
ABSTRACT

In this paper we present the results of an empirical study in
which we have investigated Machine Learning (ML)
algorithms with regard to their capabilities to accurately
assess the correctability of faulty software components.
Three different families algorithms have been analyzed:
Top Down Induction Decision Tree, covering, and
Inductive Logic Programming (ILP). We have used (1) fault
data collected on corrective maintenance activities for the
Generalized Support Software reuse asset library located at
the Flight Dynamics Division of NASA's GSFC and (2)
product measures extracted directly from the faulty
components of this library.

1.0 INTRODUCTION

Software maintenance consumes most of the resources in
many software organizations. We must be able to better
characterize, assess, and improve the maintainability of
software products in order to decrease maintenance costs.
Maintenance involves activities such as correcting errors,
migrating software to new technologies, and adapting
software to deal with new environment requirements.

Corrective maintenance is the part of software maintenance
devoted to correcting errors. Mostly, when software
maintainers have to correct a faulty software component,
they rely almost exclusively on their previous experience in
order to estimate the effort they will spend to do it. Even
though highly experienced software maintainers may make
accurate predictions, the estimation process remain
informal, error-prone, and poorly documented, making it
difficult to replicate and spread throughout the organization.

Published in the Proc. of the 21th Int’l Conf.
on S/W Eng. Kyoto, Japan, 1997.

In general, software maintenance organizations tend to
assign corrective maintenance activities to young software
engineers who do not know a great deal about software
systems they have to maintain.

In order to improve corrective maintenance, we must be
able to provide models which help software maintainers
better assess the maintainability of software products and
estimate corrective maintenance effort. The benefits of
having such models for software maintenance are
numerous. For instance, estimation models can help us
optimize the allocation of resources to corrective
maintenance activities. Evaluation models can help us made
decisions about when to re-structure or re-engineer a
software component in order to make it more maintainable.
Understanding models can help us know better the
underlying reasons about the difficulty of correcting
specific kinds of errors.

Many different approaches have been proposed to build
corrective maintenance estimation/evaluation models. In
this paper, we show the results of an empirical study in
which we have investigated different ML algorithms with
regard to their capabilities to generate accurate and easily
interpretable correctability models. We have compared
these algorithms with regard to their capabilities to assess
the difficulty of correct Ada faulty components. The results
show that ML algorithms are able to generate adequate
prediction models. The rules produced by the ML
algorithms can also be used as coding guidelines. In
addition, the rules generated by these algorithms showed to
be intuitive to software maintainers.

2.0 MACHINE LEARNING ALGORITHMS

Most of the work done in machine learning has focused on
supervised machine learning algorithms. Starting from the
description of classified examples, these algorithms produce
definitions for each class. In general, they use an attribute-
value representation language that allows the use of
statistical properties on the learning set. Nevertheless,
others use the first order logic language. It has better
expressive capabilities than the attribute-value language. It

An Investigation on the Use of Machine Learned Models
for Estimating Correction Costs

1

Mauricio A. de Almeida1 and Hakim Lounis

Centre de Recherche Informatique de Montréal
1801, McGill College Ave., #800
Montréal, H3A 2N4 Qc, Canada
{mdealmei, hlounis}@crim.ca

phone: (1) (514) 840-1234

1. Guest researcher at CRIM and assistant professor at Facul-
dade de Tecnologia de Sao Paulo, Sao Paulo , Brazil.

Walcelio L. Melo

Oracle do Brasil
SCN Qd. 02 - Bl. D - Torre A - Salas 501/506

Brasilia, DF Brazil 70710-500
wmelo@br.oracle.com

phone/fax: (55) (61) 327-3027

Published in the Proc. of the 21th Int‘l Conf. on S/W Eng. Kyoto, Japan, 1997. 2

permits the expression of relations between objects. An
important consequence is the diminution of the learning
data-set size. Both are helpful for constructing efficient
software quality models. The following table summarizes
the four ML algorithms we have used.

TABLE 1. ML algorithms used in the study

3.0 STUDY OVERVIEW

3.1 The studied environment

In this study, we have used data from the maintenance of a
library of reusable components. This library, known as the
Generalized Support Software (GSS) reuse asset library, is
located at the Flight Dynamics Division (FDD) of NASA’s
Goddard Space Flight Center (GSFC). Component
development began in 1993. Subsequent efforts focused on
generating new components to populate the library and on
implementing specification changes to satisfy mission
requirements. The first application using this library was
developed in early 1995. The asset library currently consists
of 1K Ada83 components totalling approximately 515
KSLOC.

3.2 Data Collection

In this study, we collected error and fault data about this
library. An error is represented by a single software Change
Request Form (CRF) [10] filled by developers and
configurers to institute and document a change to one or
more components. A fault pertains to a single component
and is evidenced by the physical change of that component
in response to a particular error CRF. In this study, we have
only used those components representing Ada 83 files. A
faulty component version becomes a fixed component
version after it is corrected. We are only interested in the
Ada faulty component versions.

For each CRF, we have collected data on: (1) error
identification and error correction, including the names and
version numbers of the Ada source code components that
had faults in them, (2) the effort expended to isolate all
faults associated with the error, (3) the effort required to
correct all of these faults, and (4) source code metrics
characterizing these particular components. The ASAP tool
[1] was used to extract source code metrics from the Ada
faulty component versions.

3.3 Dependent and independent variables

In our study, the dependent variable is the total effort spent
to isolate and correct a faulty component. Isolation and
correction effort at NASA SEL is measured on a 4-point
ordinal scale: 1 hour, from 1 hour to 1 day, from 1 to 3 days,
and more than 3 days. To build the classification model, we
have dichotomized the corrective maintenance cost into two
categories: low and high correct maintenance cost. To do so,
we converted the four effort categories into average values
following [3]. We assumed an 8 hour day, and took the
average value for each of the categories of corrective
maintenance effort. Therefore, the category of “1 Hour” was
changed to 0.5 hours, the category of “1 hour to 1 Day” was
changed to 4.5 hours, the category of “from 1 to 3 Days”
was changed to 16 hours, and the category of “more than 3
Days” was changed to 32 hours. We then summed up these
values for isolation and correction costs. This gives us an
average overall corrective maintenance cost. We used the
median of total corrective maintenance cost as the cutoff
point for dichotomization.

In this study, the independent variables are the ASAP
product measures extracted from the faulty components.

3.4 Evaluating Prediction Accuracy

In order to evaluate the model, we need formal measures for
evaluating the classification performance of the estimation
models produced by the different ML algorithms. In this
paper, we have used five criteria (see Table 2): sensitivity,
specificity, predictive value (+), predictive value (-), and
accuracy. These are defined below with reference to Table
3. In addition, we have used a measure of prediction validity
as it was presented in [11] and used in [2]. It means that if
the statistical significant coefficient p-value of the

computed value of the X2 test is less than 0.05 then we can
say that the generated model has predictive validity.

TABLE 2. Formal measures of classification
performance [12]

All the criteria above are expected to be as high as possible,
because when they are low, it will lead to a wrong allocation
of resources to maintain the components.

TABLE 3. Two-class classification performance
matrix

In order to calculate the values of the formal measures of

ML
algorithms Algorithm family

Description
language

Induced
knowledge

NewID [4] Divide & conquer fam-
ily: Top Down Induction
Decision Tree -TDIDT-

Attribute-
value

Decision tree

CN2 [7] Covering family Attribute-
value

Rules

C4.5 [13] Divide & conquer fam-
ily: -TDIDT-

Attribute-
value

Decision
tree & rules

FOIL [14] Inductive Logic Pro-
gramming -ILP-

First order
logic

Clauses

Sensitivity n11 / (n11+n21)

Specificity n22 / (n12 + n22)

Predictive value (+) n11 / (n11 + n12)

Predictive value (-) n22 / (n21 + n22)

Accuracy (n11 + n22) / ((n11+n21)+ (n12 + n22))

Predicted Cost

 High Cost Low Cost

Real Cost High Cost n11 n12

Low Cost n21 n22

Published in the Proc. of the 21th Int‘l Conf. on S/W Eng. Kyoto, Japan, 1997. 3

classification performance as described in Table 2, we used
a V-fold cross-validation procedure [5]. For each
observation X in the sample, a model is developed based on
the remaining observations (sample - X). This model is then
used to predict whether observation X will be classified as
either costly or not costly. This validation procedure is
commonly used when data sets are small, e.g. [2] and [6].

4.0 RESULTS

4.1 Data preparation

The data we have used in this study is a set of 164 Ada
faulty components classified as having either ‘high’ or ‘low’
corrective maintenance cost. The data was structured as a
sequence of attribute-value pairs containing 19 attributes,
corresponding to the independent variables and 1 attribute
associated to the dependent variable.

4.2 Quantitative comparison

Table 4 presents the quantitative results of the study:
TABLE 4. Results of the study

From the point of view of prediction validity measures, the
models generated by NewID and CN2 are not statistically

significant (X2 test p-value>0.05). All the other generated
models are, from this point of view, statistically significant,
since the p-values are less than 0.001 (far away from the
threshold of 0.05).

As we can see in Table 4, FOIL presents the best results in
our experiment. The model generated by FOIL is composed
by 6 rules. Table 5 presents the metrics used in the
experiment and their number of occurrences in the rules of
the two best learned models.

The number of operands (N2) appeared in 5 of the 6
generated rules and the number of operators (N1) in 4. This
results demonstrate that some of the Halstead metrics [9] in
our data are useful for predicting the cost of corrective
maintenance of faulty components. The two new metrics we
have introduced, i.e., comments divided by size (comments
div size) and blank lines divided by size (blank lines div
size), have also been selected by FOIL: comments divided
by size (comments div size) appeared twice and blank lines

divided by size (blank lines div size) once.

In fact, models built without using these two metrics were
less accurate than the models we have shown in this section
(Due to a lack of space, the models built without these two
normalized metrics are not showed).

Another important result is that FOIL, an ILP ML algorithm
based on a subset of first order logic description language,
provides the best results for all the measures we have
computed. The sensitivity and the predictive value (-) is
pretty high (around 80%) and the overall accuracy is 5%
higher than the second best algorithm (C4.5 rules). This
means that in some cases one can allocate resources to
corrective maintenance of faulty components with a 82% of
confidence.

In a recent study where another set of metrics have been
used, Basili and his colleagues [2] obtained similar results
using C4.5 rules (sensitivity 76% and overall accurary
73%). Although the results are difficult to compare, since
[2] have used a different data set and independent variables
(i.e., software metrics), the results of our study
demonstrated again that C4.5 rules have worked better than
C4.5 decision trees. In addition, the results obtained with
C4.5 rules on both studies are quite close (around 75%).

4.3 FOIL rules

FOIL is able to built predictive software models via rules
expressed in first order logic. The greatest advantage of
FOIL rules is that we are able to compare measures instead
of simply listing attribute-value rules. Here, we show one of
the rules generated by FOIL taken arbitrarily to exemplify

NewID CN2 C4.5 C4.5_rules FOIL

Sensitivity 53% 56% 70% 74% 80%

Specificity 50% 53% 62% 64% 68%

Predictive-
value(+)

55% 58% 59% 59% 65%

Predictive-value(-) 48% 51% 73% 77% 82%

Accuracy 52% 54% 66% 68% 73%

X2 0.1898 1.1289 17.34 21.91 37.08

p-value =0.66 =0.2854 <=0.000 <=0.0000 <=0.000

TABLE 5. Metrics used in the experiment

Metrics FOIL C4.5_rules

Number of operands (N2) 5 0

Number of operators (N1) 4 0

declarative 3 1

inline comments 3 0

Number of distinct operators (n1) 3 0

blank lines 2 1

comments div size 2 0

cyclomatic complexity 2 2

lines of comments 2 0

total statement nesting depth 2 0

blank lines div size 1 3

executable 1 0

lines of code 1 0

maximum statement nesting depth 1 0

statements 1 0

total source lines 0 0

Ada language statements 0 0

average statement nesting depth 0 0

Number of distinct operands (n2) 0 0

Published in the Proc. of the 21th Int‘l Conf. on S/W Eng. Kyoto, Japan, 1997. 4

the rule’s interpretation.

high(A):-executable(A,B),
maximum_statement_nesting_depth(A,C),
lines_of_comments(A,D),commentsdivsize(A,E),
N1(A,F),N2(A,G),less_or_equal(E,F),
~less_or_equal(B,G),C<>4,C<>43, less_or_equal(C,D)

This rule can be read as:

“a faulty component has a high corrective maintenance cost
if the comments density (#commentsLines / # source lines of
code) is less or equal to number of Operators, and execut-
able statements is greater than number of operands, and
maximum_statement_nesting_depth is less or equal to the
number of lines of comments, and the maximum statement
nesting depth is different from 4 and 43”.

The data used in this study as well as all decision trees and
rules are available under request.

5.0 LESSONS LEARNED

In this paper, we have empirically investigated different
machine learning techniques with regard to their capabilities
to generate accurate correctability models. The results show
that the inductive logic programming algorithms are
superior to the top-down induction decision tree, top-down
induction attribute value rules, and covering algorithms, i.e.
the overall accuracy of the model build using FOIL was
higher than the other algorithms. The rules provided by the
inductive logic programming algorithm we have used, i.e.,
FOIL, showed to be meaningful.

As far as we know, we are one of the first to investigate the
use of such ILP ML algorithms in the field of software
engineering [8]. Most of the works done have exploited
algorithms based on propositional logic. These latter are
limited, in the sense that they can not induce models that
compare a descriptor (i.e., metric or independent variable)
to another.

The work we have presented addresses two different but
complementary domains: software engineering and machine
learning. It confirms the usefulness of collaboration
between the two domains. With regard to software
engineering, we intend to do the following work:

• The generation of other quality models, such as
reliability, error-proneness, etc.

• The use of other set of measures which enriches the
measures provided by ASAP.

• Replicate the study using other data sets.

• Provide guidelines which help software managers to
take preventive action early in the process life-cycle.

ACKNOWLEDGEMENTS

The authors wish to thank Vic Basili from University of
Maryland -SEL- and Steven Condon from CSC for
providing the data used in the paper. We are also grateful to

R. Tesoriero and P. Mackenzie for their feedback on the
early versions of this paper. During this work, W Melo was
in part, supported by the Software Quality Group of Bell
Canada, and by NSERC operation grant #OGP 0197275.

6.0 REFERENCES

[1] Amadeus Software Research Inc. “Getting Started
with Amadeus”. Amadeus Measurement System.
1994.

[2] V. Basili, Condon, K. El Emam, R. B. Hendrick,
W. L. Melo. “Characterizing and Modeling the
Cost of Rework in a Library of Reusable Software
Components”. In Proc. of the IEEE 19th Int’l.
Conf. on S/W Eng., Boston, MA, May 1997.

[3] V. Basili and B. Perricone. “Software Errors and
Complexity: An Empirical Investigation”. In
CACM, 27(1):42-52, January 1984.

[4] R. Boswell. “Manual for NewID”. The Turing
Institute, January 1990.

[5] L. Breiman, J. Friedman, R. Olshen and C. Stone.
“Classification and Regression Trees”. Published
by Wadsworth, 1984.

[6] L. Briand, V. Basili, C. Hetmanski. “A Pattern
Recognition Approach for Software Engineering
Data Analysis”. In IEEE TSE, 18(1), Nov. 1992.

[7] P. Clark & T. Niblet. “The CN2 induction
algorithm”. In Machine Learning Journal, 3, p
261-283.

[8] W. W. Cohen & P. Devanbu. “A Comparative
Study of Inductive Logic Programming Methods
for Software Fault Prediction”. Technical Report
AT&T Labs-Research, 1996.

[9] M. Halstead. “Elements of Software Science”.
North-Holland, Amsterdam, 1977.

[10] G. Heller, J. Valett and M. Wild. “Data Collection
Procedure for the Software Engineering Labo-
ratory (SEL) Database”. Technical Report SEL-
92-002, Software Engineering Laboratory, 1992.

[11] F. Lanubile and G. Visaggio. “Evaluating
Predictive Quality Models Derived from Software
Measures: Lessons Learned”. Technical Report
ISERN-96-03, International Software Engineering
Research Network, 1996.

[12] S. M. Weiss, C. A. Kulikowski. “Computer
Systems That Learn”. Morgan Kaufmann
Publishers, Inc. Sao Francisco, CA. 1991.

[13] J. R. Quinlan. “C4.5: Programs for Machine
Learning”. Morgan Kaufmann Publishers, Sao
Mateo, CA, 1993.

[14] J.R. Quinlan. “Learning Logical Definitions from
Relations”. In machine learning journal, vol 5, n°3,
p 239-266, August 1990.

