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Abstract. Polymorphism is a key feature of the object-
oriented paradigm. However, polymorphism induces hidden
forms of class dependencies, which may impact software
quality. In this paper, we define and empirically investigate
the quality impact of polymorphism on OO design. We
define measures of two main aspects of polymorphic
behaviors provided by the C++ language: polymorphism
based on compile time linking decisions (overloading
functions for example) and polymorphism based on run-time
binding decisions (virtual functions for example). Then, we
validate our measures by evaluating their impact on class
fault-proneness, a software quality attribute. The results show
that our measures are significant predictors of fault proneness
as well as they constitute a good complement to the existing
OO design measures.

Keywords: object-oriented design measurement,
Polymorphism, overloading, C++ programming language,
software risk prediction.

1. Introduction

Object-Oriented (OO) design is common practice in the
software engineering field; C++ is one of the most used OO
programming language [14] [16]. OO design is based on
abstraction, encapsulation, modularity and inheritance [7].
These concepts are often translated into different design and
coding mechanisms in programming languages which
prescribe decomposition, encapsulation and visibility in a
software system  [14].

Mainly, OO techniques use inheritance, association,
aggregation, polymorphism and message passing to model
any static or dynamic computation feature. Polymorphism is
claimed to provide benefits such as greater extensibility and
reusability of OO systems [7], [10], [13], and [15]. However,
some polymorphic forms, when used in combination with
inheritance, can penetrate encapsulation boundaries and
create hidden dependencies.

The goal of this work is to empirically evaluate the quality
impact of polymorphic forms on OO software design. We
aim at the definition and validation of a suite of OO design

measures, which can be collected early in the product-
life cycle and that, can predict software quality. While
we have focused on C++ systems, our polymorphism
measures can be tailored to other polymorph
languages. Section 2 discusses and relates our study to
currently developed research work. Section 3 first
presents the different polymorphic forms we have
identified in OO designed systems, and then details our
suite of OO polymorphism measures. Section 4
addresses the empirical evaluation of our OO
polymorphism measures. Finally, Section 5 concludes
the paper by presenting lessons learned and future
prospects.

2. Related Work

Several software OO metrics have been proposed in the
last years [1][6][9][11][12]. We will focus here only on
design metrics that can be evaluated early in the
software life cycle. Chidamber and Kemerer [11] have
proposed a set of coupling metrics (CK metrics in the
rest of the text) which have been empirically validated
by Basili, Briand and Melo  [2]. The CK measures
address visible class interactions forms regardless of
the hidden effect of specific elements involved in an
interaction. Briand, Devanbu and Melo [9] have
investigated coupling metrics that take into account of
C++ specific features (e.g. friendship mechanism.
Three main views have been considered along which
several coupling measures have been defined: locus,
the expected coupling impact location (import/export);
type, the kind of the involved items in an interaction
(attribute or method); and relationship, which
differentiates the inheritance and friendship
mechanisms. This set of metrics has been extended by
Benlarbi and Melo [3] with a fourth view along which
class coupling may occur: scope or access level.

In our knowledge, few of the proposed OO design
metrics has focused on polymorphism. In particular,
Abreu and Carapuca [1] have considered a
polymorphism factor (POF) in their set of design
metrics MOOD. The POF measure quantifies the



percentage of the overridden methods across an inheritance
lineage in a OO system (member functions in C++).
However, the POF number gauges only one visible
polymorphic form: the relative number of overridden
methods in a descending inheritance line. The POF measure
stems from the assumption that a message sent to a class is
eventually bound (statically or dynamically) to one of its
method names or one of its descendant method names.
Polymorphic behaviors in OO systems include other forms
discussed in the next section.

3. Polymorphism Metrics for OO Design

3.1 Forms of Polymorphism in OO design

In the OO paradigm, polymorphism stems from the
combination of message passing, inheritance and
substitutability that allow implementing the is-a relationship.
This combination may yield to different techniques used in
OO programming languages to achieve code sharing and
reuse. There is no consensus on the polymorphism
terminology in the programming languages community.
Mainly, we can cite five different definitions for
polymorphism in the OO paradigm: pure polymorphism,
overriding, deferred methods, overloading and generics. Note
that generics may stand for polymorphic methods as well as
for polymorphic classes (or types). Template functions are an
example of polymorphic methods in C++.

In the current work, we will consider only three of these
definitions: pure polymorphism, overriding and overloading.
Pure polymorphism is achieved by applying a single method
to arguments of different types. In this case the same code
may have several interpretations. Method overriding is
achieved when the behavior described in a parent class is
altered in the descendant class. Overloading or ad hoc
polymorphism is achieved when the same name denotes
different methods (different code).

Here, we will restrict ourselves to polymorphic forms in C++
that respond to one of the three previous definitions, namely
polymorphic member functions. Consider a member function
as formally defined by a tuple <Name, Signature, Return
Type>; each of these three characteristics may change in a
new declaration while the others may remain fixed. This
eventually generates different forms of polymorphic
behaviors that may influence the quality of a OO design
developed in C++.

Depending on the encapsulation level considered, different
forms of polymorphic member functions may occur in a C++
design: within the class boundary (elementary level) and
within a class hierarchy encapsulated in a system (composed
level). At the class level, polymorphism is almost
synonymous with overloading; at the composed level two

forms of polymorphic behavior may occur: pure
polymorphism or overriding.

Our classification of polymorphic behaviors in C++
includes polymorphic behaviors that are based on run-
time binding decisions (e.g., virtual functions) as well
as on compile time linking decisions (e.g, overloading
functions). It identifies visible and hidden polymorphic
forms of a method in a C++ design. From this
categorization we derived measures that account for
different types of polymorphic behaviors, and thus
evaluate and quantify the impact of each type of
behavior on the quality of a given artifact. Mainly, we
consider three polymorphic forms for a C++ member
function:

• Pure Polymorphism: this capability also called
parametric overloading, is provided in C++ by the
evocation of the same name with different
signatures inside the class scope. Pure
polymorphism within a class is implemented by
creating several methods with different signatures.
Based on static binding, a parametric overloaded
member function is recognized by the number,
types and order of the arguments in an invocation.

• Static polymorphism: In C++, different functions
having the same name but with different signatures
can be defined in different classes linked or not by
inheritance relations. This corresponds to method
overriding. In C++ two different forms of
overridden methods may occur: non-virtual
methods and virtual methods. Using compile-time
decisions, non-virtual overridden methods are
recognized by the different signatures they hold in
different declarations. We call this form static
polymorphism because they are based on static
bindings.

 
• Dynamic polymorphism: It is the ability to use

the same name and the same signature in an
overridden method. It corresponds to the
implementation of ad hoc polymorphism in C++.
We call it dynamic because run-time decisions are
used by the compiler to recognize the right method
evoked.

Static and dynamic polymorphism result from the OO
design features of combination and specialization. The
forms of polymorphism defined above constitute one
view under which a design may be scrutinized, and
which may be combined to others such as the class
inheritance relations view or the class friendship
relations view. We distinguish the following types of
inheritance relations: no inheritance, simple inheritance



or multiple inheritance. In the present work we do not
consider multiple inheritance or friendship relations.
Combining static/dynamic polymorphism forms with simple
inheritance relationships, we derive the set of measures
shown in Table 1.

Table 1. List of metrics for polymorphism forms

Metrics Definition

OVO Overloading in stand-alone classes

SPA Static polymorphism in ancestors

SPD Static polymorphism in descendants

DPA Dynamic polymorphism in ancestors

DPD Dynamic polymorphism in descendants

In object orientation, generic methods or classes can
minimize the introduction of new methods and objects. The
OVO measure is intended to gauge the degree of methods
genericity in a class by counting the number of function
members that implement the same operation. For example, if
an add operation is implemented in a class C, via a set of
C++  function members each one evoked by a different
parameter type list (e.g., integer, float, short), OVO counts
the total number of functions that are used in C to implement
the add operation. Static and dynamic polymorphism
measures are intended to gauge separately the impact of static
binding and dynamic binding on a OO design.

Polymorphism may introduce hidden forms of class
dependencies that break modularity and thus impact the
design quality of an artifact. Combining the static and
dynamic polymorphism forms with the inheritance
relationships we are able to evaluate the impact of changes
made to polymorphic behaviors coming from inherited
classes on a given class C. We can thus predict how much
class C will be impacted if any modification is made in its
ancestors or descendants polymorphic member functions.
This is different from the POF measure from the MOOD set
of metrics in that it gives more precision on the quality
impact of each specific OO feature on a given design. For
example, one can evaluate the quality impact of static
binding and dynamic binding separately.

3.2 Polymorphic Measures for Object-
Oriented Design

In this section, we provide formal definitions for the metrics

presented in Table 1.

Figure 1. Example of C++ Polymorphism cases

1. Class A {
2. virtual void m (int   i);
3. virtual void m (float   f);
4. virtual void m (int    i , int   f);
6. virtual void p ();
7. virtual void p (int   x); }
8.
9. Class  B : public A {
10 virtual void m (); }
10�  
12. Class C : public B {
13. virtual void m  ();
14. virtual void p ();     }
15.
16. Class D {
17. virtual void m ();   }

For the current study we consider a OO design as a
collection of classes.

• Overloading: The OVO measure is given by:
 

 
 where overl(fi , C) is an operator which returns the
number of times the function member name fi is
overloaded in the class C. For instance, from Figure1
overl(m, A)=3 and overl(p, A) =2, therefore OVO(A) =
5.
 
• Static polymorphism:
 SPoly(Ci ,C) is an operator which returns the number
of static polymorphism function members that appear
in Ci and C. Note that the static polymorphism relation
is symmetrical, i.e. for any pair of classes Ci and C,
SPoly(Ci ,C) = SPoly(Ci , C). For instance in Figure 1,
A and B has one polymorph function member m, so
Spoly(B,A)= Spoly(A,B)=1.
 
 Static polymorphism in ancestors is given by:
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 where ancestors(C) is an operator that returns the set of
distinct ancestors of class C. For instance, from the pair of
lines: 2-10 or 3-10 or 4-10 we have SPA(B)=1.
 
 Static polymorphism in descendants is given by:
 
 

 where Descendents(C) is an operator that returns the set of
distinct descendents of class C. For instance, from Figure 1 in
the pair of lines 7-14, we have SPoly(A,B)=1 and
SPoly(A,C)=1, then SPD(A)=2.
 
• Dynamic polymorphism:
 DPoly(Ci ,C) is an operator which returns the number of
dynamic polymorphism function members that appear in Ci

and C. Again, we can note that dynamic polymorphism
relations are symmetrical, i.e. for any pair of classes Ci  and
C, DPoly(Ci, C) = DPoly(Ci, C).
 
 Dynamic polymorphism in ancestors is given by:
 
 

 
 For instance from Figure 1 in lines 6, 10, 13 and 14, we have
DPoly(B,A)=0 and DPoly(C,A)=1 and DPoly(C,B)=1.Then,
DPA(B)=0 and DPA(C)=2.
 
 Dynamic polymorphism in descendents is given by
 

 
 For instance, from in lines 6, 10, 13 and 14, we have
DPoly(A,B)=0 and DPoly(A,C)=1 and DPoly(B,C)=1. Then,
DPD(A)=1 and DPD(B)=1.
 
 The last four measures can be aggregated in order to capture
the level of polymorphism in a class pertaining to a class
hierarchy. The aggregate polymorphism measures are:
 
• Static polymorphism in inheritance relations:

 

 

• Dynamic polymorphism in inheritance relations:
 
 

 
 Relations than inheritance can occur in combination
with polymorphism in C++ systems. Methods with the
same name may appear in classes that have no
inheritance relations. While such methods may be
conceptually and computationally unrelated, they may
lead as well to maintenance difficulties: developers
reading the code may get confused. Thus, for example,
for two unrelated classes C1 and C2 having the same
function member f appearing at unrelated places in the
source code may cause confusion for the maintainer.
Polymorphism in non-inheritance relations is formally
defined by:
 
 Eq. 8

 
 where Others(C) is an operator that returns the set of
distinct classes that are neither ancestors nor
descendants of class C. For instance, from Figure 1 in
lines 10 and 17, we have NIP(D)=3, since
DPoly(D,C)=1, DPoly(D,B)=1, and SPoly(D,A)=1.
We note here that this is not actual polymorphism--just
potential for human confusion.
 
4 Empirical Validation of Polymorphism

Measures
 In this section, we present the empirical validation of
our polymorphism measures. We use the product
metric validation methodology proposed in [8] which
has been successfully used to validate other suites of
OO design measures, e.g. [2][9].
 

4.1 Validation Data
 Our goal here is to validate the ability of our
polymorphism measures to predict fault-prone classes.
We have used data collected from an open multi-agent
system’s development environment, called LALO.
This system has been developed and maintained since
1993 at CRIM; it includes 85 C++ classes with
approximately 40K source lines of code (SLOC).
 
 We collected: (1) the source code of the C++ system,
(2) data about its classes, (3) fault data. The fault data
collected report concrete manifestations of errors found
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by the 50 beta-testers of LALO on the versions 1.1. and 1.1.a,
respectively delivered on November 1996 and January 1997.
The data for the polymorphism measures were collected from
the source code by a tool set comprising a GEN++ [18]
analyzer and a C program. The polymorphism measures are
calculated by simple static analysis of only the C++ class
interfaces.
 

4.2 Validation Strategy
 To validate our OO design measures as quality indicators, we
use a binary dependent variable, which capture the fault-
proneness of classes: was a fault detected in a class due to an
operational failure? As in [2][9], we have used logistic
regression to analyze the relationship between our suite of
measures and class fault-proneness.
 
 A multivariate logistic regression model is based on the
following relationship equation (the univariate logistic
regression model is based on just one variable):

 

 where π is the probability that a fault does not occur in a
class during the software operation given the polymorphism
measures taken as explanatory variables in the model; and the
Ci’s are the regression coefficients to be estimated. For each
measure, we provide the estimated regression coefficient Ci,
the relative odds ratio given by:
 

 
 and the statistical significance coefficients (p-values) (see
[17] for more details). The relative odds ratio is the ratio
between the probability of having a fault when the measure
has a value X and the probability of having a fault when the
measure value is X + 1. Here the odds ratio indicates how the
risk of having a fault in a class changes with the
polymorphism measure values. In the current study  we  use 
∆Ψ to evaluate how the risk of the predicted quality factor
would change with each of our polymorphism measures.
 
 The statistical tool we have used performs the regression
analysis with the best fit according to the chi-square test (χ2)
(a non-parametric test). Chi-square provides a simple test
based on the difference between observed and expected
frequencies with few assumptions about the underlying data
set. Large values of χ2 indicate a large deviation from the
tested hypothesis thus little credibility. In our study the null
hypothesis is that a linear correlation exists between the
probability of having no fault in a class and the considered
OO measures.

4.2.1 Univariate Analysis

 Descriptive Statistics
 Table 13 shows the descriptive statistics of the
polymorphism measures listed in Table 1 and defined
in Section 3.2. Many measures show a limited variance
in our data set. For instance, the measures of
polymorphism in descendants SPD and DPD present a
very week variance. This is due to the fact that LALO
classes have low inheritance tree depth. This confirms
other studies, which have found that the use of
inheritance is low in domain-specific applications and
high in class libraries [2][6]. Low use of inheritance in
LALO classes can explain the weak distribution of
polymorph forms in descendent relations. As a
consequence, at least in our data set, these two
measures, per se, are not likely to be useful predictors
in this study. This issue is discussed in the next section.
 
 Univariate Logistic Regression
 Table 2 shows the results of univariate logistic
regression of the polymorphism measures defined in
Section 3.1. The following measures present a

significant reverse linear relationship with π the
probability of having non fault: DPA, SP and DP. All
of these are statistically significant: they have p-values
below the 0.05 threshold. Regarding ∆Ψ, which
evaluates our measures impact on the relative
probability of not having a fault, these 3 measures
present high values. For instance, there is a decrease of
59% and 95% of the odds ratio when DPA and SP
respectively increases by one unit. This means that the
probability of error increases by 59% and 95% when
the DPA and SP measures increase by one unit. In our
data set, the impact of static and dynamic
polymorphism on the probability of having a fault is
quite high when these measures increase by one unit.

 From the coefficients of the significant measures, i.e.
DPA, SP and DP, we can conclude that OO
polymorphic design tends to increase the probability of
fault-proneness in classes. This was expected since, as
we have stated it in Section 3.1, polymorphism
introduces hidden forms of coupling. Our results need
to be corroborated by further studies, but our
preliminary results suggest that OO polymorphic
design tend to increase the chances of having faults in
classes. This might reverse the claim that
polymorphism fosters better maintainability.
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Table 2 Univariate Results for the Polymorphism Measures

Measure Coefficient p-value ∆Ψ∆Ψ

OVO -0.0262 0.7525 97%

SPA -0.0782 0.1073 92%

SPD -0.0298 0.1210 97%

DPA -0.5288 0.0035 59%

DPD -0.08216 0.2600 92%

SP -0.0504 0.0267 95%

DP -0.2330 0.0164 79%

NIP 0.00469 0.7418 100%

 
 In our data set, the SPD, DPD, and NIP measures present a
week distribution. So we cannot empirically validate the
ability of these measures to predict class defectiveness. Their
level of variability in other systems needs to be determined.
On the other hand, from our data set at least, the OVO
measure does not show any evident linear impact on
probability of having (non) fault though it is not correlated to
any of the other polymorphism measures. This suggests that
OVO is capturing a different dimension than the other
polymorphism measures. However, further empirical studies
need to be done on the kind of relations that might exist
between the class genericity measured by the OVO metric
and the probability of class defectiveness.
 

Table 3. Multivariate Model for The Polymorphism Measures

Coefficient ∆∆ΨΨ p-value

Intercept 1.4413 0.1210
SPA -0.1143 89% 0.1073
SPD -0.0497 95% 0.0475
NIP -0.0220 97% 0.0578

 

4.2.2 Multivariate Analysis

According to the rank correlation (non-parametric Spearman-
Rho) shown in Table 4, a statistically significant linear
relation exists between the pair of SPA and DPA (static and
dynamic polymorphism in ancestors), and the pair SP and
DP.

 Table 4. Rank Correlation between Polymorphism
measures

SPA SPD NIP DPA DPD SP DP

OVO 0.06 0.05 0.00 0.04 0.07 0.00 0.00

SPA 1.00 0.03 0.37 0.71 0.00 0.51 0.42
SPD 1.00 0.09 0.01 0.67 0.27 0.13

NIP 1.00 0.18 0.06 0.50 0.24

DPA 1.00 0.00 0.43 0.63

DPD 1.00 0.22 0.29
SP 1.00 0.70

 
 This may be explained as follows:
 
• DPA and SPA count the number of overridden

member functions between a class and its
ancestors. This suggests, at least from our data set,
that static polymorphism (overriding) and dynamic
polymorphism (ad hoc polymorphism) tends to
have the same quality impact in ancestors’ rela-
tions. Further studies need, however, to
corroborate this evidence.

• Since SP and DP are calculated from the four
measures SPA, DPA, SPD and DPD, where SPA
and DPA are correlated and SPD and DPD
contributions are not statistically significant in our
data set, it is expected that SP would be highly
correlated with DP.

In Table 3 we present the predictive model using the
statistically significant and non correlated
polymorphism measures as predictors for the probability
of having no fault in a class. As we can see from the
table, the higher the polymorphism measures the higher
the probability of having a fault in a class.

Relationships between Polymorphism
Measures and Class Sizes

Table 5 presents the rank correlation between the six
significant polymorphism measures and SLOC (source
lines of code), a class size measure, across the analyzed
C++ classes. The six measures have a correlation
coefficient value approaching 0, which means that the
polymorphism measures and SLOC do not capture the
same dimensions. Moreover, SLOC can only be
obtained at late phases of the product life cycle,
whereas our polymorphism measures can be easily
obtained from design documents quite early in the
software development life cycle.



Table 5. Rank correlation between polymorphism
measures and class sizes

OVO SPA SPD NIP SP DP
SLOC 0.28 0.03 0.03 0.00 0.00 0.01

Relationships between Polymorphism Measures and
MOOD Measures

Table 6 presents the rank correlation between the six
significant polymorphism measures and the POF measure
from the MOOD set of measures developed by Abreu and
Carapuça [1]. As expected, POF and our SPA and DPA
measures are highly correlated since they are capturing the
same forms of polymorphism namely the class polymorphic
import coupling (overriding). However, OVO, SPD, DPD
and NIP seem to capture different dimensions than POF
given that they are presenting a very poor correlation with it.

Table 6. Rank Correlation between Polymorphism
measures and MOOD Measures

OVO SPA SPD NIP DPA DPD SP DP
POF 0.06 0.98 0.02 0.37 0.72 0.00 0.50 0.42

Relationships between Polymorphism Measures and
Chidamber and Kemerer Measures

We have also compared the significant polymorphism
measures with Chidamber & Kemerer’s (C&K) measures
[11]. The six C&K measures are: DIT (class Depth
Inheritance Tree); RFC (Response for a Class); WMC
(Weighted Method per Class); CBO (Coupling Between
Objects); NOC (Number of Children); and LCOM (Lack of
Cohesion among Methods). Again LCOM presents a very
poor distribution (see Table 14) which confirms the results
provided in [2][9]. For the analyzed classes depth inheritance
tree are quite flat, given that DITmedian= 1. The number of
children of the analyzed classes (which excludes verbatim
reused classes from libraries), is also very low, given that
NOCmedian= 0. This confirms the non-statistical significance
in our study of the polymorphism measures in descendent
relations (SPD and DPD).

Based on the results provided in , we can verify that only two
C&K measures present a significant relationship with two
polymorphism measures. The pair of measures NOC-SPD is
very highly related. Also, the pair of measures DIT-SPA is
highly correlated. These two relationships are, in fact,
expected and the explanation for this phenomenon is
straightforward:

Table 8. Rank correlation between the significant
polymorphism and C&K measures

WMC DIT NOC CBO RFC LCOM
OVO 0.35 0.01 0.06 0.17 0.32 0.00
SPA 0.09 0.76 0.04 0.02 0.03 0.00
SPD 0.00 0.02 0.92 0.02 0.04 0.01
NIP 0.00 0.44 0.09 0.02 0.00 0.01
DPA 0.18 0.38 0.02 0.06 0.06 0.03
DPD 0.00 0.00 0.55 0.00 0.04 0.04
SP 0.08 0.33 0.21 0.07 0.00 0.02
DP 0.15 0.21 0.08 0.07 0.01 0.06

• NOC measures the number of children in classes.
SPD measures the level of coupling due to static
polymorphism (import coupling) a class has with
its descendents. Greater is the number of children
in a class higher will be the chances of having
coupling due to static polymorphism.

• DIT calculates how deep a class is in the
inheritance tree. SPA measures the level of
coupling of a class C with its ancestors due to
static polymorphism of C with its ancestors. By
the results showed in , it seems that deeper is a
class C in the inheritance tree, greater will be the
chances to have high level of coupling of C with
its ancestors.

As we mentioned in Section 3.1, our polymorphism
measures aim at capturing different forms of class
dependencies. It is interesting to notice that CBO,
which measures algorithm class coupling, present a
very poor correlation with the significant
polymorphism measures. This confirms that our
polymorphism measures are able to capture different
dimensions of class coupling that are not highlighted
by the CBO measure.

In order to further understand the relationships between
our polymorphism measures and the C&K measures
we have performed a forward and backward stepwise
multivariate logistic regression. The goal is to generate
a predictive model for fault-prone classes combining
these two sets of OO design measures. As
polymorphism measures we have considered only the
statistically significant ones as potential covariates
candidate along with the set of C&K measures. It is
worth mentioning that given the linear correlation
between static and dynamic polymorphism measures in
our data set, they cannot be fitted in the same
multivariate model. Thus, we have performed two
separate combinations. One model combines the static
polymorphism measures (OVO, SPA, SP and NIP)
with C&K. The second model combines the dynamic



polymorphism measures (OVO, DPA, DP, NIP) with C&K.
Table 9 and Table 10 show the resulting coefficients of the
forward regression models with a p-value of 0.0741 and
0.0044 respectively, and with a confidence level of 95%. The
results show that DPA, SP, NIP and the C&K measure NOC
are the significant linear covariates. The backward analysis
did not eliminate any of the covariates in either model. This
means that our polymorphism measures along with the C&K
NOC measure constitute good predictors for the probability
of fault-proneness.

Table 9. Multivariate Model Combining Static
Polymorphism and C&K Measures

Measure Coefficient

Intercept 1.3542
SPA -0.0964

SP -0.0500

NIP -0.0195

NOC 0.2043

Table 10. Multivariate Model Combining Dynamic
Polymorphism and C&K Measures

Measure Coefficient

Intercept 1.2733
DPA -0.6264

DP -0.1445

NIP -0.0178

NOC 0.3128

Relationships between Polymorphism Measures and
Coupling Measures

Our measures are intended to gauge class dependencies. It is
important to compare them with other set of metrics that
captures class coupling such as the C-FOOD set investigated
by Briand, Devanbu and Melo in[9]. Table 15 shows the rank
correlation between the polymorphism measures and the C-
FOOD set of measures. As we can notice, only AMMEC and
SPD present a very high linear correlation. Although some
statistically significant associations exist, most of them are
not sufficiently strong (i.e., r2’s is not near 1) to claim that
they capture identical or similar phenomenon. In fact, only
the pairs ACMIC-SPA, ACMIC-DPA, and AMMEC-SPD
have a r2 greater than 50%. As we mentioned in the previous
paragraphs, this confirms that the deeper the inheritance level
the higher the probability of static and dynamic
polymorphism between a class C and its ancestors, which
makes higher the probability of coupling between C and its
ancestors. Since ACMIC gauges the amount of import

coupling of C with its ancestors by message exchanges,
it is expected that SPA-AMMIC would be correlated.
This confirms that SPA and DPA are capturing some
of the import coupling forms between a class and its
ancestors. As for the correlation between AMMEC
(method-method export coupling in ancestors) and
class static polymorphism within descendents (SPD) it
is again expected. Moreover, SPD and AMMEC are
symmetrically counting the same class coupling forms.

It is important to point out that none of OVO, NIP,
DPD and DP has a significant linear correlation with
any of the C-FOOD measures. This suggests that these
polymorphism measures are indeed capturing different
class coupling dimensions than those covered by the C-
FOOD. Therefore, we can conclude that these
polymorphism measures are complementary to the C-
FOOD measures. In order to built a class defectiveness
prediction model using both sets of metrics:
polymorphism and C-FOOD, we have run a
multivariate regression analysis on the statistically
significant measures from both sets. We have first
removed from our data set the noncontributing and
correlated measures from the C-FOOD measures. We
have obtained the subset composed of OCAIC,
OCAEC, OCMIC and ACMIC. Table 11 shows the
multivariate model combining the static polymorphism
to the significant C-FOOD measures. The resulting
coefficients of the forward regression model are
computed with a p-value of 0.0421 with a confidence
level of 95%. A backward analysis has removed SPA
and NIP and introduced OCAEC and ACMIC with a p-
value of 0.0383. This is expected in a way, since the
removed polymorphism measures are capturing some
of the coupling information captured by their
corresponding C-FOOD measures (SPA-ACMIC are
correlated) .

Table 11. Multivariate Model Combining Static
Polymorphism with C-FOOD Measures

Measure Coefficient

Intercept 1.7192
SPA -0.0450

SP -0.0549

NIP -0.0184

OCAIC -0.4279

OCMIC 0.0159

Table 12 shows the multivariate model combining the
dynamic polymorphism to the significant C-FOOD
measures. The resulting coefficients of the forward
regression model are computed with a p-value of
0.0136 with a confidence level of 95%. The backward



analysis did not remove any of the selected covariates
measures.

Table 12. Multivariate Model Combining Dynamic
Polymorphism with C-FOOD Measures

Measure Coefficient

Intercept 1.5851
DPA -0.4447

DP -0.1030

NIP -0.0169

OCAIC -0.3432

OCMIC 0.0130

We should note that according to our data set, the static
polymorphism measures seem to overlap with some of the C-
FOOD measures since they are capturing some of the class
coupling forms covered by the C-FOOD measures. However,
the dynamic polymorphism measures seem to capture new
coupling dimensions that are not covered by the C-FOOD
measures. This confirms the previous conclusion we draw
from the POF measure and the C&K measures. As also
expected, the OVO measure has not been selected in any of
the linear regression models since it does not have a linear
impact on class defectiveness.

The multivariate regression analysis, again, indicates that our
polymorphism measures constitute a good complementary set
of measures to existing OO coupling metrics. Moreover, our
set of metrics can be collected very early in the design phase.
We have collected the polymorphism measures by static
analysis performed on header files only.

5 Conclusion

In this paper, we have introduced a new set of metrics to
quantify polymorphism in OO software. A set of tools to
automatically extract these metrics from early designed
artifacts has been built. In addition, we have empirically
validated our metrics by analyzing their ability to predict
fault-prone classes. We have used fault and product data
from an industrial OO software system developed at CRIM
for the last 5 years. The results show that:

• The suite of polymorphism measures can be used at
early phases of the product life cycle as good predictors
of its quality. Some of the polymorphism measures may
help in ranking and selecting software artifacts according
to their level of risk given the amount of coupling due to
polymorphism. For example the SP and DP measures
gauge the degree of method polymorphism present in an
inheritance graph in a OO design.

• The suite of our polymorphism measures
complements already existing OO design measures
by giving more accurate information on
overridden methods in a OO design. Predictive
models combining our suite of polymorphism
measures with other OO design measures have
proved to be accurate

• As a first empirical study of polymorphism in OO
design, we can draw some conclusions. First our
data set indicates that contrary to the popular
claims, polymorphism may increase probability of
fault in OO software. This has to be further
investigated, but it at least indicates that
polymorphism should be used with due
precautions by designers. Second, as intuitively
expected, polymorphism tends to occur more in
OO software design with high number of methods
and deep inheritance trees. This suggests that
designers tend to reuse structures and objects when
they face complex systems to design. Third, static
and dynamic polymorphism tend to impact the
design quality in the same way; the corresponding
measures seem to be highly correlated. Further
investigation is needed, particularly since our data
set shows a week distribution of certain types of
polymorphism.

As future work, we intend to analyze polymorphism at
the code level. The suite of measures we have defined
and validated only accounts for polymorphism that can
be detected statically from design documents (in our
case C++ class interfaces).  For example, dynamic
polymorphism may need implementation information
to better reflect polymorph behaviors in class methods.
In particular, in the current work we did not addressed
method invocation effects on design quality. Another
aspect of polymorphism has not been considered:
parameterized classes such as templates and generics.
We intend to investigate the impact of using templates
on OO software quality. We also intend to test the
predictive accuracy of our suite of polymorphism
measures in software reusability (what is the relation
between highly polymorph classes and their reuse?),
software maintainability (are highly polymorph classes
more difficult to maintain than other classes?).
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Table 13. Descriptive Statistics for the Polymorphism Measures

Measure Max. Min. Mean Median Std. Dev.

OVO 15.00 0.00 3.47 3 2.71

SPA 18.00 0.00 3.54 1 4.63

SPD 111.00 0.00 3.73 0 13.87

DPA 5.00 0.00 0.73 0 1.29

DPD 28.00 0.00 0.77 0 3.35

SP 111.00 0.00 7.28 3.5 13.90

DP 28.00 0.00 1.50 0      3.49

NIP 50.00 0.00 9.38 0 16.04

Table 14 Descriptive Statistics of C&K Measures

Measure Max. Min. Mean Median Std. Dev.

WMC 126.00 1.00 16.27 12.00 17.45

DIT 3.00 0.00 0.81 1.00 0.85

NOC 8.00 0.00 0.56 0.00 1.33

CBO 40.00 1.00 13.20 9.00 9.20

RFC 229.00 2.00 35.20 25.00 35.18

LCOM 2214.00 0.00 55.56 0.00 329.30

Table 15. Rank Correlation between the Polymorphism and the C-FOOD Measures

OVO SPA SPD NIP DPA DPD SP DP
OCAIC 0.26 0.02 0.00 0.04 0.02 0.01 0.05 0.04
ACAIC 0.01 0.04 0.00 0.00 0.05 0.00 0.03 0.04
OCAEC 0.02 0.02 0.00 0.07 0.00 0.01 0.02 0.00
DCAEC 0.02 0.00 0.06 0.00 0.02 0.09 0.03 0.04
OCMIC 0.39 0.00 0.03 0.03 0.00 0.04 0.02 0.01
ACMIC 0.06 0.66 0.07 0.17 0.63 0.04 0.30 0.33
OCMEC 0.07 0.04 0.00 0.02 0.08 0.02 0.06 0.12
DCMEC 0.13 0.02 0.41 0.03 0.00 0.37 0.19 0.13
OMMIC 0.11 0.01 0.01 0.06 0.00 0.03 0.02 0.01
AMMIC 0.07 0.57 0.03 0.36 0.29 0.00 0.24 0.14
OMMEC 0.10 0.03 0.02 0.02 0.00 0.01 0.00 0.00
AMMEC 0.02 0.03 0.89 0.08 0.01 0.51 0.20 0.08


