular system we will consider in the paper.

A.c

A.h B.h

B.c

Figure 2 :
An example of

modular system
Module BModule A

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

In this context, coupling quantify the strength of interconnection between modules of a same
modular system. During the software maintenance process, coupling predicts the difficulty of
changing module’s programs and what are the implications for programs in other modules.
[BMB96] states that a coupling measure must have some properties, for example, to be
nonnegative, and null when there are no relationships among modules. An other important
expected property is that merging modules can only decrease coupling, so that it encourages us to
merge in a new sole module, highly coupled modules.

Before presenting in detail the set of identified modules’ interconnection levels, we precise the
object study.

3.2. Problem definition

The topic of this subsection is to define precisely what we call module in our study of modules’
interconnection. We consider a module as a collection of units, collected in a file and its associate
header. A program unit is one or more contiguous program statements having a name by which
other parts of the system can invoke it (e.g. procedure, ...). We consider that all modules are
written in the C programming language. Figure 3 illustrates that:

Ex :

A good software system should exhibit low coupling between units in different modules. Coupling
increases the interconnections between the two units (so the two modules) and increases the

/*program unit*/

/*program unit*/

f(...) /*program unit*/
{
}
g(...) /*program unit*/
{
}

Module Interface

Module Realization

M.h

M.c

Figure 3 :
An example of

module and its units

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

probability that a fault in one unit may affect others connected units. We consider also that
coupling may lower the understandability and maintainability of a software system.
In our context, we are interested by identify possible interconnections between two units
belonging to two different modules. We have to define different interconnection levels between
two units m and n of two modules M and N. The architecture of such a system is illustrating by
figure 2.

3.3. Identified levels of module’s coupling

We distinguish between three kind of modules interconnections. The following figure shows that :

If the modules are to be used together in a useful way, there may be some external references, in
which the code of one module refers to a location in another module. This reference may be to a
data location defined in one module and used in another, as in common interconnection, or it may
be to the entry point of a procedure (we said the callee) that appears in the code of one module
and is called from another module (we said the caller). It is the case of unit-call interconnection.

The distinction between different kind of modules interconnection is done thanks to three criteria :
• The kind of information shared by interconnected modules (parameters or global areas).
• To which type belong the shared information (scalar, structure, ...)
• What use is done with this shared information.

In the context of the latter criterion, [OHK93] classified uses into computational uses C-use,
predicate uses P-use, and indirect uses I-use. A C-use happens when a variable is used on the right
side of an assignment statement or in an output statement.

C-use of x

{
...

c_use_of(x) ;
...
}

Figure 4:
C Modules

Interconnections

C Modules Interconnections

Value-Parameters
Interconnection

Common Interconnection

Content
Interconnection

Unit-Call Interconnection

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

Ex :

t=a*x*x-b*x ;

printf("%d\n", x)

with c_use_of(x) → assignment_right_of(x)  output_statement_of(x)
assignment_right_of(x) → lexeme=expr_of(x)
expr_of(x) → an expression where x occurs
output_statement_of(x) → printf("...", x, ...)  ...

A P-use occurs when a variable is used in a predicate statement.

P-use of x

{
... ;

pred_stat_of(x) ; ... }

Ex :

if ((x*x-4*a*c)>0) ...

with pred_stat_of(x) → alternative_statement_of(x)  loop_statement_of(x)
alternative_statement_of(x) → if pred_of(x) ...  ...
loop_statement_of(x) → while pred(x) ...  do ... while (pred(x))  ...
pred(x) → predicate expression where x occurs.

An I-use occurs when a variable is used in an assignment to another variable, and this latter
variable is then used in a predicate statement.

I-use of x

{
...

assignment_right_of(x) ; ... ;
pred_stat_of(lexeme(x)) ; ... }

Ex :

t=a*x+b ; while (t>0) ... ;

In the following part of the paper, we list and define the identified kinds of C Modules
Interconnection (CMI). All these identified CMI are disjoints, so that if CMIi(M) is defined in the
following manner :

CMIi(M) ⊆ (InputR(M)∪OutputR(M)) is the set of CMI of type i in module M,

we have : CMIi(M) ∩ CMIj(M)= ∅, ∀i, j.

NB :

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

We will use also two subsets of the CMIi(M) set :
CMIi(m) ⊆ CMIi(M) is the set of CMI of type i in unit m of M
CMIi(m,n) ⊆ CMIi(m) ⊆ CMIi(M) is the set of CMI of type i between unit m of M and a unit n of
another module of the system.

On the other hand, we will precise for each module’s interconnection type, Importing and
Exporting amounts relatively to the total amount of coupling. It inform us on the impact that one
modules’ statements has on the statements of an interconnected module.

Ex :

We begin with the elementary case where there is no interconnection between studied modules.

n Independent Interconnection :
It corresponds to the case where m ∈ M does not call n ∈ N and n does not call m. There are no
common variable references or common references to external media between M and N.

3.3.1. Unit-Call Interconnection :

It corresponds to the case where m calls n or n calls m, with or without passing parameters. In the
case where m calls n, m is said the caller and n the callee. We begin with the case where no
parameters are transmitted from m to n.

n No Parameters Interconnection :
m calls n or n calls m. No passing parameters, common variables references, or common
references to external media. The number of occurrences of such a kind of interconnection called
NPI, is computed for each unit module, for each module and then for the entire system. NPI is
done by the following equations :

N

For units m :
Couplingexp(m)=1 ; Couplingimp(m)=2

Coupling(m)=3
Couplingexp(n)=1 ; Couplingimp(n)=0

Coupling(n)=1

For modules :
Couplingexp(M)=2 ; Couplingimp(M)=4

Coupling(M)=6

Coupling(N)=5

For the entire system :
Coupling(System)=7

M

P

: Unit Call

: Reference to a data
location (Common
Interconnection)

Unit m
Unit n

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

NPI m NPI m NPI m CMI m n CMI n m

NPI M NPI M NPI M NPI m NPI m

NPI S NPI M NPI M

imp NPI
n unit of N MC M

NPI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () (),

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑ Since the modules are disjoint.

3.3.1.1. Value-Parameters Interconnection :

The modules M and N are connected through their respective units m and n. The caller m transmit
parameters to the callee n which uses them without modifying their values. The distinction
between following interconnection scenarios is done thanks to two criteria : to which type belongs
the transmitted information and what use is done with this information. On the other hand, we
wish to compute the number of occurrences of each scenario, both for each module unit, for each
module and for the whole system.

n Scalar-Data Interconnection :
Some scalar variable in m is passed as an actual parameter to n and it has a C-use but no P-use or
I-use.

Caller in M
m(...)

{
scalar_type : x ;

... ;
definition_of(x) ;

n(x) ; ...}

Callee in N
n(y)
{

... ;
/* no P-use no I-use */
c_use(y) ; /* a C-use */

...}

definition_of(x) → x=expression

ScDI m ScDI m ScDI m CMI m n CMI n m

ScDI M ScDI M ScDI M ScDI m ScDI m

ScDI S ScDI M ScDI M

imp ScDI
n unit of N MC M

ScDI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Return-Data Interconnection :
m and n are connected by a « return » statement. The returned value has a C-use.

Caller in M
m(...)

{
... ;

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

c_use(n(...)) ; /* a C-use of */
... ; /* the returned value */

}
Callee in N

function_type n(...)

{
... ;

return(...) ;
}

RDI m RDI m RDI m CMI m n CMI n m

RDI M RDI M RDI M RDI m RDI m

RDI S RDI M RDI M

imp RDI
n unit of N MC M

RDI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Stamp-Data Interconnection :
A structure in m is passed as an actual parameter to n and it has a C-use but no P-use or I-use.
%% write about objects %%

Caller in M
m(...)

{
structure_type : x ;

... ;
definition_of(x) ;

n(x) ;
... ;
}

Callee in N
n(y)
{

... ;
/* no P-use no I-use */

c_use(y.field_i) ; /* a C-use */
... ;
}

StDI m StDI m StDI m CMI m n CMI n m

StDI M StDI M StDI M StDI m StDI m

StDI S StDI M StDI M

imp StDI
n unit of N MC M

StDI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Scalar-Control Interconnection :
Some scalar variable in m is passed as an actual parameter to n and it has a P-use.

Caller in M
m(...)

{
scalar_type : x ;

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

... ;
definition_of(x) ;

n(x) ;
...
}

Callee in N
n(y)

{
... ;

/* no C-use no I-use */
pred_stat(y) ; /* a P-use */

...
}

ScCI m ScCI m ScCI m CMI m n CMI n m

ScCI M ScCI M ScCI M ScCI m ScCI m

ScCI S ScCI M ScCI M

imp ScCI
n unit of N MC M

ScCI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Return-Control Interconnection :
m and n are connected by a « return » statement. The returned value has a P-use.

Caller in M
m(...)

{
... ;

pred_stat(n(...)) ; /* a P-use of */
... ; /* the returned value */

}

Callee in N
function_type n(...)

{
... ;

return(...) ;
}

RCI m RCI m RCI m CMI m n CMI n m

RCI M RCI M RCI M RCI m RCI m

RCI S RCI M RCI M

imp RCI
n unit of N MC M

RCI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Stamp-Control Interconnection :
A structure in m is passed as an actual parameter to n where it has a P-use.

Caller in M
m(...)

{

structure_type : x ;
... ;

definition_of(x) ;

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

n(x) ;
... ;
}

Callee in N
n(y)
{

... ;
/* no C-use no I-use */

pred_stat(y.field_i) ; /* a P-use */
... ;
}

StCI m StCI m StCI m CMI m n CMI n m

StCI M StCI M StCI M StCI m StCI m

StCI S StCI M StCI M

imp StCI
n unit of N MC M

StCI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Scalar-Data/Control Interconnection :
Some scalar variable in m is passed as an actual parameter to n where it has a I-use but no P-use.

Caller in M
m(...)

{
scalar_type : x ;

... ;
definition_of(x) ;

n(x) ;
...
}

Callee in N
n(y)
{

... ;
/* no P-use */

z=expr(y) ;
pred_stat(z)) ... ; /* an I-use */

...
}

ScDCI m ScDCI m ScDCI m CMI m n CMI n m

ScDCI M ScDCI M ScDCI M ScDCI m ScDCI m

ScDCI S ScDCI M ScDCI M

imp ScDCI
n unit of N MC M

ScDCI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Return-Data/Control Interconnection :
m and n are connected by a « return » statement. The returned value has a I-use.

Caller in M
m(...)

{

... ;
z=expr(n(...)) ; /* an I-use of */

pred_stat(z) ; /* the returned value */

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

}
Callee in N

function_type n(...)
{

... ;
return(...) ;

}

RDCI m RDCI m RDCI m CMI m n CMI n m

RDCI M RDCI M RDCI M RDCI m RDCI m

RDCI S RDCI M RDCI M

imp RDCI
n unit of N MC M

RDCI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Stamp-Data/Control Interconnection :
A structure in m is passed as an actual parameter to n where it has a I-use but no P-use.

Caller in M
m(...)

{
structure_type : x ;

... ;
definition_of(x) ;

n(x) ;
... ;
}

Callee in N
n(y)
{

... ;
/* no P-use */

z=expr(y.field_i) ;
pred_stat(z); /* an I-use */

... ;
}

StDCI m StDCI m StDCI m CMI m n CMI n m

StDCI M StDCI M StDCI M StDCI m StDCI m

StDCI S StDCI M StDCI M

imp StDCI
n unit of N MC M

StDCI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Tramp Interconnection :
A formal parameter in m is passed to n ; n passes this latter to another unit p ∈ P without having
accessed or changed the variable.

Caller in M
m(...)

{
... ;

n(x) ; ... }

Callee in N
n(y)
{

... ; /* no use of y */
p(y) ; ... }

2nd Callee in P
p(z)

{
... ;
}

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

TrI m TrI m TrI m CMI m n CMI n m

TrI M TrI M TrI M TrI m TrI m

TrI S TrI M TrI M

imp TrI
n unit of N MC M

TrI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

3.3.1.2. Content Interconnection :

This case occurs when the callee unit n of module N refers and changes parameters passed by the
caller unit m of module M. These parameters are passed by address (or reference). We identify
two kind of such interconnections.

n Scalar-Reference Interconnection :
The address of a scalar variable in m is passed as an actual parameter to n where it is modified.

m in M
... ;

m(...)
{

scalar_type(x) ;
... ;

n(x)  n(&x);
... ;
}

n in N
... ;

n(...&y)  n(... *y)
{

... ;
definition_of(y)  definition_of(*y) ;

... ;
}

ScRI m ScRI m ScRI m CMI m n CMI n m

ScRI M ScRI M ScRI M ScRI m ScRI m

ScRI S ScRI M ScRI M

imp ScRI
n unit of N MC M

ScRI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Stamp-Reference Interconnection :
The address of a structure variable in m is passed as an actual parameter to n where it is modified.

m in M
... ;

m(...)
{

structure_type(x) ;
... ;

n(x)  n(&x);
... ; }

n in N
... ;

n(...&y)  n(... *y)
{

... ;
definition_of(y)  definition_of(*y) ;

... ; }

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

StRI m StRI m StRI m CMI m n CMI n m

StRI M StRI M StRI M StRI m StRI m

StRI S StRI M StRI M

imp StRI
n unit of N MC M

StRI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

3.3.2. Common Interconnection :

It corresponds to the case where two modules share same « global spaces ». Instead of
communicating with one another by passing parameters, two modules access and eventually
change information in a global area. We distinguish five interesting kinds of interconnection :

n Global-Data Interconnection :
M and N share references to the same global variable. This latter is defined and used in N and C-
used in M. It would be possible that this variable is not visible to the entire system.

M
extern x ; ...

m(...)
{

... ; /* no P-use no I-use */
refer_global_var(x);

... ;

}
N

declaration_of(x) ; /*outside n*/
n(...)

{
... ;
}

declaration_of(x) → type x
type → int  float  char  structure ...  ...
refer_global_var(x) → c_use(x)

GDI m GDI m GDI m CMI m n CMI n m

GDI M GDI M GDI M GDI m GDI m

GDI S GDI M GDI M

imp GDI
n unit of N MC M

GDI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Global-Control Interconnection :
M and N share references to the same global variable. This latter is defined and used in N and P-
used in M.

M extern x ; ...

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

m(...)
{

... ; /* no C-use no I-use */
pred_stat(x);

... ;
}
N

declaration_of(x) ; /*outside n*/
n(...)

{
... ;
}

GCI m GCI m GCI m CMI m n CMI n m

GCI M GCI M GCI M GCI m GCI m

GCI S GCI M GCI M

imp GCI
n unit of N MC M

GCI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Global-Data/Control Interconnection :
M and N share references to the same global variable. This latter is defined and used in N and I-
used in M but no P-used.

M
extern x ; ...

m(...)
{

... ; /* no P-use*/
z=expr(x) ;

pred_stat(z); /*a I-use*/
... ; }

N
declaration_of(x) ; /*outside n*/

n(...)
{

... ;
}

GDCI m GDCI m GDCI m CMI m n CMI n m

GDCI M GDCI M GDCI M GDCI m GDCI m

GDCI S GDCI M GDCI M

imp GDCI
n unit of N MC M

GDCI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Global-Change Interconnection :
M and N share references to the same global variable. This latter is defined and used in N and
accessed and modified in M.

M extern x ; ...

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

m(...)
{

... ;
definition_of(x);

... ;
}
N

declaration_of(x) ; /*outside n*/
n(...)

{
... ;
}

GChI m GChI m GChI m CMI m n CMI n m

GChI M GChI M GChI M GChI m GChI m

GChI S GChI M GChI M

imp GChI
n unit of N MC M

GChI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

n Type Interconnection :
M and N share references to the same User Date Type (UDT). This UDT is defined and used in N
and used in M. This kind of interconnection includes what previous works called external-medium
coupling (communication through a file, ...).

M
reference1_to_udt ;

m(reference2_to_udt)
{

reference2_to_udt ;
... ;
}

N
declaration_of_udt ; /* in N.h for example*/

... ;
n(...)

{
... ;
}

declaration_of_udt → typedef  structure ...  class ...
reference1_to_udt → #include <N.h>
reference2_to_udt → occurrence of the udt defined before

TI m TI m TI m CMI m n CMI n m

TI M TI M TI M TI m TI m

TI S TI M TI M

imp TI
n unit of N MC M

TI
n unit of N MC M

imp imp
m unit of M m unit of M

imp
M MC M MC

() () () (,) (,)

() () () () ()

() () ()

exp
() ()

exp exp

exp

= + = +

= + = +

= =

∈ − ∈ −

∈ ∈

∑ ∑

∑ ∑

∑ ∑

4. Conclusion

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

The goal of this work is two folds. Firstly, we are concerned on identifying the different forms
coupling can appear in a modular software system, because each kind of coupling may have
different impacts on software quality. Secondly, we are engaged in measuring the different kinds
of coupling and evaluating its impact on error-proneness (a software quality attribute).
The next steps of our work is first to extract the suite of metrics directly from the source code,
then empirically validate this suite of metrics regarding its capabilities to predict software quality.
The main technical risk here would come from insufficient validation; so a sufficient, minimal level
of validation will be guaranteed.
The suite of metrics must be useful in predicting software quality attributes when used stand-alone
or combined with existing metrics. It may happen that the suite will work better when combined
with other metrics. In this case, it will be necessary to establish what kind of software quality
attributes can be better predicted using different combinations of coupling measures. To do so, it
will be necessary to extract several metrics from the same data set we will use. This will imply the
use of existing tools, or construction of new tools which will allow me to extract metrics defined
by other researchers from our data set.
The suite of metrics will be also used to generate prescriptive coding guidelines to improve coding
practices so that the cost and uncertainty can be reduced. To do so, we will use techniques already
used in software engineering, e.g., classification trees [B+97], OSR, logistic regression. The rules
generated by these techniques will be validated with software designers.

References

[AC94] : F. B. Abreu and R. Carapuça. "Candidate metrics for object-oriented software within a
taxonomy framework". Journal of System and Software, 26(1):87–96, 1994.

{B+97] : V. R. Basili, S. E. Condon, K. El Emam, R. Hendrick, and W. L. Melo. "Characterizing
and Modeling the Cost of Rework in a Library of Reusable Software Components", in Proc. of the
19th Int'l Conf. on Software Engineering, Boston, MA, 1997. IEEE Press.

[BBM96] : V. Basili, L. Briand, and W. Melo. "A Validation of Object-Oriented Design Metrics as
Quality Indicators", IEEE TSE, vol 22, no. 10, October, 1996.

[BDM97] : L. Briand, P. Devanbu, and W. L. Melo. "An Investigation into Coupling Measures for
C++". In Proc. of the 19th Int'l Conf. on Software Engineering, Boston, MA, 1997. IEEE Press.

[BMB96] : L. C. Briand, S. Morasca, and V. R. Basili. "Property-Based Software Engineering
Measurement", IEEE TSE, 22(1), 68-85, 1996.

[CK94] : S. R. Chidamber and C. F. Kemerer. “A metrics suite for object-oriented design.”, IEEE
TSE, 20(6), 476–493, 1994.

[CY79] : Constantine and Yourdon. "Structured Design", Prentice-Hall, Englewood Cliffs, NJ,
1979.

In Proceedings of the 8th International Conference on Software Technology -ICST'97- Curitiba, Brazil, June 1997.

[OHK93] : A. J. Offutt, M. J. Harrold, and P. Kolte. "A Software Metric System for Module
Coupling", Journal on Software and System, 1993.

[PJ80] : M. Page-Jones. "The Practical Guide to Structured Systems Design", Yourdon Press,
New York, NY, 1980.

[SO92] : I. Sommerville. "Software Engineering", Addison-Wesley, fourth edition, 1992.

