
User Modeling and Control in Adele System

Walcelio L. Melo � Noureddine Belkhatir Jacky Estublier

Laboratorie de Genie Informatique, BP 53X, 38041 Grenoble, FRANCE

fwmelo, belkhatir, jackyg@imag.imag.fr

Published in the Proc. of the 4th Int'l Conf. on Computing and Information, Toronto, Ontario, Canada, May
28-30,1992

1 Introduction

Development and maintenance of large software in-
volves teams where each person has speci�c respon-
sibilities and capacities in the software process. Soft-
ware engineering environments (SEE) should provide
ways of controlling human responsibilities and capaci-
ties. These characteristics are often modeled in terms
of roles. People may play di�erent roles at di�erent
times, and a given role may be played by di�erent peo-
ple at di�erent times. In a SEE, several persons play
di�erent roles and perform di�erent tasks to achieve
speci�cs goals.

An example of this sort of SEE includes roles such
as a project manager, responsible for coordinat-
ing a software development team, a con�guration

manager, responsible for CM procedures and poli-
cies, software engineers, responsible for developing
and maintaining the software product, testers, re-
sponsible for product validation.

This sample shows that roles may be structured,
and customized in sub-roles. For instance, a software
development group includes a project manager, a con-
�guration manager, a set of SE, and a tester. These as-
pects of human behavior should be modeled and mon-
itored by a SEE in order to provide real support for
the software processes.

In the remainder of this article, we show how Adele
provides both dynamic and static views of user role in
a SEE. In order to achieve this objective, this article
is organized as follows: Section 2 presents how human
characteristics are controlled by traditional systems
and why they are not su�cient to support the role
as presented before. Section 3 is a quick overview of
the Adele system. Section 3.2 discusses and justify ca-
pacities included in Adele to model and control roles.

�Melo is supported by Technological and Scienti�c Develop-
ment National Council of Brazil (CNPq)

The article concludes with a summary of the status of
work.

2 User modeling in traditional

systems

In all SEEs, we �nd access control mechanisms. At
very least, a �le system distinguishes between the
owner of a �le and other users; Unix provides the no-
tion of group. Commercial DBMSs provide features
to de�ne access rights (e.g. read, write) for di�erent
database items. We can classify this kind of control in
the following categories:

� there is an access list associated with each ob-
ject. For each object, this list indicates who can
perform actions on it. For e�ciency reasons, this
mechanism is often very simple and the access
list is reduced to �xed size information. For ex-
ample, Unix has only three action classes (read,
write and execute) and three user classes (owner,
group and others).

� there is an rights list associated with each user.
For each user, this list indicates the objects on
which actions can be performed. This is not usual
in most systems.

USER CMD OBJECT
apply on

Right List Integrety constraint
(e.g. access list)

Figure 1: Rights list versus access list

We believe that both approaches have advantages
and drawbacks, and that they can be combined. For

example, a user U can drive a car C if U has a driver's
license (it is U's right to drive cars), AND if car C can
be driven by U (U is in the access list of C: U is the
owner or the owner's friend, etc.). Thus both must be
veri�ed.

The majority of SEEs, such as Dsee, Epos[?],
Marvel[?] etc, do not manage user roles explicitly.
A user is known by his login name. This approach
cannot be used to model hierarchical groups and role
based access control.

A few systems, such as Triad[?] and Archipel

Agenda[?], take these problems into account.

In Triad, user roles are explicitly modeled in a con-
ceptual modeling language (CML). Each role type has
attached its available actions (e.g. create/delete ob-
jects, create other roles, etc.) and its database views.
User group facilities are also available.

In Archipel Agenda, users, roles and tasks are
modeled. When a user is allocated a role to carry out
a task, a work context is created. A user environment
comprises all his Work Contexts and contains the tools
and objects on which he has rights. A user may dele-
gate his tasks to another user, provided the latter has
similar capabilities (rights).

3 Adele background

Adele is a SEE designed to provide support for
programming-in-the-many activities, such as support
for team, con�guration and versions. Adele is built
around a database based on an entity-relationship
model extended with version and object-oriented con-
cepts (multiple inheritance and encapsulation). Adele
SEE integrates a product model used to describe
the structure of the software (source, code, documents,
etc), an activity model used to take into account the
behavior aspects of the SEE. It is based on an event-
condition-action formalism (ECA) [?], and a process
model designed to describe users, tools, software pro-
cesses, etc.

This paper concentrates mainly on the third aspect,
showing how user resources (user roles) can be man-
aged by a process-oriented SEE. We are interested in
the structuring and monitoring of user activities dur-
ing the software process and the description of users as
part of the conceptual software product model. This
type of model must take into account the multiple
roles involved during the software process and allow
the dynamic role changing.

3.1 Modeling user roles

The static aspect of users are described using the
object-oriented (OO) paradigm, i.e., each user is an in-
stance of a user type. Object-oriented concepts, such
inheritance (ISA), are used to specialize user roles.
User behavior is described in terms of which actions
he can perform on which objects.

In the next section, we give an overview of Adele's
trigger mechanism, then we describe the use of this
mechanism for the management of user rights.

3.1.1 Adele's activity manager

The activity manager is the active component of the
Adele database. It is used as a general purpose rule
formalism to maintain database integrity, to integrate
external tools in the Adele environment and to syn-
chronize parallel software activities. This manager is
based on a trigger mechanism making it possible to
execute actions in the database and to communicate
with external tools. The user can de�ne object behav-
ior as well as propagations along relationships.

Adele triggers take the following form:

ON event DO Action;

Where event is a predicate over the system state,
object state and the current activities (query, naviga-
tion as well as changes) occurring on objects.

EVENT delete = [command = rm];

An Action is a program in the Adele Language.
An Adele language instruction can be a logical ex-
pression, an Adele command or a Unix command.
This language is a simple imperative language, tai-
lored to access Data Base information and navigate
easily through arbitrary relationships. It is a meta
substitution language (late binding of parameters and
variables) that looks like the Unix shell, except that
variables are multi-valued attributes, with provision
for complex query and set operators. Three built-in
actions are provided:

1. raise X -e E raises the event E on object X.

2. ABORT causes the current action to be undone.

3. ACCEPT continues the current action.

3.2 Modeling user groups in Adele

In the following section, we present a user role model-
ing strategy using inheritance, rules and trigger mech-
anisms. The customization of user type is achieved by
object type inheritance, right checking by triggers.

3.2.1 Using triggers and inheritance

In the �rst solution users are modeled in the same way
as standards objects.

TYPEOBJECT object;

PRE ON true DO

raise !username -e right_control;

TYPEOBJECT soft_eng IS user;

PRE ON right_control DO

IF [state = official] AND

[level > 3]

THEN ABORT;

END soft_eng;

TYPEOBJECT administrator IS user; ...

DEFEVENT

mod_state=[!cmd=mda,!optvala=state];

TYPEOBJECT program IS object;

PRE ON mod_state DO

IF [state = official] AND

[username.type != administrator]

THEN ABORT ;

Using the trigger mechanism, we can describe the
database objects that a user may see and what oper-
ations can be applied (see [?] for more details about
Adele's trigger). \User" a prede�ned type, is the root
for all subsequent user re�nement. In the same way
as for all other Adele object types, user type may be
re�ned and specialized in other user types.

This example
shows the de�nition of the administrator sub-type
and soft eng sub-type. Since each Adele command
has a security level, (called level), and all modi�ca-
tion commands have a level superior to 3, instances
of soft eng cannot execute modi�cation commands on
objects in the \official" state.

Conversely, program objects have an access list:
only the administrator is able to modify the state (at-
tribute) for programs in \official" state (before the
command).

This solution can be implemented without any
change to the standard Trigger mechanism and
matches our requirement: both access lists and rights
lists coexist. We have large facilities for de�ning rights
control. However this solution has severe drawbacks:

� A given user can only be of one type, he cannot
change roles dynamically.

� Modeling multiple roles can be achieved by multi-
ple inheritance, but standard inheritance for trig-
gers produces an intersection of role, not union.
However using only ACCEPT, allows for union
of privilege. In practice de�ning multiple roles in
this way is tricky.

� There is a confusion between triggers executed
when a user is an object, and triggers to execute
as the actor of a command (its rights list).

� In practice privileges can only be de�ned in terms
of intention, since the same de�nition is shared by
all instances. If rights like "IF [object = xyz]
THEN ..." are used, all users of the same type
will refer explicitly to the same object instance.

� performance. The explicit de�nition of rights,
using pre-rules to express the object domain in
terms of intention and managed by a trigger
mechanism, has a strong negative impact on per-
formance. The �rst evaluations carried out on the
prototype have shown severe performance degra-
dation.

These di�culties led us to de�ne rights and users
in a di�erent way.

3.2.2 Multiple user de�nition

Let us suppose a single user U can be instantiated an
arbitrary number of times in di�erent user types. Each
de�nition of U de�nes its characteristics and privilege
for a di�erent role.

USER

Programmer Administrator Designer

U U U

Type Level

Instance Level

Figure 2: User de�nition graph

The basic type user has a speci�c trigger bloc
called RIGHT executed each time a user of that type
tries to execute a command; it replaces logically the
raise primitive in the previous solution.

The command select role permits a user to move
from one role to another. The mixture of role type
with role selection provides several advantages. First,
the type lattice is a compact and concise description
of a user-role organization, including compound roles
built by multiple inheritance. Secondly, the multiple
instantiation of the same user in di�erent roles is a
natural way to express and sequentialize the di�erent
roles a user can play in the organization.

User instances Each user is speci�c; his rights are
almost never exactly the same as the default user.
As a programmer he may have rights on some doc-
uments (those he wrote), even if no documenter role
has been assigned to him. Conversely he may have
rights only on some programs, not on all programs
in the database. Each individual user instance must
be customized. We allow each user instance to own
a RIGHT trigger bloc. For example, for user U, as
programmer.

MANUAL john ;

RIGHT

IF [name = mydoc] THEN ACCEPT ;

IF NOT ([name = foo] OR [name = bar])

THEN ABORT ;

User U has extended rights on document mydoc,
but rights are restricted to use only objects called foo

and bar. This mechanism is in complete opposition
with the OO paradigm; all instances of a class are
potentially di�erent, they act in some way as a type.
Inheritance between the instance and its type uses the
same algorithm as inheritance between types.

Sub Databases It is possible, but not practical, to
specify explicitly in the user type the list of object
instances he has rights on, because it can be a large
list, and because this list changes frequently. We com-
plemented our rights mechanism by a sub database
mechanism: a user is always into a sub-database, and
can only access the objects of its current database, he
can change dynamically of sub-database. In this way,
rights can be expressed only in terms of intention.

4 evaluation

We found user modeling very demanding; users are
not standard objects (they may even cheat!). We pre-
sented user model roles as an application based on
both Adele trigger and Object-Oriented concepts of
the data model without any change. Several exten-
sions were needed. First, each individual user can be
customized, in extension or restriction; second, the
role a user plays can be changed dynamically, and a
hardwired RIGHT trigger bloc ensures e�cient control.
Sub Database �ltering complements our mechanism.

From team management point of view, we empha-
size the concepts for expressing user role models. It al-
lows to describe and structure any team organization.
From technology point of view, we have shown how
Object-Oriented concepts coupled with ECA rules and
trigger allows to describe these role models.

We are currently experimenting the model by de-
veloping an environment which supports the manage-
ment of a large team.

The concurent use of di�erent aspects allows a sepa-
ration of concern. Capabilities shared by a set or users
are modeled by a user sub type (a role); the speci�cs
of each user are described as part of the user instance.
Rules speci�c to a type of instance are described in
the access list (triggers) associated with this type of
object.

We have shown that, with O.O. and triggers, few
extensions are needed to implement an extremely pow-
erfully (may be too much?) and fairly e�cient (may
be not enough?) user modeling and access control.

