
Paper published in the Conference on Software Maintenance, Montreal, Canada, Semptembre 1993. IEEE Press.

Supporting Software Maintenance Processes in
TEMPO

N. Belkhatir and W. L. Melo
LGI BP 53

38041 Grenoble Cedex 9 France

Abstract

We will show in this article how Tempo, a process-centered
software engineering environment (SEE), assists in
cooperative work by means of an approach based on a
communication model. We will describe the executable
formalisme used to define software engineering activities,
and we will show how contraints related to the use of
objects in these activities are expressed using the role
concept. We will then present our communication model.
Thanks to this model, strategies governing the cooperation
between various software processes are specified by the
concept of active, programmable connections. A
connection is a communication channel that links two
roles. Message exchange is controlled using TECA rules
(Temporal event-condition-action rules), executed by a
trigger mechanism. These allow for programming of
synchron izat ion s t ra teg ies between processes,
propagating the effects of an executed action on one or
more connection points. The temporary modes of TECA
rules allow for transactions of long duration, because
these can be used to reason on past activities. Coherence
control of objects handled by activities of long duration is
performed by the work environments. The union between
connections and work environments makes it possible to
support of the cooperating processes and object sharing
between these processes.

Keywords: Software process, software engineering
env i ronment , commun ica t ion , coopera t ion ,
synchronization, triggers, object viewpoints;

1.0 Introduction

The problems of developing large volume software are
well-known. They can be classified as programming-in-
the-small [11], programming-in-the-large [22] and
programming-in-the-many. By programming-in-the-small
we mean the development activities associated with
someone who develops a module or program alone.
Programming-in-the-large means development activities
involving many components, and programming-in-the-
many refers to software development activities involving
several agents. Research has focused for some time on the
first aspect with the development of the programming

environments, and on the second aspect which is
concerned with version and configuration management.
With the more recent development of process-centered
software engineering environments, programming-in-the-
many has been identified as a major field where concepts,
mechanisms and tools need to be provided. Experimental
studies show that 70% to 80% of software engineering
activities are based on communication and collaboration
between development team members working on the same
project. Such cooperation should be integrated into a
software engineering environment (SEE) to offer a
conceptual framework where activities involving software
engineering, resource sharing, coordination, collaboration
and synchronization can be described and controlled by
the environment. By using such an approach, the resource
sharing strategies, communication and coordination within
the development team, and synchronization of software
engineering activities may be explicitly described using an
executable formalisme and then implemented in the
environment by a process-centered SEE [3] [6] [7] [8]
[21].

Based on Adele [3], an environment for programming-in-
the-large which supports software product structuring and
objects versions, we started the TEMPO [5] project in
order to take into account the production and evolution
strategies of software systems. TEMPO is a SEE piloted
by an executable formalisme which allows description of
software process models, object views, and elaboration on
the strategies of cooperation, communication [4]. In the
following text we will stress those aspects of TEMPO
which relate to cooperation, with particular emphasis on
the two following aspects:

1) Resource coordination. This is the problem of object
sharing among team members. We will show how TEMPO
supports activities of long duration with the role concept
Many roles may be called on by activities which execute
concurrently (cooperating processes). An activity takes
place within a context called a work environment. The
work environment is a unity of regrouped roles strongly
linked together by a particular level of communication.

2) Cooperation between the agents who share the model of
a common software process. We will introduce and
develop the concept of active, programmable connections

as a means o f express ing the coopera t ion and
synchronization strategies.

2.0 An overview of TEMPO

As figure 1 reveals, TEMPO consists of two basic parts:

1. A resource manager using Adele as a persistent object
base for storing objects and activities and for tracing
the project’s progress.

2. An activity manager. The temporal event-condition-
action rules (TECA) and the trigger mechanisms are
called by the activity manager, which also offers defini-
tion concepts, activity structuring using process and
role concepts within a process, and work environment
support.

2.1 The software process model

TEMPO [5] describes and executes software processes. A
software process model of considerable size may thus be
written by a group of various software process types. A
software process type has a recurrent definition. It is a
mixture of several software process types. The concepts of
specia l isat ion/genera l isat ion and composi t ion/
decomposition, defined in the data modelling portion, are
also used to model the software processes.

For example, an activity to check a module design
document consists of two sub-processes:

1. A sub-process which models the modification activity
allowing modifications to the design document.

2. A sub-process which models the revision activity
allowing approval of any design document modifica-
tions which have been made.

MonitorDesign ISA PROCESS;
CONTROL md;

sub = ModifyDesign;
card = 1;

CONTROL rd;
sub = ReviewDesign;
card =1;

END_OF MonitorDesign;
ModifyDesign ISA PROCESS;
ATTRIBUTES

begin_date = DATE := now();

end_date = DATE;
deadline = DATE;

METHODS. . .
RULES . . .
END_OF ModifyDesign;

ReviewDesign ISA PROCESS; ...

The example above shows the software process type
MonitorDesign, composed of the sub-processes
Modi fyDesign and ReviewDesign. The act iv i ty
coordinating the module design document modification is
represented in the TEMPO fo rma l isme by the
MonitorDesign type. This is composed of two sub-
p rocesses : Mod i fyDes ign and Rev iewDes ign .
ModifyDesign is the type which describes the design
document modification process, and ReviewDesign is for
revising this modification.

It is possible, for every process type, to define attributes,
methods and temporal constraints by using the event-
condition-action rules.

2.2 The temporal contraints

Software process enacting is controlled by temporal
contraints. To do so, a design structure must be provided
which allows tracing and rendering persistent any previous
states, and then describe the temporal contraints and verify
them during software processes enacting execution.

2.2.1 Temporal event-condition-action rules

Temporal contraints are described in TEMPO by temporal
event-condition-action rules (TECA). TECA rules in
TEMPO are similair to Alf [20], Damokles [12] and
HiPAC [10] rules.Interpretation and execution of these
rules are based on Adele’s triggers and its object
management system [3]. For example:

ModifyDesign ISA PROCESS;
ATTRIBUTES

begin_date = DATE := now();
end_date = DATE;
deadline = DATE;

METHODS
continue_execution;
. . .

RULES
(1)AFTER WHEN deadline_arrived

Resource Manager

Adèle database

Multi-version, multi-user

Activity Manager

Entity-Association data model + O.O
Trigger

Temporal ECA rules

Figure 1 : Overview of TEMPO

Software Process Modeling
Rôles

DO stop_execution;
(2)PRE WHEN continue_execution

IFPAST not deadline_changed
FROM last(deadline_arrived) UNTIL

now()
DO ABORT;

END_OF ModifyDesign;

The rule described in line 1 specifies that the design
document modification activity must stop when the date
foreseen has been reached.

The rule in line 2 states that resumption of the activity (it
hasn’t been completed yet) first requires that the
termination date be changed.

2.2.2 TECA rules execution module

TECA rules are defined in the data model (not shown in
this article) and in the software process module. They are
inherent in the hierarchy of object types and software
processes. In the data model, the TECA rules describe
integrity limitations which are independent of the object’s
usage context. On the other hand, these rules are used to
express the software development strategy used in the
software process model: order of activity execution,
activity synchronization and software resource usage
limitations.

A TECA rule is expressed in the following manner:
“WHEN temporal-event DO Method”, where “temporal-
event” is the temporal predicate expressing :

1. an event in the present environmental state or

2. a state in the present or past object management sys-
tem.

Method is an instruction sequence.

DEFEVENT delete_obj = [!cmd = rmobj] ;

The delete_obj event is defined in this example as being
the event which survives whenever the current command
(!cmd) is an object removal command (rmobj).

A method is a program written in simple, direct language
similar to the Unix shell.

METHOD delete ;
IF [state = stable] THEN ABORT
ELSE “rmobj %name ”;
END delete;

This method allows for object removal in an unstable
state.

A TECA rule, defined in a type, is executed by Adele’s
triggers whenever the related event is true for an instance
of this type. There are four modes of trigger execution for
each type:

PRE {liste de triggers}
POST {liste de triggers}

AFTER {liste de triggers}
ERROR {liste de triggers}

Some triggers act as pre-conditions (before the main
action), while others act as post-conditions (after the main
action). Any incoherence detected during trigger
execution rejects the action performed on the database.
Thus, for every action the following block executes:

PRE {liste de triggers}
méthode

POST {liste de triggers}

The entire block is considered to be an atomic, short
transaction even if the related rules or corresponding
action triggers other actions. A simple “ABORT”
encountered in this block allows for complete cancellation
of all operations performed in the block.

If the transaction is committed, the rules associated with
the “AFTER” block are executed; otherwise, once the
transaction is finished, the rules associated with the
“ERROR” block are executed.

A relationship’s TECA rules are executed each time an
action is performed on a relationship (create, destroy, etc.).
We added rules to control actions performed on objects
linked by a relationship. Thus each object may have a
behaviour determined by its relationship to other objects;
this is how aggregates are controlled, for example.

An action performed on object X will execute the triggers
defined in the relationship where object X is the source
(identified by the keyword ORIGIN), and the triggers
defined in the relationship where object X is the
destination (identified by the keyword DEST).

The clause “event” in the TECA rules is interpreted with
respect to the historical log of the Adele object base.
Temporal limitations are verified by an inverted route of
the object’s historical log from the moment the event starts
until the temporal restriction is met. If the temporal
restriction is not verified, no action will occur.

2.3 Object roles

The problem with multiple perspectives or multiple
viewpoints often occurs during a software product life
cycle. This is due to the fact that several users treat objects
concurrently, using different views of the objects with
limited, controlled actions specific to their activity. These
users, controlled by multiple development strategies,
handle different models of the same product. A SEE
should provide a work environment which can describe
and control these various aspects.

Thanks to the role concept, TEMPO allows each software
process occurrence to have local contraints and properties
for each object treated [4].

Roles are of a defined type. A role type may reference
different types of objects. This allows for the integration
of various types of behaviour and properties, coming from
different types of objects, within a unique perspective. By
using this concept, TEMPO unifies the treatment of a
heterogeneous set of objects. The advantage of this
approach is that a set of object types with different static
and dynamic characteristics may, using the role concept,
be viewed during a specific software process execution
step in a coherent, homogeneous fashion. This coherence
is maintained by using the multiple heritage rules used in
the object oriented models. The principal difference is
based on the extent of the roles. At the definition level, a
role type is viewed as the specialisation of the types it
contains (see diagram above). However, at the instance
level:

1. Objects created from a role are not included in the
role’s specialised type extensions.

2. A subset of objects pertaining to these types may
belong to the role.

A software process type may have several role types; a
software process becomes a list of roles whereby each
object type may have different roles. Consequently, two
objects of the same type may be controlled differently
within the same software process. At the same time, an
object can play roles within different software processes.
For example:

ReviewDesign ISA PROCESS;
ROLE under_review;

derived_from = specification_document;
. . .

Definitions

Instances

T1 T2 T3

R1 ::= ISA T1, T3, T3

T1 T2 T3

R1

o1
o2
o3

o4
o5
o6

o7
o8
o9

o1, o5, o6, o9, o10

o1, ..., o10 ::=Software object
T1, ..., T3 ::=Object Types
R1 ::= role types

ROLE requested_change;
derived_from = cc_request;
. . .

END_OF ReviewDesign;

3.0 Resource coordination: the work
environments

In classical database management systms object coherence
must always be ensured by the system. In the software
engineering context, where activities are of long duration,
it is difficult to require that these objects stay coherent
during software process execution [1]. For one thing, such
incoherence comes from the integration of different views
within a single description. On the other hand, this
incoherence stems from the fact that different activities
may share the same object over a long period of time.
Nonetheless, a SEE must manage this incoherence so as to
ensure cooperative, parallel processing during all stages of
the software’s life cycle [24].

To manage the coherence (or incoherence!) of shared
objects, it is necessary to provide mechanisms to
coordinate the users of those objects. With relational
databases, coherence is assured by the concept of
transactional atomicity, and coordination is taken into
account by the serialisation of these transactions.
Although this type of mechanism is also necessary in
software engineering, it does not provide an adequate
solution since we find ourselves in a context where several
concurrent activities share objects over a long period of
time. In such a context, the transactional mechanism must
be modified and/or extended to meet this new requirement.

3.1 The check-in/check-out model

A lot of work has been done in the field of SEE’s to
furnish a framework which supports coordination by
building mechanisms to manage long transactions [2] [9]
[18] [21] [23]. Generally, such work results in models for
long transactions similar to the check-in/check-out model
[13] [16] [17]. In this model, shared objects are taken from
the central database and made available to users in their
respective workspaces. Generally a workspace is
implemented in the form of a file management system
directory [25]. Once in the workspace, the user can modify
the shared object with no conflict from other users in the
environment who can continue to consult the version
available in the central database.

3.2 Our approach

For every software process occurrence, TEMPO provides
a work environment in which activities are executed, and
objects are modified by the use of automated (such as
compilers) or interactive (such as text editors) tools, etc.

An object shared by multiple work environments may be
modified within each work environment where that object
is used. We start from the notion that we can create one or
many versions of the same software object (Adele’s object
database allows this). Once a shared object becomes a
target for modification, a new version of this object is
created and made available to the user in the work
environment where that modification was requested. The
modification is made to the new object version, and not to
the source object. This new version has a life span limited
to that of the work environment in which it is located.

In order to control coherence between long transactions,
we require that these transactions be performed in a
hierarchical manner, like the one described in [16] [17]
and [19]. Thus, whenever two work environments wish to
share the same object concurrently and modify it, these
two environments must use the same root object.

3.3 Example of sharing

The following diagram shows an example of sharing a
software object. The object O is shared between the
software processes WE-1 and WE-2. After placement in
the work environments of these two occurrences, object O
may undergo updating. The updates are not propagated.
That is to say, object O in occurrence WE-1 may be
modified without affecting the activities happening in
occurrence WE-2, and vice-versa. To render this possible,
an alternative to object O is automatically created and
made available for every occurrence whenever an update
is made to this object. The created alternative is reserved
for the work environment which corresponds to the
software process occurrence. Figure 2 shows two,
al ternat ives O.1 and O.2 of object O which are
respectively reserved from occurrences WE-1 and WE-2.

When an alternative is created and made available to an
occurrence, i t acquires all of the source object’s
characteristics. The alternative’s attributes and contents
are therefore identical to those of the source object. Once
located within the software process’s occurrence
workspace, the alternative may be modified by revision
controls. The attributes may also be updated locally.

3.3.1 Branch management

Figure 3 depicts a scenario where software object O is
shared by two software process occurrences, WE-1 and
WE-2. The source object stored in the database has three
revisions. The status attribute in the last revision is equal
to not_revised. When this object is modified in the WE-1
work environment, an alternative (O.1) is created and
placed under its control. In this example, the WE-1 work
environment alternative acquires the contents of the last
revision, as well as the status attribute value, from the
database. Once under the control of the WE-1 work
environment, the attribute values and the contents of the
O.1 alternative from object O can be changed by making
revisions when object O.1’s contents are updated.

In a similar fashion, an alternative for object O is produced
and made available to the WE-2 work environment
whenever an update is requested by the user responsible
for that environment. In a similar fashion to the WE-1
work environment, alternative O.2 from object O can
change independently from alternative O.1 and source
object O.

This solution allows a group of users to share a set of
software objects. Each work environment belongs to a
software process type; the activities which take place in
the work environment are thus control led by the
descriptions providec within this type.

3.3.2 Partitioning a work environment

A work environment may be successively partitioned into
several sub-environments by respecting the partitioning
rules described in the software process types. Each “son”
work environment may initially handle only one object
subset from its “father” work environment.

The following diagram gives an example where the WE-1
work environment is partitioned into two working sub-
environments. Consequently, the sub-environments WE-1/
a and WE-1/b may only handle alternative O.1 from object
O. An alternative is thus created for each sub-environment
whenever an update operation is performed within the
context of these sub-environments.

O WE-2WE-1

R1

Software Process Instancel : Software Process Intancel :
O.1

R1

O.2

Object Base

WE-2WE-1

Figure 2: Object sharing

According to the procedure for creating alternatives,
described in the previous paragraph, the new alternatives
O.1/a and O.1/b acquire the attributes and contents of
object O.

3.3.3 Unifying the work environments

Modifications performed on objects in a “son” work
environment may be transferred to the “father” work
environment whenever the user so wishes. This creates a
problem for integrating the results between the work
environments. In other words, whenever the users attempt
to propagate modifications performed on shared objects,
incoherences may appear. As opposed to standard
approaches where a strategy is generally imposed to
account for such problems, we have provided TEMPO
with a solution by which the user himself may define what
the reaction should be, in case of a conflict. By using the
temporal event-condition-action rules, the integration
strategy the SEE must follow can be described.

Let’s suppose that the WE-1 work environment is an
occurrence of the Monitor-Design software process type,
and that the WE-1/a and WE-1/b work environments are,
respectively, occurrences of the ModifyDataFlowDesign
and ModifyControlFlowDesign software process types.
Let’s also suppose that the WE-1/a environment was
created for modifying the data flow specifications of a

Work

WE-1

O1

WE-1/b

O.1/b

WE-1/a

WE-1/a

O.1/a

Environment

WE-1/b

module’s design, and WE-1/b for updating the control
flow specifications.

By using the TECA rules defined in both the role and
software process types, the unification strategy for results,
to be used by the work environments, can be described.

design_documment ISA objet;
ATTRIBUTE

status = designed, reviewed, edited,
none := none;

no_of_changes = INTEGER := 0;
END_OFdesign_documment;

ModifyDesign ISA PROCESS;
ATTRIBUTES

begin_date = DATE := now() ;
end_date = DATE;
deadline = DATE;

RULES
AFTER WHEN deadline_arrived

DO stop_execution;
PRE WHEN continue_execution

IFPAST not deadline_changed
FROM last(deadline_arrived) UNTIL

now()
DO ABORT;

END_OF ModifyDesign;

ModifyDataFlowDesign ISA ModifyDesign;
ROLE df;

derived_from = desgin_document;
END_OF ModifyDataFlowDesign;

ModifyControlFlowDesign ISA ModifyDesign;
ROLE cf;

derived_form = design_documment;
END_OF ModifyControlFlowDesign;

MonitorDesign ISA PROCESS;
RULES

WHEN promote UPON under_design
IFPAST last(%mdf.df.status) ==

Object

Base

Work Environment
WE-2 Work Environment

WE-1

007
6

5
4

status = not_revised
status = edited

status = validated

status = formated
005

4
3

status = not_revised

status = edited

status = edited

004
3

2 1
status = not_revised

O

O.1
O.2

Figure 3: Branch management

designed OR
last(%mcf.df.status) ==

designed
DO

change_attr(%under_design,status,designed);
CONTROL mdf;

sub = ModifyDataFlowDesign;
CONTROL mcf;

sub = ModifyControlFlowDesign;
ROLE under_design;

derived_from = design_documment;
END_OF MonitorDesign;

In the MonitorDesign type, a rule is defined to control the
unification of results from activities concerning data flow
specification modifications and control flow modifications.
This rule imposes the following restriction:

The design document will be considered as being coherent
whenever the two work environments (WE-1/a and WE-1/
b) have modified, respectively, the data flow and control
flow specifications.

4.0 Communications protocol

Software engineering activities are characterised by a
heavy demand for coordination, collaboration and
synchronization, since software objects are shared by
multiple users. One problem in such a situation is found at
the level concerning the control of shared objects. For
example, questions such as those listed below must be
answered by the SEE:

-When, why and by whom was an object changed?

- How and when must these changes be given to the
users who share that object?

-What are the effects caused by this change?

- In which cases must the modifications be accepted or
refused?

These problems have been the object of numerous studies
in various fields of research, especially in the database
field. To solve them, various mechanisms have been
proposed. In the sections below we will show how these
problems guided our research, and TEMPO’s solutions for
solving them.

4.1 Cooperation

In order to permit data exchange between users,
mechanisms which aid and stimulate collaboration
between them must be furnished. The environment must
furnish a communications protocol so that users may be
advised of activity status within the environment. Thanks
to such notifications, users can know when and with whom
they must exchange data, or in other words, when and
under what conditions they must collaborate with each
other. This is only possible when each user can be notified

of the status of software processes being used by his
colleagues in the environment.

During software process execution, there may be a
sizeable number of software processes executing
concurrently. Each user must therefore select those
environments for which he wants to be notified. The SEE
must allow each user to specify the important events
needed to complete his activities, according to what is
supposed to be accomplished. After taking the notification
into account, the user can enter into the data exchange
process and thus collaborate. The collaboration process is
therefore composed of three steps: notification, decision
and data exchange. Each of these steps must be SEE
supportable.

4.2 Synchronization

To ensure that communication between SEE users is
controlled, they must be able to synchronise to each other
whi le they deve lop the i r ac t iv i t ies . Wi thout a
synchronising mechanism to help, a SEE cannot ensure
that the results exchanged between users is correct. In a
programming-in-the-large context, activities have a long
durat ion; i t is therefore necessary that users be
synchronised as they develop their activities so that results
obtained may be integrated. If the SEE does not control
concurrent activity synchronization, results may develop
such a degree of divergence that they then become
impossible to integrate.

Suppose, for example, that two activities of long duration,
A1 and A2, execute concurrently in the environment.
Suppose also that these two activities simultaneously
modify the same object, O. If the two activities are not
synchronised during execution, there is the danger that
modifications to object O will be impossible to integrate.
The SEE must therefore support synchronization between
activit ies of long duration as well as control that
synchronization.

4.3 Our proposal for communications support

We have found a lo t o f work wh ich concerns
communication, col laboration, coordination and
synchronization with a SEE. We concentrated our
attention on the coordination, col laboration and
synchronization strategies between these activities. To
achieve this, we furnished the concept of a connection by
which the communications protocol between software
process occurrences can be described, thus allowing these
activities to become synchronised and contributing to an
increase in the level of cooperation and collaboration
between TEMPO users.

Connections are used to allow two software process
occurrences to become synchronised during execution.
The connections are thus a communication channel

between two occurrences. The following diagram gives an
example for the occurrences WE-1/a and WE-1/b. By using
the connection, the two occurrences can exchange messages
during their execution.

By using connections, a software process occurrence can
synchronise the sharing of its results with another occurrence
which is neither a “son” nor a “father”. This means that
connections allow a software process occurrence to be
informed of the status of other software process occurrences,
and thus authorise an occurrence to react to those events
caused by other occurrences. For example, an update of object
O.2 in the software process occurrence WE-2 can trigger
operations in occurrence WE-1 because these occurrences are
connected. Since the TECA rules may be used to reply to these
events, the connections can thus be used to support
collaboration between two or more software process
occurrences.

To furnish a design database where the connections and the
message exchange strategy can be described, we make a
connection type. A connection type has the following style:

designing ISA CONNECTION;
DOMAIN

ModifyDesign:UnderDesign ->
ReviewDesign:UnderRevision;

PLUG-ON-RULES . . .
ACTIVE-RULES . . .
PLUG-OFF-RULES . . .

END_OF designing;

The connection type’s domain is provided by the DOMAIN
clause. Connections are always binary, meaning that they exist
to connect one software process occurrence with another. A
connection’s granularity level is its role. This means that one
connection type describes the connection strategy between one
software process type and another, in a role. Connection
instances are thus established between the roles of one
occurrence and the roles of another occurrence. In the example
above, the software process occurrences ModifyDesign and
ReviewDesign can synchronise themselves and exchange data
by means of the designing connection. This connection will be
established between the roles Underdesign and UnderReview,
respectively.

Work

WE-1

O

WE-1/b

O.2

WE-1/a

menssages
connection

WE-1/b

WE-1/a

O.1

Environment

4.3.1 Connection plug-on rules

The conditions under which two occurrences must be
automatically connected are described in the PLUG-ON
clause. For example:

designing ISA CONNECTION;
DOMAIN

ModifyDesign:UnderDesign ->
ReviewDesign:UnderRevision;

PLUG-ON-RULES
(1) WHEN createprocess UPON (SOURCE OR DEST);
(2) WHEN allocate_ressouces

UPON (SOURCE OR DEST);
(3) WHEN continue_execution

UPON (SOURCE OR DEST)
ACTIVE-RULES . . .
PLUG-OFF-RULES . . .

END_OF designing;

In the example shown above, a connection of the design
type will automatically be established for the following
events:

1. Whenever an occurrence of the software process type
ReviewDesign or ModifyDesign is created.

2. Whenever new resources are allocated by the roles
UnderDesign or UnderReview.

3. Finally, whenever the roles UnderDesign or UnderRe-
view receive a message allowing them to continue exe-
cution.

4.3.2 Connection plug-off rules

In a manner similar to connection plug-on rules, we can
describe for each connection type those conditions in
which a connection must be broken. These conditions are
described in the PLUG-OFF clause. For example:

designing ISA CONNECTION;
DOMAIN

ModifyDesign:UnderDesign ->
ReviewDesign:UnderRevision;

PLUG-ON-RULES
WHEN createprocess UPON (SOURCE OR DEST);
WHEN allocate_ressouces

UPON (SOURCE OR DEST);
WHEN continue_execution

UPON (SOURCE OR DEST)
ACTIVE-RULES . . .
PLUG-OFF-RULES

1) WHEN stop_execution UPON (SOURCE OR
DEST);
2) WHEN finish_execution UPON (SOURCE OR
DEST);
END_OF designing;

This example describes the following plug-off rules:

1. Whenever a message confirms validation of a halt in
activity of one of the two connected software occur-

rences, then the connection between these two occur-
rences is broken.

2. Similarly, if one of the two cooperating processes ter-
minates its activities, the connection between them is
broken.

4.3.3 Collaboration rules

For every connection type we can describe a set of
temporal event-condition-action rules which permit data
exchange between two software process occurrences. To
make this possible, collaboration rules must have access to
objects handled for the two occurrences linked by the
connection. The connection must also be capable of
following operations performed on these objects. This
means that an update on objects handled by the two
software process occurrences A and B, which are linked
by connection C, must provoke events not only in the
context of occurrences A and B but also in the context of
connection C. The TECA rules defined for this connection
therefore deal with these events. For example:

designing ISA CONNECTION;
DOMAIN

ModifyDesign:UnderDesign ->
ReviewDesign:UnderRevision;

PLUG-ON-RULES
WHEN createprocess UPON (SOURCE OR DEST);
WHEN allocate_ressouces

UPON (SOURCE OR DEST);
WHEN continue_execution

UPON (SOURCE OR DEST)
CONTROL-RULES

1) WHEN design_completed UPON SOURCE
2) DO promote(%source);
3) allocate(%source,occurenc_of(%dest));

4) WHEN design_reviewed UPON DEST
5) DO promote(%dest);
6) IF (%dest.no_of_changes >= 0) THEN
7) allocate(%dest,occure_of(%source));

PLUG-OFF-RULES
WHEN stop_execution UPON (SOURCE OR DEST);
WHEN finish_execution

UPON (SOURCE OR DEST);
END_OF designing;

The rules described in the ACTIVE-RULES clause state
that:

1. When the modification activity of the design document
is completed by the responsible software process
occurrence (line 1), the design_completed event is
taken into account.

2. The modifications performed must then be propagated
(line 2).

3. This document must be allocated to the software pro-
cess occurrence undertaking the revision (line3).

4. Once the revision activity of the design document is
completed, the design_reviewed event is taken into
account and processed by this rule (line 4).

5. The results obtained by this revision must be promoted.
The promote operation is given for this purpose (line
5).

6. After promoting the revision activity results, verifica-
tion of corrections is performed on the design docu-
ment (line 6).

7. If corrections have been made, the design document is
automatically allocated to the software process occur-
rence responsible for its modification (line 7).

The keywords ON SOURCE event/ON DEST event serve
to inform that the operation which started the event event
was performed on either the connection’s source role or
destination role, respectively.

5.0 Conclusion

In this paper we’ve shown how cooperative work is
supported. It is based primarily on two components:

1. An object management system for controlling the
objects shared by a unique data model which unifies
descriptive data and relationships. Such sharing is
based on the management of a hierarchy of component
versions.

2. An activity manager controlled by an executable for-
malisme which allows software process model descrip-
tions. This model structures activities into basic units
known as process types, which become work environ-
ments at execution time. The software production pro-
cess is controlled by temporal event-condition-action
rules.

Strategies governing the synchronization and cooperation
between different concurrent process occurrences are
specified by connections referred to as active and
programmable. The communication description strategy is
made by rules defining specific synchronization strategies
between roles, propagating their effects when an action
executes on one of the two connection points.

The temporary modes of TECA ru les a l low for
transactions of long duration, because these can be used to
reason on past activities. Coherence control of objects
handled by activities of long duration is performed by the
work environments. The union between connections and
work environments allows for support of the cooperating
processes and object sharing between these processes.

TEMPO is a research prototype conducted within the
context of the Adele Project. It is implemented above the
Adele database.

Future development and research includes:

1) Realization of an object type (“point and click”), user-
friendly, graphic interface for TEMPO to enable users to
execute activities by means of graphic support.

2) Management of software process evolution. Since
software engineering has a long duration period,
coordination and synchronization strategies can change
during the course of execution. We thus need a mechanism
by which these strategies can be changed without stopping
the execution of cooperating processes. Work concerning
this aspect is described in [15].

We believe that we offer a design context which
contr ibutes to clar i fy ing the numerous complex
coordination activities found within a SEE. We feel that
this will be the challenge for the next ten years in process-
centered SEE’s.

6.0 References

[1] R. Balzer. Tolerating inconsistency. InProc. of the
13th Int’l Conf. on Soft. Eng.g, pp 158–165, Austin, 1991.

[2] N. S. Barghouti. Supporting cooperation in the Marvel
process-centered SDE. In vol. 17 ofACM SIGSOFT
Software Engineering Notes, pp 21–31. 1992.

[3] N. Belkhatir, J. Estublier, and W. L. Melo. Adele 2: a
support to large software development process. In Dowson
[14], pages 159–170.

[4] N. Belkhatir, J. Estublier, and W. L. Melo. Software
process model and work space control in the Adele
system. In 2nd Int’l Conf. on the Software Process, pp 2–
11, , Germany, Feb. 1993.

[5] N. Belkhatir and W. L. Melo. TEMPO: a software
process model based on object context behavior. InProc.
of the 5th Int’l Conf. on Soft. Eng. & its Applications,
pages 733–742, Toulouse, France, Dec. 1992.

[6] K. Benali,et. al. Presentation of the Alf projet. InProc.
of the 1st Int’l Conf. on System Development Env. and
Factories, pages 75–90, Berlin, May 1989.

[7] R.F. Bruynooghe,et. al. PSS: a system for process
enactment. In Dowson [14], pp 128–141.

[8] R. Conradi, E. Osjord, P.H. Westby, and C. Liu. Initial
software process management in Epos.IEE SEJ,
6(5):275–284, 1991.

[9] W. Courington.The Network Software Environment.
Sun Microsystems, Inc, 1989.

[10] U. Dayalet al. The HiPAC project: combining active
databases and timing constraints.ACM SIGMOD Record,
17(1):51–70, March 1988.

[11] F. DeRemer and H. Kron. Programming-in-the-large
verus programming in the small.IEEE TOSE, 2:80–86,
June 1976.

[12] K.R. Dittrich. The Damokles database system for
design applications: its past, its present, and its future. In
Soft. Eng. Environments: Research and Practice, pages
151–171. Ellis Horwood Books, Durhan, 1989.

[13] K.R. Dittrich, W. Gotthard, and P. C. Lockemann.
Damokles – a database system for software engineering
environments. In vol. 244 ofLNCS, pp 353–371. 1987.

[14] M. Dowson, editor.Proc. of the First Int’l Conf. on
the Software Process, Redondo Beach, CA, Oct. 1991.

[15] J. Estublier,et. al. Support a l’evolution des procedes
de production logiciel dans un AGL centré processus. TR,
L. G. I., July 1993.

[16] P.H. Feiler. Configuration management models in
commercial environments. CMU/SEI-91-TR-7, March
1991.

[17] G. E. Kaiser. A flexible transaction model for
software engineering. In6th Int’ l Conf. on Data
Engineering, pages 560–567, Los alamitos, CA, 1990.

[18] W. Kim, N. Ballou J.F. Garza, and D. Woelk. A
distributed object-oriented database system supporting
shared and private databases.ACM TOIS, 9(1):31–51,
January 1991.

[19] T. Miller. Configuration management with the NSE.
In vol. 467 ofLNCS, pages 99–106. Springer-Verlag,
Berlin, 1990.

[20] F. Oquendo,et. al.. Support for software tool
integration and process-centered software engineering
environments. InProc. of the 3rd Int’l Workshop on Soft.
Eng. and its Applications, pages 135–155, Toulouse, ,
Dec.1990.

[21] B. Peuschel,et. al.A knowledge-based software
development environment supporting cooperative work.
Int’l Journal of SEKE, 2(1):79–1–6, March 1992 1992.

[22] C.V. Romamoorthy. Programming in the large.IEEE
TOSE, 12(7):1145–1154, July 1986.

[23] S. Sarkar and V. Venugopal. Transaction mechanisms
for software environment databases. In 24th Hawaii Int’l
Conf. on System Sciences, pages 511–518, Kona, 1991.

[24] R. W. Schwanke and G. E. Kaiser. Living with
inconsistency in large systems. InInt’l Workshop on
Software Version and Configuration Control, Grassau,
Germany, Jan. 1988. B. G. Teubner, Stuttgart, 1988.

[25] W.F. Tichy. Rcs — a system for version control.
Software—Practice and Experience, 15:637–654, 1985.

