
Software Process Model and Work Space Control in the Adele

System �

Noureddine Belkhatir Jacky Estublier Walc�elio L. Melo

L. G. I. BP 53X, 38041 Grenoble Cedex France

fbelkhatir, estublier, wmelog@imag.imag.fr

Abstract

It is advocated here that the most critical aspects
for modeling and control, in a large software engi-
neering environment, are inter/intra team communi-
cation and synchronization. We propose a solution
based on a two level approach: Adele kernel supports
multiple activities on shared objects, providing services
like contextual behavior, active relationships, and gen-
eral process support. The second level is the TEMPO
formalism based on the role concept, which de�nes a
software process step as a set of objects playing a role.
Each object characteristics and behavior depends on
the role it plays in the software process it belongs to,
and may be part of di�erent simultaneous software
processes. TEMPO clearly separates the description
of the process (what it does in a Work Environment),
from the description of the interaction and collabora-
tion between the di�erent processes.

1 Introduction

Most work on software process management (PM)
has been done by people previously involved in project
management. From this point of view, the grain (the
atomic task or step) is large, and a break down can
conveniently be represented by a task tree, where evo-
lution is \slow". Tasks are independent black boxes
interconnected by input and output objects.

Others, like ourselves, started in software con�g-
uration management (CM) and discovered that CM
largely involves process modeling and especially work
environment management. Tasks are overlapping
boxes with information
ow and shared objects. From
this point of view, activities are �ne grained and may
be broken down into a set of overlapping activities.

�Published in the Proc. of the 2nd Int'l Conf. on the Soft-

ware Process , Osterweil (Ed.), 25 { 26 February 1993, Berlin,
Germany. IEEE Computer Society Press.

The main problem is the control of multiple simulta-
neous overlapping activities in a very rapidly evolving
world; and the management of the communication and
synchronization between teams and between members
involved in the same project.

Due to the fact that objects are potentially shared
simultaneously by di�erent software processes (in
which they play di�erent roles) the behavior of an ob-
ject cannot be de�ned statically; it is context depen-
dent, i.e the object behavior depends on the process
in which it is used.

Faced with the problem of multiple behavior de�-
nition we have used a two layer approach: (1) a kernel
providing a general purpose set of concepts and mech-
anisms, and (2) an enactable formalism for software
process de�nition and control, oriented towards team
coordination and synchronization.

This paper presents our two level approach. The
bottom layer is the Adele kernel. It is the released
Adele Con�guration Management kernel (section 2)
as discussed in [7], now extended with contextual be-
havior and general process support services (section
3).

The second level (section 4) is the TEMPO formal-
ism, implemented on top of Adele kernel, designed to
provide the Software Team leaders with a simple lan-
guage for the de�nition of Software Processes without
cumbersome synchronization and communication pro-
tocol.

2 The Adele Kernel

The Adele kernel is based is on an entity relation-
ship database, extended with Object-Oriented facili-
ties and an Activity Manager based on triggers[1]. We
focus here on those features useful for our topic: man-
aging overlapping work environments, i.e. software
process steps, objects, users and tools whose behavior
is highly context dependent.

1

2.1 Data model

In the Adele database, entity types and relation-
ships types are declared independently and may have
multiple inheritance. In a software engineering en-
vironment, versioning is a fundamental feature. In
Adele, \revision" is a kernel feature; each object may
have a version branch (i.e. a sequential list of revi-
sion). The branch as well as each revisions are �rst
class objects; all characteristics (attributes, relation-
ships, triggers, rights list, etc.) of a version branch are
shared by all its individual revisions.

The data model is based on the aggregate (or com-
plex object) concept, any kind of aggregate can be
user de�ned, a version branch being a kernel built-in
aggregate.

2.2 Events, triggers and methods

An event is a �rst order logic expression where vari-
ables are related to the database state (machine, cur-
rent transactions, current user, local state) and object
or relation attributes. Events are checked each time a
method is called. An event is declared in the following
way:

event_id = logic_expression; priority n ;

A trigger is declared in a relation type de�nition or
an entity type de�nition in the following way:

ON event_id DO { program }

A trigger program is executed each time the cor-
responding event is true. Four classes of trigger
have been de�ned: pre-triggers executed before the
method execution, post-triggers executed after the
method. The set of pre-triggers, the methods and the
set of post-trigger execution compose a transaction
in the database sense. After-triggers and error-

triggers are executed after the transaction is com-
mitted or aborted respectively.

A method is declared in a relation type de�nition or
an entity type de�nition in the following way METHOD

method id; signature

characteristics; fprogramg. The implicit associ-
ated event is the method call.

Triggers and methods are inherited along the in-
heritance graph. Following the same principle found
in CLOS, Shood and other OO languages, triggers are
inherited (they cannot be overloaded), and are exe-
cuted from the most speci�c to the most general while
methods are rede�ned. By default method M on an

object or relationship of type T' produces the follow-
ing execution.

Pre triggers Method M Post Triggers After/Error

Pre triggers Method M Post Triggers After/Error

Super type T

Sub-type T’

Transaction

In contrast with most other approaches, e.g.
Marvel[9], Epos[5], where fpre, method, postg are de-
clared altogether, in Adele pre- and post- are triggers
governed by events, thus this picture can be more com-
plex:

� Pre- and post-triggers are not simple predicates
but can be arbitrary programs.

� Pre- and post- are triggered by events, not neces-
sarily a given command.

� Di�erent methods can share some pre- or post-
conditions,

� Event have priority, and triggers are executed in
the priority order, by default the inheritance or-
der is used, as in the previous example.

Relationships are very similar to entities (they have
attributes, triggers and methods); the only di�erence
is that it is not possible to create a relationship be-
tween two relationships.

2.3 Contexts

A context is a set of object instances de�ned by an
aggregate, i.e. the aggregate head and all its compo-
nents. A relationship pertains to a context if its origin
and destination objects are both in the context.

A user, when \under" a context, sees only the ob-
ject and relationship pertaining to that context. Dif-
ferent contexts may be active simultaneously for dif-
ferent users.

Since a project contains a large number of object
versions, the context concept was introduced to sim-
plify human understanding (getting rid of unneeded
objects and versions), to provide a protection mech-
anism (out of context objects are protected), and to
provide a support for work spaces (a common use is
to de�ne the workspace instances by a context).

3 Contextual behavior

Adele was primarily a con�guration manager sys-
tem. We are interested in controlling the activities

2

taking place during the development and maintenance
of a software product. In a typical situation, di�erent
con�gurations exist and share a large number of com-
ponents and documents.

Some con�gurations are developed in parallel for
di�erent clients, to perform functional extensions or
technical adaptations. Some con�gurations are in the
design phase while others are in development, test, val-
idation or released. In some cases, a team collaborates
on the same con�guration and shares all components
while working in parallel.

We are faced with the problem of:

� controlling the evolution of shared resources (data
consistency),

� supporting a team working simultaneously on the
same resources (support di�erent schemas of col-
laboration / synchronization between teams and
members).

Imagine the following situation: an object, foo.c,
of type c file, is a component of a development con-
text, a validation context, and a component of a con-
�guration. We would like foo.c to behave in the fol-
lowing way:

� While used in the development context, the
compile method uses the -g
ag (debug compi-
lation option);

� While used in the validation context, a new
method, metrics, is available;

� As a component of a released con�guration, a new
method, archive, is available; if the con�gura-
tion is in the released state, changes in foo.c

are forbidden.

Methods can be de�ned for a type, c file, which
can then be applied to each instance of that type.
With an O.O. approach all instances of a given type
share the same behavior. Consecutively, a type can
only de�ne characteristics and behavior that are true
for each instance and at all times. Editing, compiling
and linking methods can be de�ned for c file, but the
O.O. approach is not
exible enough to model our cur-
rent problem since all instances must share the same
methods. The only solution is to sub-type the c file

type, for all possible uses of c file instances. Because
of the combination of possibilities this is unwieldy; dy-
namic type changing would be required, imposing a
type de�nition change, each time a single c file in-
stance is used in a di�erent way.

Therefore we have used active relationships to ex-
tend the Adele data model and included context-
related behavior.

3.1 Active relationship extensions

In ER models relationships have attributes; in O.O.
models relationships are not objects and no attribute
can be associated with them. In Adele, relationships
are �rst class citizens and may have attributes as well
as triggers and method, to execute when the relation-
ship itself \receives a message".

Adele relationships are binary, always de�ning an
Origin object (called !O) and a Destination object
(!D). Adele extends further the relation concept, al-
lowing a relationship to change the type de�nition of
its origin and/or destination object. It is possible to
de�ne in a relationship type, triggers and methods
that will dynamically extend and rede�ne those de-
�ned in object type when origin or destination of that
relationship.

For example, the composition relation can be de-
�ned in the following manner:

TYPERELATION composition;

1 ON ORIGIN delete DO {remove !D} ;

2 ON DEST delete DO

{print "delete first its container !O";

ABORT};

3 ORIGIN METHOD duplicate -d %new ;

{copy !O -d %new };

4 ON ORIGIN duplicate DO

{makerel %new -r %realtype -d !D} ;

X

Y

Z

A Acopy

composition

!O

!D

%new

Figure 1: Containment relationships.

Line 1 stipulates that when deleting the origin of
an aggregate (A) , the destinations (X, Y, Z) must be
deleted too (remove is an internal command). Line 2
stipulates that destinations cannot be deleted individ-
ually, since any attempt should produce an abort of
the delete command. In the line 3 we added a new
method, duplicate, de�ned on the origin (A). Thus,

3

when \duplicate A -d Acopy" sentence is called,
the method duplicate, which is de�ned in the re-
lation composition, will be executed. If duplicate
is also de�ned in the A object type, it is dynamically
rede�ned by the one de�ned in the composition rela-
tion; if another relationship de�nes the same method
on the same object instance, it is an error.

The duplicate method only duplicates the aggre-
gate head and its compositions relationships (line 4).
Line 4 instruction is executed for each instance of the
composition relation type. That composition rela-
tion de�nes an aggregate with logic duplication (shar-
ing the content). Any other aggregate semantics can
be de�ned easily in the same way.

Using such a mechanism, we can solve our problem:

development
context

validation
context

in_devin_valid

comp

C

foo.c

TYPERELATION in_valid ;

DEST METHOD metrics ;

{ "logicscope !D"; ..} ;

TYPERELATION in_dev ;

DEST METHOD cc ;

{ "cc -g -c !D" } ;

TYPERELATION comp ;

ORIGIN METHOD archive ;

{ ... } ;

A relationship is visible only if both the origin and
destination objects are visible; therefore, in a vali-
dation context, the metrics method is available but
not the cc overload nor the archive method. The
archive method will be available only in a context
containing both the con�guration and its components.

3.2 Local and global trigger

Let the comp relation, relating a con�guration to its
components, be de�ned as follows:

change_rel_conf = (type = conf AND

!modified = true AND state = released);

TYPERELATION comp ;

PRE DEST change_rel_conf DO

{print "cannot modify a released conf";

ABORT}

ORIGIN METHOD archive ; { ... } ;

But since relationship comp is not visible in our con-
texts, the trigger will not be executed. A trigger can
be either local, i.e. executed only if the relationship
is visible, or global, i.e. executed whether or not the
relationship is visible.

In this situation we must state:

GLOBAL DEST modif_released_conf DO

{program}

By default a trigger is local. A global trigger is
executed with administrator rights, since the current
user probably has no rights on external objects; for
instance

GLOBAL DEST ch_conf DO

{ !O%state := obsolete } ;

means that when a con�guration component is
modi�ed, the state of the con�guration must become
obsolete, whether or not the user who performed the
change is aware of the con�guration existence and has
rights on it. Data consistency is enforced.

3.3 Contextual behavior

Object Orientation, Relationship and Context con-
cepts, used in conjunction, allow a separation of con-
cerns:

� O.O. de�nes the structural and behavioral prop-
erties of objects of the same class. All instances
of a class are identical regarding the class prop-
erties.

� Active Relationships de�ne additional properties
for the objects they relate; they allow addition,
substitution and delegation of properties as well
as information
ow in both directions.

� Context de�nes the visible objects and relation-
ships, and in addition, the object characteristics
(attributes, methods, triggers, constrains) which
are relevant in a given context.

This separation of concerns has a major impact on
the way software processes are described. A relation-
ship de�nes the dynamic semantics between entities
or group of entities. In the Adele system, they are

4

powerful enough to de�ne this semantics completely,
often regardless of the type of the related objects.

Since some of the object semantics is de�ned in the
relationship type, the simple fact that a relationship
instance is established or removed, changes the cor-
responding object behavior, without any change at
schema level. The object behavior becomes context
dependent.

It is interesting to note that the creation and dele-
tion of relationships is often performed for other rea-
sons than software process control. It is the case in our
examples where the contexts and the comp relation-
ships are created anyway. The process control comes
\for free", there is no need for explicit software process
instantiation; enaction is automatic and implicit.

3.4 Generic relationship and software
process fragments

Relationship type uses multiple inheritance, and
the relation origin and destination types need not be
de�ned. Some relationships can be de�ned only to
specify a generic semantic. For instance, relationship
can acquire a composition behavior, by inheritance
from the composition relation type TYPERELATION

my aggregate IS composition,.. . It is easy to
de�ne a library of \standard" semantics, for instance
PCTE link categories [4] (composition, reference, im-
plicit, stabilize), a set of aggregate semantics and a
set of the usual work environment inter-relationships
semantics.

For work environment (WE) inter-relationship we
have de�ned the relations \busy-propagate" between
two copies of an object, with the following seman-
tics \when a copy is modi�ed, the change is prop-
agated immediately to the other copy"; \conditional-
propagate", \notify", \resynch"; we de�ned also \sub-
we" relationships for nested WE management.

We have already shown that many WE manage-
ment policies used by Con�guration Management
tools[8, 17] can easily be modeled in the Adele system
using a few generic relationships [7]. NSE, Palas, An-
dromede and Aide de Camp have been implemented
in a few pages of Adele language. From this experi-
ment we noticed that few di�erent basic semantics are
used, but that their combination produces a di�erent
software process description.

The current work is to validate this library, by re-
implementing a large set of known processes and some
more di�cult ones.

3.5 Evaluation

This system has been in practical use for several
years (section 1), its extensions (section 2 and 3) for
one year. It has already proved its power and
exibil-
ity. However some weaknesses have been found:

1. Concept level. The language manages concepts
such as objects and relationship attributes. There
is no high level concept such as software process
steps, work environment or synchronization.

2. Fragmentation. The description of a process is of-
ten split in di�erent types of object and relations,
between methods and triggers. A global view of
a process is not easy.

3. Complexity. The large number of possibilities:
pre-, post-, after, local, and global triggers; mul-
tiple inheritance and relation overload, provide a

exible system. Object behavior can be de�ned
precisely, but it may confuse users. A clear pic-
ture of what will happen during execution is not
easy.

To overcome these drawbacks, we designed a lan-
guage, TEMPO [3], on top of the Adele system[1].
TEMPO, de�nes a process model based the role and
connection concepts. A role [2] allows to rede�nes
the static and behavioral properties of objects when
playing that role in a process; while a connection ex-
presses how processes collaborate in a wider context:
the complete SEE. This language is presented in the
following section.

4 The TEMPO language

A software process step is modeled in TEMPO by
a user de�ned object type, a software process step
instance by an object instance in the Adele-DB. Us-
ing the standard multiple inheritance mechanisms, a
process type can be re�ned and specialized. There-
fore, to some extend, software process customization
is achieved by process type specialization.

We use the role concept, which is inspired from the
Actor language, to describe the software process re-
sources. A role customizes an object type for a soft-
ware process step. A role describes an object's con-
textual behavior, i.e. the description of the operations
that can be done on the object and the rules that con-
trol these operations. A role adds temporary proper-
ties (local attributes) to the object playing this role.
A software process step becomes a list of roles which

5

customize the objects involved in order to satisfy that
software process step requirements. The properties
and behavior of an object are speci�c of each software
process in which it plays a role.

4.1 Process and Role de�nition

A role is the set of object instances, having the same
behavior and characteristics for a given process. A role
de�nes the common behavior and characteristics of
its instances. Characteristics means valid attributes,
while behavior means methods and constraints. There
is no strict relationship between role and type: (1) an
object instance plays a single role in a given process,
(2) object instances of the same type may play di�er-
ent roles, (3) instances of di�erent types may play the
same role, provided their types are compatible.

A role is de�ned by a name, a type, local attributes,
methods and rules.

ROLE role_id = {type | role/expression} ;

ATTRIBUTE attribute_definition

METHOD method_definition

rule_definition

END role_id ;

The following example shows how the module
type is customized inside a development WE by the
to consult and to change roles, and in a validation
WE by the component role.

TYPEOBJECT Module ;

ATTRIBUTE

state = tested, untested, available ;

METHOD

compile ...; -- with -C option

END Module;

TYPEPROCESS development ;

ROLE testing = unitary_testing ;

ROLE to_consult = module ;

ROLE to_change =

to_consult/(responsible=!username);

ATTRIBUTE

state = compiled,edited, ready;

METHOD

compile ... ; -- with -g option

AFTER ON compile DO test ...;

END development;

TYPEPROCESS validation ;

ROLE component = module ;

ATTRIBUTE

test_suite = test1, test2;

...

END validation;

Role to change will be bound to those mod-
ules the current user is responsible for (current
user name (!username) equals to attribute \respon-
sible"); whereas the role to consult is bound to the
other modules. That is, when an occurrence of the
development process is created, all module instances
will be �rst bound to role to consult then those mod-
ules with attribute \responsible" will be moved to the
to change role.

We de�ne a Work Environment (WE) as a process
occurrence i.e. the set of object instances the process
will perform on, along with the process descriptions,
tools, users, etc. A WE acts as a (very) long trans-
action. By default any change performed in a WE is
visible only in the WE (isolation property of trans-
actions). In a WE is de�ned only what the process
does on its instances. This property makes it easier to
de�ne a WE. In our example, the state attribute is
extended and may now contain two additional values
compiled and tested. A modi�cation of the state

attribute is local to the WE instance. In a validation
WE, the component role is also bound to modules.

Each role has methods which are used to adapt the
behavior of the object to that WE. That is, a role
can rede�ne the original methods or de�ne new ones
in order to customize the object behavior for the WE
in which it is used. For example, the module type
has methods independent of the WE where the mod-
ule instances are used. However, when a module in-
stance is used in a given WE, other methods may be
needed, e.g., the method compile may be di�erent in
a developmentWE than in a validationWE.

Triggers, when used in the software product model,
are also very useful to capture integrity constraints.
We have felt that triggers, when attached to a role,
are also an important feature, for controlling the oper-
ations performed in the WEs. Thus, triggers, de�ned
in the software product model, describe invariant con-
straints, and triggers de�ned in roles de�ne the policies
to apply when an object plays that role in a WE. Role
triggers control the work performed inside a WE; they
are executed only in response to actions performed in
the WE itself.

4.2 Process and Role connection

Each process de�nes what succeeds in a WE as if
it were performing alone; which is clearly false. Our
basic hypothesis is that numerous activities are carried

6

out in parallel. Some of such activities collaborate to
the same goal (for instance a new release of a software
product), some do not collaborate to the same goal but
share objects which is, to some extend, collaborating
to the evolution of these objects. In all these cases, the
relationship between WE must be explicitly de�ned.

We do not support the current approaches where a
software process is described only as a tree of embed-
ded sub-processes; we claim that SEE must be seen as
a federation of collaborating WE, each WE being
an enacted process occurrence. It is our belief that the
conceptual de�nition of the network of collaborating
WE is the major weakness in current SEEs.

We assume that the role is the grain for collab-
oration. The role collaboration is de�ned by a re-
lationship that express the semantics of the collab-
oration. We provide a library of usual such seman-
tic relationship: notify, (which sends a noti�cation to
the WE owner when an event notify when succeeds),
resynch (that re-synchronize two objects when event
resynch when succeeds), merge, duplicate, share, dead-
line, protect, and so on.

To illustrate how role collaboration can be de�ned,
suppose the following scenario:

When a new release of a given software product
must be developed, a general process, called release

is created. An arbitrary number of development WE
and a single validation WE can collaborate to that
release process. Each development WE can change
only some objects and have read access to the other
objects of the release.

The synchronization between development WEs is
as follows: When a given module M receives the
\ready" state in a to change role, M copy in each
other to change role must be merged, and their owner
noti�ed. If M is in a to consult role, the new M
version automatically replaces the previous one, and
noti�cation is sent to the WE user.

A module M receives the available state only if
all its copies have the ready state. When all modules
have the available state, the validationWE can be
created.

Interesting collaboration succeeds then between the
development WEs and the validation WE, but for
space reason this is not developed here.

The following example shows how this policy is de-
scribed in TEMPO.

TYPEPROCESS release ;

1 EVENT ready = (state := ready) ;

ROLE USER = PMmanager;

ROLE implement = development ;

ROLE valid = validation ;

ROLE components = module ; {

ON ready DO {

2 IF implement.to_change.%name.state

== ready THEN

3 implement.to_change.%name.state

:= available ;

4 IF implement.to_change.state

== available THEN new valid ;

} } ;

5 TYPECONNECTION consult_change

IS notify, resynch ;

6 CONNECT implement WITH implement

7 WHEN to_consult.name = to_change.name ;

8 EVENT notify_when = ready ;

resynch_when = ready ;

END ;

TYPECONNECTION change_change

IS notify, merge ;

CONNECT implement WITH implement

WHEN to_change.name = to_change.name ;

EVENT notify_when = ready ;

merge_when = ready ;

END ;

END release ;

Line 1 stipulates that when an object gets to the
state ready, the event ready is raised. Line 2 sentence
implement.to change.%name.state evaluates to the
set of values of attribute state of the object that pro-
duced the ready event, as found in all to change roles
of current process. Operator \==" means set equal-
ity. Line 2 means that all copies of the object %name
have the ready state. Similarly, line 3 says that all
these object copies must take the available state. Line
4 expression implement.to change.state returns all
state values of all object in all to change role. Line 4
means that when all object get the available state, a
valid role (i.e. a validation WE) must be created.

A connection is a special kind of relationship sup-
posed to be instantiated between pairs of role in-
stances. A connection is intended to de�ne how each
pair of connected object is coordinated. It may be
a data
ow de�nition, a status consistency checking,
noti�cation, deadline control, message passing, object
evolution control and so on. It must be emphasized
that connections are not symmetric; for instance, a
development WE may automatically want to get new
versions of objects as produced in a validation WE,
probably not the other way!.

Some of these basic behavior is provided in stan-
dard, as here notify, resynch and merge. Using
standard inheritance mechanism, each connection can
reuse these process fragments (line 5), and rede�ne,

7

for instance, the event on which some behavior must
be executed. Line 8 means that noti�cation must suc-
ceed when the object becomes ready.

The CONNECT clause expresses which pair of ob-
jects must be connected. Line 6 means that, for a
given release process, two implement roles are con-
nected by a consult change connection. Only those
instances satisfying the expression found after the
WHEN clause are automatically connected . In lines
7 instances of to consult in the �rst implement role
are connected with instances of the to change in the
second implement role having the same name in both
roles: the shared instances.

Thus, depending on the connections, the activity
performed inside a WE may or may not interfere with
other activities carried out in parallel during the soft-
ware process.

4.3 Roles and classes

Roles and classes look similar; it rises the question:
can roles be implemented in term of classes and sub-
classes?; is the concept of role needed at all?

A role, as well as a class, is a set of instances sharing
the same de�nition (static and behavioral). A given
object instance can be simultaneously a member of
di�erent role (classes). Both roles and classes can be
seen as a viewing mechanism since a given object in-
stance has a di�erent description depending on the
role (class) from which it is managed.

However the di�erences are the following: The as-
sociation between an instance and its class(es) is stat-
ically de�ned at instantiation time, while an instance
can be dynamically bound to an arbitrary role at any
time. In an O.O. system the class de�nition is cre-
ated �rst, and then the instances of the class; while in
TEMPO, usually, the instances are created �rst, and
are dynamically associated, for a while, to a (set of)
role.

Since a given object instance can be simultaneously
a member of di�erent roles (classes) there is compat-
ibility rules between those roles (classes) allowed to
shared objects. For classes it is the inclusion seman-
tics constraint which holds between a class and its sub
classes (ISA relationship). For roles it is the connec-
tion semantics. A wide range of connection semantics
exist (essentially data
ow, synchronization, coordina-
tion), this is why the language does not impose any
prede�ned semantics. Connection between roles, and
their semantics, is user de�ned.

The role concept is a generalization of the class con-
cept, intended for another purpose: the control of the
multiple views of objects instances and the coordina-
tion of their concurrent use. As a special case, classic

O.O. systems can be implemented in term of roles, not
the contrary.

5 Related work

Among the kinds of software process programming
language that the software process community has
used for process-oriented software engineering envi-
ronments [10] the following can be mentioned:

� the rule-based modeling software process using
precondition, activity and post-conditions, e.g.
Marvel [9], Epos [5];

� the procedural [11], models derived from pro-
gramming languages, e.g. Appl/A [15], Triad
[13], Galois [14]; and

� the behavioral approach centered on artifacts pro-
duced (activities productions) rather than the
speci�c procedures to produce these artifacts [18],
e.g. HFSP [16], Interact [12].

Although, our approach is a combination of these
paradigms, in our case, rules are derived from event-
condition-action formalism and enacted by triggers.
We describe software process as an aggregate of ob-
jects roles (artifacts) and associate to each role con-
straint as pre and post-conditions to control the con-
sistency of object roles. From procedural approach,
rule description could involve procedural functions
and procedures. The basis of integration of these
mechanisms is an object manager supporting inher-
itance, aggregation, late binding and identi�cation of
objects

6 Conclusion

We believe that the de�nitions of a two levels sys-
tem led to an innovative system for the programming
of con�guration management policies. We have ex-
tended Adele-DB, in order to closely link the static
aspect of con�guration management (persistent soft-
ware objects management, versioning, etc) and the dy-
namic aspect which is software process and work en-
vironment control. One of the goals of that work is to
provide the process administrator with a simple lan-
guage for the de�nition of software procedures with-
out cumbersome communication protocol exchanges.
We used a synchronization and communication mech-
anism based on propagation and noti�cation, which
we believe is easy to use and understand.

8

The contribution of this paper is the description of
our two levels:

� A set of basic mechanisms for the general prob-
lem of maintaining the consistency of objects used
simultaneously, for di�erent purpose, in di�er-
ent and distributed working environments. It is
the description of our \abstract process machine"
based on an object oriented DB, extended by a
trigger mechanism.

� A higher level language, called TEMPO, based
on this abstract machine. This language clearly
separates products and activities, inter and in-
tra work environment communication. The data
model use O.O. concepts for the structuring of the
static and persistent object. TEMPO also uses
O.O. concepts for structuring software processes
with roles as a basic concept at the execution (ac-
tivity) level.

The result is an integration of software con�gura-
tion management and software process management
which we believe to be of some novelty and signi�-
cance. The basic layer is a stable prototype, used for
1 years, to be commercially released in 93, the top
layer, TEMPO, is under implementation.

Acknowledgement

W. Melo is supported by the Technological and
Scienti�c Development National Council of Brazil
(CNPq) under grant No. 204404/89-4.

The authors would like to thank the anonymous
referees for their valuable comments and suggestions.

References

[1] N. Belkhatir, J. Estublier, and W. L. Melo. Adele
2: a support to large software development pro-
cess. In Dowson [6], pages 159{170.

[2] N. Belkhatir and W. L. Melo. The object role
software process model. In J.-C. Derniame, edi-
tor, Proc. of the 2nd European Workshop on Soft-
ware Process Technology, volume 635 of LNCS,
pages 150{152, Trondheim, Norway, 7{8 Septem-
ber 1992. Springer-Verlag.

[3] N. Belkhatir and W. L. Melo. TEMPO: a soft-
ware process model based on object context be-
havior. In Proc. of the 5th Int'l Conf. on Software

Engineering & its Applications, Toulouse, France,
December 7{11 1992.

[4] G. Boudier, R. Minot, and I. M. Thomas. An
overview of PCTE and PCTE+. In Proc. of the
3rd ACM Symposium on Software Development
Environments, Boston, Massachusetts, Novem-
ber 28{30 1988. In ACM SIGPLAN Notices,
24(2):248{257, February 1989.

[5] R. Conradi, E. Osjord, P.H. Westby, and C. Liu.
Initial software process management in Epos.
IEE Software Engineering Journal, 6(5):275{284,
September 1991.

[6] M. Dowson, editor. Proc. of the First Int'l Conf.
on the Software Process, Redondo Beach, CA,
October 21{22 1991. IEEE Computer Society
Press.

[7] Jacky Estublier. The adele con�guration man-
ager. Adele Technical Report, 1992.

[8] P.H. Feiler. Con�guration management models
in commercial environments. Technical Report
CMU/SEI-91-TR-7, Carnegie-Mellon University,
Software Enginnering Institure, March 1991.

[9] G. E. Kaiser, N. S. Barghouti, and M. H. Sokol-
sky. Preliminary experience with process mod-
eling in the Marvel software development envi-
ronment kernel. In 23th Annual Hawaii Inter-
national Conference on System Sciences, pages
131{140, Kona, HI, January 1990.

[10] N. H. Madhavji. The process cycle. IEE Soft-
ware Engineering Journal, 6(5):234{242, Septem-
ber 1991.

[11] L. J. Osterweil. Software processes are software
too. In 9th International Conference on Soft-
ware Engineering, Monterey, CA, March 30-April
2 1987.

[12] D. E. Perry. Policy-directed coordination and co-
operation. In I. Thomas, editor, Proc. of the 7th
Int'l Software Process Workshop, San Francisco,
CA, October 16{18 1991. IEEE Computer Soci-
ety Press.

[13] S. Sarkar and V. Venugopal. A language-based
approach to building CSCW systems. In 24th An-
nual Hawaii International Conference on System
Sciences, pages 553{567, Kona, HI, 1991. IEEE
Computer Society, Software Track, v. II.

9

[14] Y. Sugiyama and E. Horowitz. Building your own
software development environment. IEE Soft-
ware Engineering Journal, 6(5):317{331, Septem-
ber 1991.

[15] S. M. Sutton, D. Heimbigner, and L. J. Oster-
weil. Language constructs for managing change
in process-centered environments. In Proc. of the
4th ACM Symposium on Software Development
Environments, Irvine, CA, December 3{5 1990.
In ACM Software Engineering Notes, 15(6):206{
217, December 1990.

[16] M. Suzuki and T. Katayama. Meta-operations in
the process model HFSP for the dynamics and

exibility of software process. In Dowson [6],
pages 202{217.

[17] K. C. Wallnay. Issues and techniques of
CASE integration with con�guration manage-
ment. Technical Report CMU/SEI-92-TR-5,
Carnegie-Mellon University, Software Enginner-
ing Institure, March 1992.

[18] L.C. Williams. Software process modeling: a be-
havioral approach. In Proc. of the 10th Int'l Conf.
on Software Engineering, pages 174{186. IEEE
Computer Society Press, 1988.

10

