
Supporting Software Development Processes in Adele 2

Noureddine Belkhatir

LGI

BP 53

38041 Grenoble France

e-mail: belkhatir@imag.fr

Walc�elio L. Melo

University of Maryland

UMIACS,

College Park, MD, 20742 USA

e-mail: melo@umiacs.umd.edu

Published in The Computer Journal , 37(7):621-628.

Abstract

After years using of Adele [3], a con�guration management system, it became apparent
that it lacks activity-related concepts and mechanisms like work environment control,
user coordination and synchronization, method and tool control, etc. It was also clear
that considerable work is required to adpat a Software Engineering Environment (SEE)
to user requirements. Using this experience, Adele 2 has been implemented to provide a
general support for de�ning and managing dynamic aspects of a SEE and facilitate the
building of new SEE's. This paper describes, using an example (work space control),
the concepts and mechanisms involved. We show how close integration of an activity
manager with a software engineering database ful�lls the basic requirements and how a
high level task manager coupled to a con�guration manager can be developed.

Key words CASE; software development process; team coordination; programming-
in-the-large; software engineering environment; process model; process control; group-
ware mechanisms.

1

1 Introduction

The development and maintenance of a software product is a very complex task. In general, we

have many people working in parallel for a long period. These people handle a large number of

interdependent software objects that typically undergo numerous changes during the software life

cycle. Thus, the emphasis is on the resolution of the programming-in-the-large problems [9, 25], i.e.

how and when we shall enforce the ordering, synchronization and communication of the activities

that are concurrently carried out within the environment by di�erent users. Though these policies

need to be enforced, we cannot force a project team to adopt the prede�ned policies provided by

a Software Engineering Environment (SEE). It is not reasonable to force a project team to use

the coordination policies provided, for instance, by Dsee [17] which enforces the coordination only

when the information are extracted from or deposited in the Object Management System (OMS).

Although, this kind of policy may be very adequate for small projects, it is clearly not su�cient for

very large projects. In order to support programming in the large, a SEE must provide features to

specify policies, and mechanisms to interpret and enforce these policies; a SEE needs be driven by

an executable software process model to allow automated assistance [13].

Bearing this in mind, we present in the remainder of this paper the Adele system, showing how

Adele can be tailored for software process management. In order to achieve this, we have divided

this paper in the following way: in section 2, we give an Adele overview. In section 3, we show

how (very) long transactions are carried out. Next, in section 4, we describe the Adele Activity

Manager, used to describe and enforce both coordination policies and constraint integrity. We show

how this component is used to coordinate parallel software development activities using an example

application.

2

2 Adele background

In CASE (Computer Aided Software Engineering) applications the development of a software

product is a complex task. Software products need to be structured, components need to be

processed, tools adapted, developments traced and users coordinated and synchronized. Current

environments try to o�er some assistance to support these activities but results are very limited.

Usually ad-hoc solutions are implemented and little assistance is o�ered. We lack formal, uni�ed

assistance for product development, which can be formally speci�ed by the administrators or team

leaders.

The Adele system has been speci�cally designed and implemented for supporting CASE appli-

cations in a multi-user and multi-version context. Adele is a con�gurable open framework within

which we can build third generation SEEs, i.e. process-centered SEE's. Although the Adele system

may be used by all phases of the software life cycle, it is with SEE's specializing in change activities

that the Adele system has shown its main capabilities [8]. Nowadays, a project manager can de�ne

the static aspects of a SEE (objects, relationships among objects, etc.) as well as the dynamic as-

pects associated with it using the Adele modeling language [4]. The static aspects are de�ned by the

Adele data model which is based an entity-relationship model extended with objects, version, mul-

tiple inheritance, and schema partition/evolution supported by a multi-user/multi-version software

engineering database. The behavior aspects of the SEE are described by an event-condition-action

supported by a trigger mechanism [5].

2.1 Adele architecture

Adele was, in its previous versions, a con�guration manager, and was really used for large software

systems. These experiments demonstrated that methodology and management problems are often

more crucial than technical problems, and that there is little support for that. This led us to evolve

towards product and process support. In this section, we present Adele's architecture explaining

3

how this type of architecture can be used to build speci�c Software Engineering Environments using

an example which show how a user speci�ed work environment (WE) strategy can be speci�ed. As

shown in the �gure 1, the Adele kernel comprises:

� a software engineering data base | Adele-DB. Adele-DB is an active multi-user versioned

program data base. This base may be distributed on di�erent sites connected by a local

network and it can be used by application programs via an RPC interface, by a command

language via the Unix shell interface or by a graphic interface.

Adele-DB supports an entity-relationship data model which is extended with object-oriented

concepts like inheritance, methods and encapsulation. Simple and composite objects, ranging

from elements (associated to a �le) to projects, with attributes and relationships can be

described and managed. Composite objects are aggregated by relations. For instance, a

module is a complex object constituted by separate interfaces and bodies, and other objects

(derived objects, etc.).

� a con�guration manager | Adele-CM. Traditional software production tools cannot manip-

ulate versioned objects. So, it is necessary to have a tool able to extract from Adele-DB any

mono-version con�guration. In the Adele system, it is done by the con�guration manager

[11]. It calculates the con�gurations according to a set of constraints, over the objects and

over the relations, supplied by the user, unlike other approaches that work over a given con-

�guration [29]. To Adele, a con�guration is an object comprising of a set of interfaces, and a

set of realizations.

� an activity manager | Adele-AM. Adele-AM is driven by temporal-event-condition-action

rules (TECA) and supported, in part, by Adele's trigger mechanism [5]. We have enhanced

Adele's trigger mechanism with the ability to manipulate temporal expressions [6]. we present

in greater detail Adele-AM in section 4

4

Adele 2 [4] is a commercial product which is the result of the union of two long term projects

in the framework of the Laboratoire de G�enie Informatique de Grenoble. Adele 2 integrates the

results produced by the Adele 1 and Nomade projects [2]. Adele 1 [2] was a version management

system hard-coded with a con�guration builder quite similar to the one of Rcs [30]. Nomade was

a prototype of an active software engineering database. This database was driven by an object-

oriented data model. The active part of this database was supported by a trigger mechanism, which

was driven by event-condition-action rules. Nomade incorporated the version management system

of Adele 1 for dealing with the evolution of software artifacts in versions. Adele 1's con�guration

manager was also included in the nucleus of Nomade. Adele 2 is in fact the commerical version of

the Nomade system.

Adele’s
Database

software objects
Entity-relationship

data model

Version control

Trigger mechanism
ECA Rules

WE-2

WE-1

WE-3

Adele’s
Activity Manager

Adele’s
Configuration

Manager

Figure 1: Adele 2's conceptual architecture.

3 Controlling long transactions

In order to support the software development processes, a SEE must provide mechanisms to control

short and long transactions [12]. All DBMSs support short transactions as an atomic unit of work.

That is, when an operation is performed on a database object a short transaction is opened. If the

transaction �nishes successfully, the e�ect of all the operations is made permanent in the database.

If it aborts, all the database updates performed by the transaction are cancelled. It is typically

assumed that the work done during a transaction can be redone in case of a failure and it is possible

5

to wait for the transaction commit. This mechanism is only appropriate where transactions spend

a few seconds.

However during the software development process, many tasks have a very long duration. Thus,

short transaction mechanisms (waiting , deadlocks , and rollback) are not applicable. Therefore in

a SEE context we need the mechanism to control and support long transactions. In general,

long transaction management is based on a check-in/check-out model. Such a model supposes a

versioned central database where baseline objects are recorded and are accessible in read only mode

to all users. When an object update is request the object that will be a�ected by the change is

checked-out into a work place (in general into a user's directory). The objects copied by one user

are write locked for all other users. However as the database keeps the last version of the object,

other users can access without waiting problems. When the operations on the checked-out object

are �nished, the object is checked-in back to the database, and a new version is created [14].

In Adele, short and long transaction mechanisms have been implemented for supporting actions

performed inside and/or outside the Adele-DB. While short transactions are implemented in a

similar way to conventional DBMSs|with lock, rollback, and recover facilities |, long transactions

are implemented by work environment mechanisms. However, long transactions in Adele are more

exible that the conventional check-in/check-out model, because it is possible to update in parallel

checked-out objects depending on work environment coupling (see section 3.1). Adele also provides

the composite model. That is, while in the traditional check-in/check-out model only one object

is handled each time, in the composite model a set of objects is handled. In this model, a long

transaction is considered as the time between the �rst checked-out object and the last checked-in

object.

3.1 Work environment management

As mentioned before, many tasks have a very long duration in a software engineering environment.

This kind of activity is not performed in the database but inside the work environments and is

6

Adele DB

(multi-version, multi-user)

SEE
Users

mono-user,
mono-version

mono-user,
mono-version

co
up

lin
g

ac
ti

vi
ty

 m
an

ag
er

coupling ::= object transfert, merges, ...

Activity manager ::= coupling, synchro, tool control, methods, ..

AM

AM

WE-1

WE-2

Figure 2: Software Engineering Environment in Adele

managed by the work environment manager. An environment in Adele is a central database and

a set of WEs with their management constraints and policies (�gure 2)

Using the con�guration building facilities, the symbolic links to the base and the contexts

supplied by the Adele-DB, it is possible to create a mono-version view of a project. With this

view, the user can work and use traditional software development tools. The symbolic links allow

transparent read access to the objects in the base (a logical copy). In this way, only the objects

intended to be modi�ed are physically copied into the WE.

A WE is an Adele sub-database. The user can have access to all the information related to the

objects in his WE, such as: the attributes and relations. A WE, associated with a user, comprises

a mono-version view of the data base, a set of directories, a set of �les, a set of tools and a task to

do.

Objects may be shared between several WEs; we need to coordinate the WEs when shared

objects are changed. We call this kind of synchronization coupling. Di�erent kinds of coupling

can be performed:

Hard coupling. a change to a shared object is immediately propagated to all copies of this object.

7

Tight coupling. a change to a shared object is propagated to the other copies of this object only

when the changed copy is stored in the base (a merge of changes may be needed if concurrent

modi�cations are performed)

Loose coupling. Given two modi�ed copies, A and B, of the same object, nothing happens when

the �rst changes (say A) are stored in the datebase, but storing the second change (B) triggers

a merge between A and B changes.

No-coupled. It is not possible to modify an object in a concurrent way.

3.1.1 Work environment modeling

WEs are represented in Adele by special object types. Therefore development WEs, integration

WEs, validation WEs have di�erent characteristics (objects, tools, policies are usually di�erent).

The coupling policy, tools, tasks, semantic restrictions and WE identi�cation attributes are de�ned

in WE types, while the user and the objects are related to the instances of each WE. For example:

TYPEOBJECT WE_validation ISA WE ;

DOMAIN

WE>WE_validation:* ;

ATTRIBUTES

user = STRING ;

directory MSUB := ~/VALIDATION/ ;

purpose = STRING;

coupling := no-coupled ;

--TOOLS

tester := tool>test:newtest ;

link := tool>comp:link ;

END WE_validation ;

TYPEOJECT WE_develop ISA WE ;

...

--TOOLS

compC := tool>comp:cc ;

compP := tool>comp:pc ;

tester := tool>test:newtest ;

END WE_develop ;

8

The example shows \WE validation" and \WE develop" WE type de�nitions in Adele. At-

tributes of the \coupling := no-coupled" kind are constant attributes: all instances of the

\WE validation" type will have the same \attribute = value" pair. STRING means the at-

tribute may have any string as a value; a value enumeration means the attribute can have any of

the listed values as a value. A WE type de�nition is divided into three parts:

DOMAIN The domain describes where and how the WE instances will be stored in the base

ATTRIBUTES In this section we de�ne the attributes:

directory : de�nes from which directory this WE will start

purpose : must be �lled in with the WE objective

coupling : de�nes the coupling for that WE type. By default, the WEs of this type are not

coupled

TOOLS In this section we de�ne the tools used by the WEs. The tools are also stored in the base like

any other object. For example, the C compiler is contained in an envelope (de�ned by the

attribute compC) and stored in the base in the document tool>comp:cc. As tools (envelopes)

are stored and managed by the base, we have tool evolution history and so we can propagate

tool modi�cations to their dependent objects.

An instantiation example.

We suppose that the Sun \formatter:I:confUnix" con�guration is to be validated by three dif-

ferent users, each one in charge of some of the modules. For example, the WE for user \karim" is

instantiated by the following command :

makewe WE1 -c formatter:I:confUnix

-t WE_validation

-p formatter:I:confUnix = valid

-u karim

9

This command asks for the creation of a WE called WE1 (WE validation type). This WE shall

delivery the \formatter:I:confUnix" con�guration in \valid" state.

3.1.2 Relationship between Adele objects and work environments

In �gure 3 we show how the WEs are represented in the Adele structure and their relations with

other objects.

BODY implem.-by

FAMILY

include

us
e

INTERFACE

USER

seen we
isaisa isa

Modify
Code

Modify
Design

Test
Unit

linked_objcopyed_obj

isa isa

CONFIGURATION com
posed_of

com
posed_of

Figure 3: Relationship between Adele objects and WE

In this paper, we are only interested with \linked-obj" and \copied-obj" relations since they

are intensively used by the activity and task managers.

The \linked-obj" and \copied-obj" relations associate WEs with the objects contained in

that WE; \copied-obj" relation associates WEs with objects extracted from the database (i.e.

physically copied); whereas \linked-obj" relation assoicates WEs with objects referenced by soft

links (i.e. logical copies). These relations allow the activity manager | via the trigger mechanism

| to synchronize and control the processes between WEs. We show below how these relations are

de�ned in Adele.

DEFRELATION linked-obj ;

DOMAIN [type = ws] -> [type = doc] ;

CARD N:N;

TRIGGER ...

ATTRIBUTES

status = invalid, valid := invalid ;

10

END linked-obj ;

DEFRELATION copied-obj ;

DOMAIN [type = ws] -> [type = doc] ;

CARD N:N;

TRIGGER ...

ATTRIBUTES state = exp, compiled, tested,

released, officiel := exp ;

END copied-obj ;

These descriptions mean that relations are de�ned between a WS and documents. CARD denotes

cardinality: any number (N) of associations may come from or go to a given node. The key-word

TRIGGER will be explained in the section 4. Adele allows attributes to be associated with relations.

In this example `status' and `state' attributes express the state and status of the relation, where

status = invalid, valide := invalid

means that the possible values of the attribute status are invalid and valid with a default of

invalid.

Now that the infrastructure has been de�ned, we will see how the Adele activity mechanism

allows de�nition and enforcing of a WE policy.

4 Activity management

Software DBMS's manage a large amount of dynamically shared data and require assistance to

manage crucial situations. For instance when a module interface is modi�ed, we need to evaluate the

impact on modules using this interface, notify the impacted modules and if necessary to recompile

them. Dynamic aspects have been investigated in many software Databases as a way to provide this

kind of assistance. An active DB is useful for implementing management policies in a general and

exible way. The information to manage is essentially a versioned DB; the only e�cient mechanism

in such a context is the trigger mechanism associated with an event-condition-action formalism.

This formalism allows action de�nition to be executed automatically when some conditions hold,

as for instance checking integrity constraints or propagating changes.

11

4.1 Adele and the event-action concepts

The formalism involves two concepts: event and action. An event signals a state change during

a database operation. The action is the code to execute when an event occurs. Adele includes

concepts borrowed from object oriented languages (types, inheritance, encapsulation, etc.); mech-

anisms for propagation control and a tight control of external tools and objects (the WE). These

concepts extend the classical trigger mechanism. We shall describe brie
y the extension of the

mechanism in Adele and its evolution as an activity manager.

4.2 Trigger description: bene�ts of the object orientation

The object orientation of Adele o�ers many advantages in the modeling of trigger concepts. A

trigger is the (dynamic) association of an event with an action; and is expressed as \ON event DO

action". Events and actions are independent, user-de�ned objects, while triggers are associated

with object and relation types and, like object types, they can be aggregated, inherited (re�ned)

and classi�ed.

� Event instantiated on object. These events are triggered whenever a DB operation accesses

an object. With this kind of event, semantic rules related to object types may be expressed.

� Event instantiated on relations. These events allow the management of the ripple e�ects

produced by an action on an object related to other objects. This kind of event allows

de�nition of a policy to deal with inconsistent situations. For instance, the modi�cation of a

module propagates e�ects on the con�guration that includes it. The DB detects automatically

this inconsistency via an event on relations.

Triggers are similar to production rules since they de�ne the dynamic behavior of all the objects

of a given type: the encapsulation principle is respected.

The actions associated with triggers fall into one of the following categories:

12

Pre actions. Before the execution of an operation on an object of type T, an event occurs and

the triggers de�ned in the type T as pre actions are executed (those for which \evt" in \ON

evt DO Action" is true). This kind of action allows testing of preconditions and command

extensions.

Post actions. After the execution of the operation but before its commit, triggers in post-action

are executed. These triggers can analyze the consequences in the database and, since they

are executed inside the transaction they can undo (rollback) the operation. They can also

extend the command by performing other computations.

After actions. After an operation is committed, other triggers are executed. These actions make

it possible to modify the database after the command (for instance asserting new states).

Abort action. If the operation fails or aborts, all actions including those performed by pre- and

post-triggers are undone, then abort actions are executed. This mode allows execution of

actions in response to abnormal behavior.

Pre triggers and post triggers must succeed for an activity instance to be allowed to start and

commit.

4.3 An application example

We want to de�ne a \development WE" as the place where the following policy is enforced:

a module can be copied (Checked-Out) in a WE or referenced directly in the database

by soft links. When a changed module is replaced in the Data Base (Checked-In: new

revision) it must be immediately available in all the other WEs where it will be tested.

A revision is considered o�cial when validated in all WEs.

In order to specify this example, �rst we de�ne the relevant events and their relative priority:

13

DEFEVENT

Delete_Official = [!cmd = delete, state = official] PRIORITY 1;

replace = [!cmd = replace] PRIORITY 2;

valid = [!cmd = validate] PRIORITY 3;

%changes are validated by a WE

invalid = [!cmd = invalidate] PRIORITY 4;

% changes are invalidated by a WE

officialize = [!cmd = officialize] PRIORITY 5;

% changes are validated by all WE

END ;

Priorities indicate in which order the events are to be taken into account (lower number �rst).

TYPEOBJET prog ;

TRIGGER

1 PRE ON Delete_Official

DO ABORT ;

2 AFTER ON valid

DO "Check_Official" ;

This trigger, associated with all the programs (\type = prog") speci�es what to do for Delete Official

and valid events.

1. before (PRE) executing the action (destruction of an o�cial object), the action is aborted

(primitive ABORT): it is not possible to delete a program in the o�cial state.

2. after a \validate" command (\!cmd" is the current command), Adele has to check if the

revision can be set into the o�cial state (user de�ned command \Check Official"). A

revision can be o�cial only if all the \linked Obj" relationships have the \status = valid"

attribute (line 3 and 4 below).

DEFACTION Check_Official ;

3 FOR r IN *-Linked_Obj- DO -- for all relation Linked-Obj

4 { IF NOT [r%status = valid]

THEN RETURN ; } -- exit if one is not validated

"officialize %name" ;

14

END check_official ;

DEFACTION officialize ;

"MakeAttribute %name -a state official" ;

END officialize ;

For any relationship `r' of \Linked-Obj" type leading to the changed object (Line 3), if `r'

does not have valid as status then the user de�ned command \o�cialize" is not executed. The

triggers of a relation are executed when the event occurs on the object destination of the relation.

The current object becomes the object source of the relation (the event has been propagated from

the destination to the source of the relation). In Adele, a WE is represented by an object. For our

application we consider the linked-obj relation: the source object is a WE, destinations are the

objects which the corresponding WE refers to by a symbolic link (logical copies).

TYPERELATION Linked_Obj;

TRIGGER -- Propagation on relation Linked-Obj

POST

ON replace DO

mail -s "revision to test: %name " !Sourcename%author;

ON valid DO

IF !Sourcename%author = !curentuser

THEN MakeAttributeRelation !Destname -a status valid ;

ON invalid DO

IF !Sourcename%author = !curentuser

THEN MakeAttributeRelation !Destname -a status invalid ;

AFTER

ON officialize DO

mail -s "module !name is official" !Sourcename%author ;

END Linked_Obj ;

After a replace, mail is sent to all the owners of aWE with \Copied Obj" relation on the replaced

object; after a \validate" command, the \status=valid" attribute is set on the relationship that

links the WE and the revision; after an \invalidate" command, the \status=invalid" attribute

is set on the relationship that links the WE and the revision.

The whole \PRE, command, POST" is a transaction; any failure completely undoes the com-

mand. In our example, every Work Context may reject a replace command, when evaluating the

15

pre-condition (PRE) or the post-condition (POST).

This application shows how it is possible to:

� enlarge existing commands (replace in our example),

� de�ne new commands (the actions are user de�ned commands),

� associate the object type de�nitions with their consistency controls,

� automate propagation.

4.4 Evaluation

The activity manager is a basic mechanism, e�cient, versatile, but it has little knowledge of what

is done. We found the following weak points in the activity manager:

� The association of behavior with object type on the one hand and the use of relations in the

other hand results in a distribution of the information that makes it di�cult to have a general

view of the activity control.

� When long transactions are involved, it is not natural to use the activity manager. However

this di�culty is partially overcome, when creating high grained objects (such as a WE)

representing the long transaction and controlling its state.

� The activity manager works �ne when the behavior can be statically expressed from well

known information. We found the need to express more fuzzy policies, and thus to generate

dynamically activities depending on multiple conditions (a planner). However, in Adele the

context is taken into account by the dynamic creation of relationships, since propagations are

performed by relationships.

� Reasoning and interactive activity support (answering questions, guiding users) are not nat-

ural in the activity manager.

16

5 Related Work

Among the several kinds of process language that the software process community has been using to

model the software processes into process-oriented software engineering environments (POSE), the

rule-based, the procedural, and the event-condition-action languages are the most representative.

5.1 Rule-based POSE

Rule-based POSEs are advantageous because the software process can be described by using logical

declarations allowing the users to specify that they want rather than a detailed speci�cation of how

the results are to be obtained [31]. Using this behavioral approach, various prototypes of rule-based

POSEs have been built, e.g., Pcte/Alf [18], Peace [1] and Marvel [16].

Although our approach is not completely declarative, we consider that rule-based facilities are

important when executing software processes. Therefore, we have used rules in order to control

method execution as well as to allow the Adele system to take initiatives when possible, based on

the rule conditions.

5.2 Programming-based POSE

Osterweil [24] has proposed the procedural approach. The key idea is a complete algorithmic

description of software process by means of a formal language. This description is considered as a

speci�cation of how a software process is to be managed in the SDE by users and tools. Several on-

going projects have been in
uenced by this idea, resulting in the construction of some experimental

POSEs | for example, Triad-CML [26] and Arcadia-Appl/A [28]. Both these POSEs have extended

the Ada language with new capabilities to support software processes. The main drawback with

this approach is that no algorithm of a particular software process can be described completely in

advance. Another technical problem with these systems is the need to modify the Ada compiler.

Of course, we also have been in
uenced by this idea | the process type is described, in part, by

17

a procedural formalism | however, our solution is more
exible than the systems we have quoted.

Our language is interpreted and provides late-binding facilities. With these characteristics, it is

easier to adapt the changes in the environment, without changing the process description.

Other POSEs, although much in
uenced by the procedural approach, have investigated other

kinds of programming paradigms | for example PSS-PML [7]. Adele language is also inspired

from object-oriented languages and systems. The software processes are described using an OOER

1 formalism. We have broadly used type inheritance, methods, and triggers. Like PSS-PML, we

use roles to control software activities. Unlike PSS, which uses roles only to model user activities,

we have extended this notion to capture all resources manipulated by the activities.

5.3 Trigger-based POSE

In the trigger approach, software processes are modeled by a set of event-condition-action rules

that are interpreted by a trigger mechanism tightly connected with a software database | for

example, Arcadia/Appl-A, Alf/Masp [22] and AP5 [20]. Appl/A has extended the Ada language

with programmable trigger-upon relations. The automation of the software process is done by these

triggers.

AP5 [15] is an active, in-core, relational database extension to Common Lisp. AP5 users can

register triggers with the database. A trigger consists of a condition, written in �rst-order logic

with temporal extensions, and a body, written in Lisp. Triggers can guarantee data base integrity

by modifying or rejecting database transactions. They can also invoke non-database activities in

response to transactions. An AP5 trigger condition de�nes a database event to be announced,

while a trigger body represents the code executed when an event is announced. AP5 events are

announced after transactions are submitted but before they commit, allowing transactions to be

modi�ed or aborted.

In PCTE+/Alf, triggers control communication among parallel tasks by capturing changes on

1Object Oriented Entity-Relationship-Attribute

18

database objects [21]. These tasks are modeled, however, as in the Marvel 2.0 | i.e., pre- and post-

conditions enveloping foreign tools | and managed by a specialized expert system shell connected

to PCTE+.

Unlike Arcadia/Appl-A and Alf/Masp, the Adele trigger mechanism can be attached to both

entity and relationships to envelop methods. Four types of trigger coupling can be used (pre, post,

after, and error), thus providing greater
exibility.

6 Conclusion

The Adele project proposes an architecture for activity coordination in a software production

environment based on two layers: the underlying layer (in the Adele kernel) is an e�cient trigger

mechanism with propagation control based on graph management. This layer is used for database

housekeeping (consistency, extensibility, customization, etc.) and simple policies. The second layer

(the task manager) uses a rule-based strategy and is dedicated to higher-level policy management.

Currently, to write a high level task, the user has to de�ne the needed triggers and propagation,

and then the task manager program that will be triggered by the low level triggers. We are de�ning

a formalism that will generate code for both levels simultaneously [19]. It will become the user

interface to Adele Process programming. We expect, that way, both good e�ciency and high level

control.

References

[1] S. Arbaoui and F. Oquendo. Peace : goal-oriented approach and nonmonotonic logic-based for-
malism for supporting process modeling enaction and evolution. In A. Finkelstein, J. Kramer,
and B. Nuseibeh, editors, Software Process Modelling and Technology. Research Studies Press,
1994.

[2] N. Belkhatir. Nomade : un noyau d'environnement pour la programmation globale. Th�ese de
doctorat, INPG, Grenoble, France, 1988.

[3] N. Belkhatir and J. Estublier. Experience with a database of programs. ACM SIGPLAN
Notices, 22(1):84{91, January 1987.

19

[4] N. Belkhatir, J. Estublier, and W. L. Melo. Adele 2: a support to large software development
process. In Dowson [10], pages 159{170.

[5] N. Belkhatir, J. Estublier, and W. L. Melo. Software process model and work space control in
the Adele/Tempo system. In Osterweil [23], pages 2{11.

[6] N. Belkhatir and W. L. Melo. Supporting software maintenace processes in Tempo. In Proc. of
the Conf. on Software Maintenance, pages 21{30, Montreal, Canada, September 1993. IEEE
CS Press.

[7] R.F. Bruynooghe, J.M. Parker, and J.S. Rowles. PSS: a system for process enactment. In
Dowson [10], pages 128{141.

[8] S. Dart. Concepts in con�guration managements systems. In Proc. of 3rd Int'l Workshop on
Software Con�guration Management, pages 1{18, Trondheim, Norway, June 12{14 1991.

[9] F. DeRemer and H. Kron. Programming-in-the-large verus programming in the small. IEEE
Transactions on Software Engineering, 2:80{86, June 1976.

[10] M. Dowson, editor. Proc. of the First Int'l Conf. on the Software Process, Redondo Beach,
CA, October 21{22 1991. IEEE CS Press.

[11] J. Estublier, S. Ghoul, and S. Krakowiak. Premilinary experience with a con�guration control
system for modular programs. ACM SIGPLAN Notes, 9(3):149{156, May 1984.

[12] P. H. Feiler. CASE and CAPE: con
ict of interest. In Schafer [27].

[13] P. H. Feiler and W. S. Humphrey. Software process development and enactment: Concepts
and de�nitions. In Osterweil [23], pages 28{40.

[14] P.H. Feiler. Con�guration management models in commercial environments. Technical Report
CMU/SEI-91-TR-7, Carnegie-Mellon University, Software Enginnering Institure, March 1991.

[15] N. Goldman and K. Narayanaswamy. Software evolution through interative prototyping. In
T. Montgomery, editor, Proc. of the 14th Int'l Conf. on Software Engineering, Melbourne,
Australia, May 1992. IEEE CS Press.

[16] G. E. Kaiser, N. S. Barghouti, and M. H. Sokolsky. Preliminary experience with process
modeling in the Marvel software development environment kernel. In Proc. of the 23th Annual
Hawaii Int'l Conf. on System Sciences, pages 131{140, Kona, HI, January 1990.

[17] D. Leblang and R. P. Chase. Parallel building: experience with a case for workstations net-
works. In Proc. of the Int'l Workshop on Software Version and Con�guration Control, Grassau,
FRG, January 27{29 1988.

[18] A. Legait, M. Menes, F. Oquendo, P. Gri�ths, and D. Old�eld. ALF: its process model and
its implementation on PCTE. In K. H. Bennett, editor, Proc. of the 4th Conf. on Software
Engineering Environments, Software Engineering Environments | Research and Practice,
pages 335{350. Ellis Horwood Books, Durham, UK, April 11-14 1989.

[19] W. L. Melo. Tempo: Un environnement de d�eveloppement Logiciel Centr�e Proc�ed�es de Fab-
rication. Th�ese de Doctorat, Universit�e Joseph Fourier (Grenoble I), Laboratoire de G�enie
Informatique, Grenoble, France, 22 de Octobre 1993.

[20] K. Narayanaswamy. Enactment in a process-centered softwre engineering environment. In
Schafer [27].

20

[21] F. Oquendo, G. Boudier, F. Gallo, R. Minot, and I. Thomas. The PCTE+'OMS: A software
engineering database system for supporting large-scale software developpement environments.
In Proc. of the 2nd Int'l Symp. on Database Systems for Advanced Applications, Tokyo, Japan,
April 1991.

[22] F. Oquendo, J.-D. Zucker, and G. Tassart. Support for software tool integration and process-
centered software engineering environments. In Proc. of the 3rd Int'l Workshop on Software
Engineering and its Applications, pages 135{155, Toulouse, France, December 3{7 1990.

[23] L. Osterweil, editor. Proc. of the 2nd Int'l Conf. on the Software Process, Berlin, Germany,
February 1993. IEEE CS Press.

[24] L. J. Osterweil. Software processes are software too. In Proc. of the 9th Int'l Conf. on Software
Engineering, pages 2{13, Monterey, CA, March 30-April 2 1987.

[25] C.V. Romamoorthy. Programming in the large. IEEE Transactions on Software Engineering,
12(7):1145{1154, July 1986.

[26] S. Sarkar and V. Venugopal. A language-based approach to building CSCW systems. In Proc.
of the 24th Annual Hawaii Int'l Conf. on System Sciences, pages 553{567, Kona, HI, 1991.
IEEE CS Press, Software Track, v. II.

[27] W. Schafer, editor. Proc. of the 8th Int'l Software Process Workshop, Germany, 1993. IEEE
CS Press.

[28] S. M. Sutton, D. Heimbigner, and L. J. Osterweil. Language constructs for managing change
in process-centered environments. In R. Taylor, editor, Proc. of the 4th ACM Soft. Eng.
Symposium on Soft. Practical Development Environments, volume 15 of ACM SIGSOFT Soft.
Eng. Notes, pages 206{217, Irvine, CA, 1990.

[29] W.F. Tichy. Design, implementation, and evaluation of a revision control system. In Proc. of
the 6th Int'l Conf. on Software Engineering, Tokyo, Japan, September 1982. IEEE CS Press.

[30] W.F. Tichy. Rcs | a system for version control. Software|Practice and Experience, 15:637{
654, 1985.

[31] L.C. Williams. Software process modeling: a behavioral approach. In Proc. of the 10th Int'l
Conf. on Software Engineering, pages 174{186. IEEE CS Press, 1988.

21

