
Adele 2:

A Support to Large Software Development Process �

Noureddine Belkhatir Jacky Estublier Walc�elio L. Melo y

L.G.I. BP 53X, 38041 Grenoble Cedex, France

fbelkhatir, estublier, wmelog@imag.imag.fr

Abstract

After years of use of Adele1 (a Data Base for Version and Con�guration management [11]),
we noticed that we lack concepts and mechanisms related with activities: work environment
control, users coordination and synchronization, method and tool control, etc. We notice also
that, currently, a very large amount of work is needed to adapt a SEE to user requirements.
From this experience, we implemented Adele 2 to provide a general support for de�ning and
managing the dynamic aspects of a SEE, and easing the building of new SEE. This paper
describes, from an example (workspace control), the concepts and mechanisms involved. It is
shown how a deep integration of an activity manager with the Adele DB data model ful�lls the
basic requirements, and how a high level task manager coupled to a con�guration manager can
be developed.

1 Introduction

The development and maintenance of a software product is a complex task. On the one hand, there

exists a large amount of di�erent objects type with complex structure (the static aspect of SEE),
and on the other hand, SEE is the place where activities take place; all together converging toward

a deliverable product.
Experience until now has shown that support is needed for clarifying, formalizing, supporting

and coordinating the involved activities. Current environments try to o�er some assistance to

support activities but results are very limited. Usually ad-hoc solutions are implemented and little
assistance is o�ered. We lack a uni�ed assistance for product development, which can be formally

speci�ed by the administrators or team leaders, and enforced by the SEE.
The Adele environment is speci�cally designed for supporting CASE applications in a multi-user

and multi-version context. All the components of the environment are stored in a central versioned
database. The Adele database is based on the entity relationship model extended with composite
objects, OO features, long transactions and user de�ned commands and activities.

Users need to use standard tools as compilers, linkers, browsers that operate on �les while the
database manages di�erent objects and concepts : aggregates, attributes, triggers, etc.

A work environment (WE) �lls the gap between both needs: it is a sub data base where the
�les view is emphasized and extended with (very) long transactions (a work environment itself can
be seen as a very long transaction) and management constraints and policies.

�Published in the Proc. of 1st Int'l Conf. on the Software Process, Redondo Beach, CA, October 21-22, 1991.
IEEE Computer Society Press.

yMelo is supported by Technological and Scienti�c Development National Council Brazil (CNPq)

1

Adele DB

(multi-version, multi-user)

SEE
Users

mono-user,
mono-version

mono-user,
mono-version

co
up

lin
g

ac
ti

vi
ty

 m
an

ag
er

coupling ::= object transfert, merges, ...

Activity manager ::= coupling, synchro, tool control, methods, ..

AM

AM

WE-1

WE-2

Figure 1: Software Engineering Environment in Adele

The coordination between work environments is managed by the activity manager(AM) ac-

cording to each work environment management constraint (see �gure 1). The activity manager pro-
vides the services needed to coordinate the di�erent work environments and to maintain database

and object integrity. A task manager(TM) controls and (sometimes) automates tool execution
within a work environment, supports and promotes the reusability of already produced objects,
with the objectives of increasing productivity and improving software quality.

Adele-DB is an active multi-user versioned program database. This database may be distributed
on di�erent sites connected by a local network and can be used by application programs through an

RPC interface, by a command language (through the Unix shell interface or by a graphic interface).
Adele manages arbitrary complex objects, ranging from elements (associated to a �le) to projects
and sub-projects. The objects are structured by relations and constitute aggregates. A module is

a basic prede�ned complex object constituted by separated interfaces and bodies.
This paper presents the Adele mechanisms for activities and process support, with an example

showing how a user speci�ed work environment strategy can be speci�ed.

2 Work Environment management

Since classic tools only know the concepts of �le and directory and do not deal with versions, a WE
must be a mono-versioned sub data base where these \low level" concepts are emphasized. Thus a

WE is a mono versioned sub DB with :

� a set of objects (mainly seen as a tree of directories and �les),

� a set of tools

� a set of methods and policies.

It is important to notice that while the �le view is emphasized, a WE is still a DB. It is possible

to ask for the �le attributes and relationships and to manage any other non �le object. A main

2

design decision is to clarify the relationships between the DB and the WEs. In previous Adele

versions, WEs were implemented inside the DB itself, as provided by most current tools; then we
noticed that the structure of the di�erent sub DB is di�erent. For instance, a given �le may be

under a given directory in a WE, and under another directory for another WE. The DB itself,
for versions control purpose associates together the related objects. These di�erent views hardly
coexist in the same DB. In Adele, each WE is an independent tree of �les and directories, with its

own tools, methods and policies. In practice only the directory tree is duplicated; objects, tools and
methods are shared in a transparent way between WEs. Depending on management method, the

WE can be directly accessed by tools (open WE, as in NSE[8], DSEE), are completely controlled
through speci�c command application (closed WE as in most tools : PCTE[4], Palas, software
Backplane and so on). In the �rst case there is no overhead (assuming Unix symbolic links do not

make overhead).
Since objects may be shared between several work environments, there is a consistency problem

if concurrent changes are performed. WEs must be coordinated; we call this kind of synchronization
coupling. Di�erent kinds of coupling can be performed :

Hard coupling. The change of a shared object is immediately propagated to all copies of this
object.

Tight coupling. The change of a shared object is propagated to the other copies of this object

only when the changed copy is stored in the base (a merge of changes may be needed if
concurrent modi�cations are performed).

Loose coupling. Given two modi�ed copies A and B of the same object, nothing happens when

the �rst change (say A) is stored in the date base, but storing the second change (B) triggers
a merge between A and B changes (the NSE policy).

No-coupled. It is not possible to modify an object in a concurrent way (almost all SEE).

Coupling is not symmetric. A development WE may be coupled on an o�cial WE (i.e. when a
�le is changed in the o�cial WE, the change is propagated to the development WE), but not the

contrary. Experience proved that e�ectiveness is greatly improved when coupling is allowed in a
team working on the same product. Unfortunately, the lack of control and synchronization makes

these unpractical solutions. In Adele, all the coupling are possible.
The goal of Adele is to support (almost) all policies. In order to validate our approach, we

implemented the Work space management in use in some known tools. We were surprised to notice

their weakness in supporting active behavior and that no coupling is allowed (except NSE). In
this experiment Palas (a SEE for embedded real time Software), Andromede (an industrial SEE)

and NSE (mainly used in academic) have been implemented, each one described in less than 10
pages of Adele language. This experiment proved that all SEE rely on a tiny set of concepts and
mechanisms; and that improvements on Work space management policies are easy to perform,

provided the right underlying mechanisms.
In the following we describes how a simple hypothetical WE can be de�ned, as an example of

how can be implemented a SEE on top of Adele.

2.1 Work Environment modeling

WE sharing the same tools, methods and policies are said to be of the same type. Usual types are
development WE, integration WE, o�cial WE, etc. In Adele, WEs are aggregate objects (com-

ponents are the objects to deal with); the WE type de�nes the tools to use, and the management
method and policy.

3

Since Adele data model includes O.O. features, WE speci�c commands (as is \acquire" in NSE)

are represented as the WE methods; the semantics of the aggregate is de�ned both in the constraints
of the WE type, and in the relation type that links the WE object to its components. Being �rst

class objects, WE can be sub-typed, re�ned, extended, etc.

TYPEOBJECT validation_WE ISA WE ;

ATTRIBUTES

user = STRING ;

coupling := no-coupled ;

--TOOLS

tester := tool>test:newtest ;

link := tool>comp:link ;

END validation_WE ;

TYPEOJECT develop_WE ISA WE ;

...

--TOOLS

compC := tool>comp:cc ;

compP := tool>comp:pc ;

tester := tool>test:newtest ;

END develop_WE ;

The example shows the \validation WE" and \develop WE" WE type de�nitions in Adele.
Attributes of the kind \coupling := no-coupled" are constant attributes: all the instances of

type \validation WE" will have the value \no-coupled" as value for attribute \coupling".
In the \ATTRIBUTES section we de�ne the attribute \coupling" that de�nes the coupling for WE

of that type; WEs of this type are not coupled. TOOLS are modeled by attribute whose value is

an Adele object name. The tools are also stored in the base like any other object. For instance,
the C compiler is contained in an envelope (de�ned by the attribute \compC") and stored in the

base as the object \tool > comp : cc". As the tools (the envelopes) are stored and managed by the
base, the tool evolution history is controlled and we can propagate the tool modi�cations to their

dependent objects.

2.2 Relationship between Adele objects and Work Environment

Adele relies heavily on relations. Relationships, as objects, have a type, with multiple inheritance,

attributes, constraints, propagations, etc.
It has been found that a large number of di�erent aggregates must be de�ned and controlled in

a SEE. A con�guration, a WE, a module are aggregates, but the associated constraints are fairly

di�erent. Existential constraints (the component disappear with the aggregate), sharability con-
straints (a component pertains to only one aggregate), and other constraints are de�ned depending

on the kind of aggregate. In Adele, we de�ne the semantics of the aggregate with the relations that
link the aggregate to its components.

For that reason a WE is an aggregate. Its speci�c semantics is de�ned in the relations \link"

and \copy".
In �gure 2 we show how the WEs are represented in the Adele structure and their relations

with other objects.
The relation \link" links a logical copy of a �le to the same in the central DB, while \copy"

links a physical copy of a �le to the same in the central DB. These relations allow the activity

manager (through the trigger mechanism) to synchronize and control WEs. We show below how
these relations are de�ned in Adele.

4

"
"
"

"
"
"

""

b
b
b
b
b
b
bb

``````````````̀

link

copy

1

Adele Sub-Project

Adele Documents

n

n

1

n

1

1

n

n

1

1

1

n

1 1 1

1

1111

n

1

n

1

n

n
Interface

Documents

Realisation

and

Sub-Projects

Other
ToolsModel

ProcessUser

User Types

User Instances

WC-Objects

WC Instances

WC Types

WorkContext

Project

n

Adele Families

Adele Interfaces

Adele Projects

Figure 2: Relationship between Adele objects and Work Environment

DEFRELATION link ;

DOMAIN [type = WE] -> [type = any ] ;

CARD N:N; TRIGGER ...

ATTRIBUTES

status = invalid, valid := invalid ;

END link ;

DEFRELATION copied ;

DOMAIN [type = WE ] -> [type = any ] ;

CARD N:N; TRIGGER ...

ATTRIBUTES

state = exp, tested, released, official := exp ;

END copied ;

These descriptions mean that the relations are de�ned between a WS and any object. CARD

denotes cardinality, the key-word TRIGGER will be explained in the section 3. Adele allows attributes

to be associated with relations. In this example attributes `status' and `state' express the state and
status of the relation.

Adele allows users to de�ne new commands, interpreted by Adele as built-in commands. We

de�ned the command \mkwe" that creates a WE with the name of the WE to create, the type of
WE after the \-t" option and the con�guration to start after the \-c" option:

mkwe mywe -c formatter.cone -t validation_WE

This command asks for the creation of a validation WE called \mywe" for the con�guration
\formatter.conf".

Now the infrastructure is de�ned, we will see how the Adele activity mechanism allows de�nition
of a Work Environment policy.

5



3 Activity management

Software DBMS manages a large amount of dynamic shared data and requires assistance when
managing crucial situations. For instance when a module interface is modi�ed, we need to evaluate
the impact on modules using this interface, to notify the impacted modules and eventually to

recompile them. Dynamic aspects have been investigated in many software Databases as a way
to provide this kind of assistance. An active DB is useful for implementing management policies

in a general and exible way. The information to manage is essentially a versioned DB; the only
e�cient mechanism in such a context is the trigger-actions mechanisms. Trigger mechanisms allow
de�nition of actions to be executed automatically when some conditions hold, as for instance

checking integrity constraints or propagating changes. Adele-DB provides a formalism to describe
events and triggers, and an activity manager that speci�es trigger processing and synchronization

in DB transactions.

3.1 Adele and the event-action concepts

The formalism involves two concepts: event and action. An event signals a state change during a

database operation. The action is the code to execute when an event is raised. Adele includes con-
cepts borrowed from object oriented languages (types, inheritance, encapsulation, etc.); mechanisms

for propagation control and a tight control of external tools and objects (the work environment).
These concepts extend the classical trigger mechanism. We describe briey the extension of the
mechanism in Adele and its evolution as an activity manager.

3.2 Trigger description: bene�ts of the object orientation

The object orientation of Adele o�ers many advantages in the modeling of trigger concepts [2]. A

trigger is the (dynamic) association of an event with an action; and is expressed as \ON event
DO action". Triggers are associated with object and relation types, and thus as object types, they
can be aggregated, inherited (re�ned) and classi�ed.

� Event de�ned on object types. These events are raised each time a DB operation accesses an
object. With this kind of event, semantic rules related to object types may be expressed.

� Event instantiated on relations. These events allow the management of the ripple e�ects pro-
duced by an action on an object related to other objects. This kind of event allows de�nition

of a policy for dealing with inconsistent situations. For instance, the modi�cation of a module
propagates e�ects on the con�guration that includes it. The DB detects automatically this
inconsistency via an event on relations.

Triggers fall in one of the following categories:

Pre actions. Before the execution of an operation on an object of type T, an event is raised and
the triggers de�ned in the type T as pre actions are executed (those for which \evt" in \ON

evt DO Action" is true). This kind of action allows testing of preconditions and command
extensions.

Post actions. After the execution of the operation but before to commit, triggers in post-action
are executed. These triggers can analyze the consequences in the database and, since they

are executed inside the transaction they can undo (rollback) the operation. They can also
extend the command by performing other computations.

6



After actions. After the operation committed, other triggers are executed. These actions allow

to modify the database after the command (for instance asserting new states).

Abort action. If the operation fails or aborts, all the actions including those performed by pre
and post triggers are undone, then abort actions are executed. This mode allows execution
of actions in response to abnormal behaviors.

3.3 An application example

We want to de�ne a \development WE" as the place where the following policy is enforced: a
module can be copied (Checked-Out) in a WE or referenced directly in the database by soft links.

When a changed module is replaced in the Data Base (Checked-In: new revision) it must be
immediately available in all the other WEs where it will be tested. A revision is considered o�cial
when validated in all the WE.

In order to specify this example, we de�ne �rst the relevant events and their relative priority:

DEFEVENT

Delete_Official = [!cmd = delete, state = official] PRIORITY 1;

replace = [!cmd = replace] PRIORITY 2;

valid = [!cmd = validate ] PRIORITY 3; -- changes are validated by a WE

invalid = [!cmd = invalidate] PRIORITY 4; -- changes are invalidated by a WE

officialize = [!cmd = officialize ] PRIORITY 5; -- changes are validated by all WE

END ;

Priority indicates in which order the events are to be taken into account (lower number �rst).

TYPEOBJET prog ;

TRIGGER

1 PRE ON Delete_Official DO ABORT ;

2 AFTER ON valid DO "Check_Official" ;

This trigger, associated with all the programs (\type = prog") speci�es what to do on events

Delete Official and valid.
Line 1 means: before (PRE) executing the action (destruction of an o�cial object), the action

is aborted (primitive ABORT) : it is not possible to delete a program in the o�cial state.

Line 2 means: after a \validate" command (\!cmd" is the current command), Adele has to
check if the revision can be set into the o�cial state (user de�ned command \Check Official").

A revision can be o�cial only if all the relations \link" have the attribute \status = valid".

DEFACTION Check_Official ;

IF [~*|Link|%name%status == valid ] THEN "officialize %name" ;

ELSE return;

END Check_Official ;

DEFACTION officialize ;

4 "ada %name -a state = official" ;

END officialize ;

A revision can be o�cial only if all the related relationships \Link\ to the current object are
quali�ed as \status= valid" (see below line 3 and 4); The Adele language is a powerful metasub-

stitution language designed for managing multivalued attributes : \�X%A" means the values of
attribute A of object X, and \� S j R j D%A" means the values of attribute A of relationship

7



R between objects S (source) and D (destination). All Unix wild card are allowed. If \�X" or

\�S j R j D" are omitted, current object or relationship are assumed. Operator \=" means one
value is identical, while operator \==" means all the values are identical.

TYPERELATION link ;

TRIGGER -- Propagation on relation link

POST

ON replace DO

"mail -s \"revision to test: %name \" %author";

ON valid DO

IF %author = !username THEN "adar -a status = valid" ;

ON invalid DO

IF %author = !username THEN "adar -a status = invalid" ;

AFTER

ON officialize DO

"mail -s \"module %name is official\" %author" ;

END Linked_Obj ;

Author is an automatic attribute that contains the user name that created the object, and
\!username" is the name of the current user; \adar" is an Adele command that adds an attribute

on the current relationship. After a replace, a mail is sent to all the owners of a WE having a
logical copy of that object; after the \validate" command, attribute \status=valid" is set on
the relationship that links the WE and the object; after the \invalidate" command, attribute

\status=invalid" is set on the relationship that links the WE and the object.
The whole \PRE, command, POST" is a transaction, any failure completely undoes the com-

mand. In our example, every Work Context may reject a replace command, when evaluating the
pre-condition (PRE) or the post-condition (POST).

This application shows how it is possible to:

� enlarge existing commands (\replace" in our example),

� de�ne new commands (the actions are user de�ned commands),

� associate the object type de�nitions with their consistency controls,

� automate propagation.

4 Task manager

The activity manager is a basic mechanism, e�cient, versatile, but it has little knowledge of what

is done. The weak point we found in the activity manager are the following.

� The association of behavior with object type on the one hand, the use of relations in the other
hand results in a dispersion of the information that makes di�cult to have a general view of
the activity control.

� When long transactions are involved, it is not natural to use the activity manager. However

this di�culty is partially overcome, when creating high grained objects (as a WE) representing
the long transaction and controlling its state.

8



� The activity manager works �ne when the behavior can be statically expressed from well

known information. We found the need to express more fuzzy policies, and thus to generate
dynamically activities depending on multiple conditions (a planner). However, in Adele the

context is taken into account by the dynamic creation of relationships, since propagations are
performed by relationships.

� Reasoning and interactive activity support (answering questions, guiding users) are not nat-
ural in the activity manager.

For these reasons we are currently experimenting how a rule based tool (the task manager) can
cooperate with the activity manager. The task manager is implemented as an external tool, ac-

cessing Adele through the RPC programmatic interface. This experiment has already the following
results.

First, the activity manager proved to be e�cient. It has been immediately heavily used by
customers (it is partially released in the commercial product). With a good use of high grained
objects (as are WE), high level policies and long transactions are easily managed. The dynamic

creation of relationships (Adele has some speci�c features for that), allows to take into account the
dynamic aspects of activities. For instance, the way a C program is managed depends heavily of

which con�gurations it is part of. If in an o�cial con�guration, changes are to be performed much
more carefully, validation must be deeper etc. This is known by the fact a relation links an o�cial
con�guration to the C program. It is not directly a property of C programs.

Secondly, we want the Adele kernel to be as little as possible; the high level concepts to provide
to users are unclear. It looks clear to us that the kernel must not know high level concepts (for

instance WE or coupling are not Adele concepts), so the task manager should provide these concepts
along with their Adele representation.

We decided to follow along our tracks: the kernel provide basic and powerful services from

which (almost) all the SEE can be easily built, task manager(s) can coexist, providing di�erent
concepts and formalisms better adapted to an application domain.

5 Related Work

Di�erent approaches have been proposed for modeling and automatically executing software pro-
cesses. The main trends are the followings[6].

5.1 Trigger

Triggers are well adapted to DB management. It is the only approach able to cope with versions
and con�guration, a very fundamental aspect of Software Engineering. It is both e�cient and

versatile, but too low level for clearly programming high level policies. Adele is one of the very
few practical systems based on a trigger mechanism[3]. Appl/A [21] is a system that extends the

Ada language to support Software Process Programming (SPPL) that also provides programmable
relations, propagation control and some transaction constructs. Other research prototypes are Alf
[16], CML [19].

5.2 Graph processing

A graph is traversed and the actions associated with its nodes are executed. Depending on the

action performed on a node, the event is \�red" along the edges starting from the current node. In
Adele, trigger associated with relation types are typically in this case. Make, Odin [5] and Build

9



[23] are some systems that use this approach, but dedicated to special task (rebuilding) and with

some embedded policies.

5.3 Contractual approach

The contractual approach is a way to model software process used only by the ISTAR project
[9]. The principal idea of this approach is to see every software development activity as a contract
between a contractor and a client. The role of ISTAR is limited to control contract protocol

between contractors and clients, because it does not know enough about the nature of contracts.
The practical use of this approach is unclear. To some extend, an Adele WE can be assimilated to

a contract : the contract is the WE purpose, the WE user is the contractor; sub contracts are sub
WEs.

5.4 Process programming approach

Process programming is an approach to software process modeling proposed by Osterweil [18]. In
this approach, the complete software process is de�ned as a meta-program. It is described by means

of a formal language, which is written by the environment administrator before the activation of
processes. This description is considered as a speci�cation of how a development process is to be
conducted. This ambitious approach has not produced practical results so far. Arcadia [22] and

Oikos [1, 15] are examples of this approach.

5.5 Rule-based approach

In this approach, the knowledge about the activities and tasks of a generic software development
process is explicitly modeled by production rules. The tools are integrated to the environment

through the utilization of pre and postconditions over their inputs and outputs. The rules may
be di�erent depending on the implementation chosen by the system (backward and/or forward
reasoning, static or dynamic planning, hierarchic and sequential/parallel planning). This approach

is mainly used for high level tasks. This approach is employed by Marvel [13], Grapple [12],
Agora PM [20] Epos [7, 14], Merlin [10] and Alf [17]. The Adele Task manager pertains to this

class of systems.

6 Conclusion

The Adele project proposes an architecture for activity coordination in a software production
environment based on two layers: the underlying layer (in the Adele kernel) is an e�cient trigger
mechanism with propagation control based on graph management. This layer is used for the DB

housekeeping (consistency, extensibility, customization, ..) and simple policies. The second layer
(the task manager) uses a rule based strategy and is dedicated to high level policy management.

Currently, to write a high level task, the user has to de�ne the needed triggers and propagation,
and then the task manager program that will be triggered by the low level triggers. We are now

trying to de�ne a formalism that will generate code for both levels simultaneously. It will become
the user interface to Adele Process programming. We expect, that way, both good e�ciency and
high level control.

10



References

[1] V. Ambriola, P. Ciancarini, and C. Montangero. Software process enactment in Oikos. In 4th
ACM SIGSOFT Symposium on Software Development Environments, Irvine, CA, December
3{5 1990. SIGSOFT Software Engineering Notes, 15(6):183{192.

[2] N. Belkhatir and J. Estublier. Software management constraints and action triggering in Adele
program database. In 1st European Software Engineering Conference, pages 47{57, Strasbourg,
France, Sept. 1987.

[3] N. Belkhatir, J. Estublier, M. A. Nacer, and W. L. Melo. Activity coordination in Adele: a
software production kernel. In 7th International Software Process Workshop, San Francisco,
CA, October 16{18 1991.

[4] G. Boudier, R. Minot, and I. M. Thomas. An overview of PCTE and PCTE+. In 3rd ACM

Symposium on Software Development Environments, Boston, Massachusetts, November 28{30
1988. In ACM SIGPLAN Notices, 24(2):248{257, February 1989.

[5] G. M. Clemm and L. Osterweil. A mechanism for environment integration. ACM Transactions

on Programming Languages and Systems, 12(1):1{15, January 1990.

[6] R. Conradi and C. Liu. Process modeling paradigms: an evaluation. In First European
Workshop on Software Process Modeling, pages 39{52, Milan, Italy, May 30{31 1991.

[7] R. Conradi, E. Osjord, P.H. Westby, and C. Liu-Beijing. Software process modelling in EPOS:
design and initial implementation. In 3rd International Workshop on Software Engineering
and its Applications, pages 365{381, Toulouse, France, December 3{7 1990.

[8] W. Courington. The Network Software Environment. Sun Microsystems, Inc, 1989.

[9] M. Dowson. ISTAR and the contractual approach. In 9th International Conference on Soft-
ware Engineering, pages 287{288, Monterey, CA, March 30-April 2 1987.

[10] W. Emmerich, G. Junkermann, B. Peuschel, W. Shafer, and S. Wolf. Merlin: knowledge-based

process modeling. In First European Workshop on Software Process Modeling, pages 181{186,
Milan, Italy, May 30{31 1991.

[11] J. Estublier, S. Ghoul, and S. Krakowiak. Premilinary experience with a con�guration control

system for modular programs. In ACM SIGPLAN/SIGSOFT Software Engineering Sympo-
sium on Software Practical Development Environments, Pittsburgh, April 23{25 1984. In
Software Engineering Notes, 9(3):149{156, May 1984.

[12] K. E. Hu� and V. R. Lesser. A plan-based intelligent assistant that supports the software de-

velopment process. In 3rd ACM Symposium on Software Development Environments, Boston,
Massachusetts, November 28{30 1988. In ACM SIGPLAN Notices, 24(2):97{106, February

1989.

[13] G. E. Kaiser, N. S. Barghouti, and M. H. Sokolsky. Preliminary experience with process
modeling in the Marvel software development environment kernel. In 23th Annual Hawaii

International Conference on System Sciences, pages 131{140, Kona, HI, January 1990.

[14] C. Liu. A software process planner in Epos. In Norsk Informatikk Konferanse 1990, pages
203{215, Bergen, Norway, November 1990.

11



[15] V. Ambriola C. Montangero. Hierarchical speci�cation of software processes. In First European

Workshop on Software Process Modeling, pages 139{145, Milan, Italy, May 30{31 1991.

[16] F. Oquendo, J.-D. Zucker, and G. Tassart. Support for software tool integration and process-
centered software engineering environments. In 3rd International Workshop on Software En-
gineering and its Applications, pages 135{155, Toulouse, France, December 3{7 1990.

[17] F. Oquendo, J.D. Zucker, and P. Gri�ths. The Masp approach to software process description,

instantiation and enaction. In First European Workshop on Software Process Modeling, pages
147{155, Milan, Italy, May 30{31 1991.

[18] L. J. Osterweil. Software processes are software too. In 9th International Conference on

Software Engineering, Monterey, CA, March 30-April 2 1987.

[19] J. Ramanathan and S. Sarkar. Providing customized assistance for software lifecycle ap-
proaches. IEEE Transactions on Software Engineering, 14(6):749{757, June 1988.

[20] R.Bisiani, F. Lecouat, and V. Ambriola. A tool to coordinate tools. IEEE Software, pages
17{25, November 1988.

[21] S. M. Sutton, D. Heimbigner, and L. J. Osterweil. Language constructs for managing change

in process-centered environments. In 4th ACM Symposium on Software Development Environ-
ments, Irvine, CA, December 3{5 1990. In ACM Software Engineering Notes, 15(6):206{217,

December 1990.

[22] R. N. Taylor and et al. Foundations for the Arcadia environment architecture. In 3rd ACM

Symposium on Software Development Environments, Boston, Massachusetts, November 28{30
1988. In ACM SIGPLAN Notices, 24(2):1{13, February 1989.

[23] R. C. Waters. Automated software management based on structural models. Software{Practice

and Experience, 19(10):931{955, October 1989.

12


