
Supporting Software Process Evolution in
Adele/Tempo �

Walc�elio L. Melo1 and Noureddine Belkhatir2

1University of Maryland

Institute of Advanced Computer Studies

College Park, MD, 20742 USA

e-mail: melo@umiacs.umd.edu

2Laboratoire de G�enie Informatique

BP 53

38041 Grenoble France

e-mail: belkhatir@imag.fr

Abstract: Software process evolution corresponds to the act of improv-
ing the existing prescriptive software process models in a controlled and
supported way. As software processes change constantly, it is therefore
necessary to support one or more methods for assisting environment ad-
ministrators in improving models. Changes are made in order to adapt
software process models to new requirements, correct inconsistencies en-
countered in the course of execution, and modify, add or remove certain
constraints.

This article shows how software process evolution is supported in the
Tempo. Tempo is a process-oriented software engineering environment
where software processes are formally described in an object-oriented pro-
cess schema. In Tempo, a process schema is comprised of descriptions
of software agents, software products and software processes. A new ap-
proach is presented which supports the dynamic evolution of software pro-
cess descriptions. In this approach, software process change is the result
of tailoring the behavior of software objects manipulated during software
process enaction.

�Based on "Evolving Software Processes by Tailoring the Behavior of Software Objects" by N.

Belkhatir andW. Melo which appeared in the Int'l Conf. on SoftwareMaintenance, Victoria, Canada,

September 1994. IEEE Press

1 Introduction

A process-oriented software engineering environment (POSE) is a special kind of soft-
ware tool which monitors and/or controls software processes according to the software
policies explicitly described in a software process program. The descriptions, ex-
pressed as process program tell which software activities are computer-supported by
the environment, who can carry out such activities and under which conditions, how
software activities must be coordinated and synchronized, which software resources
are used to maintain and/or develop software products and what the environment
policies are for utilizing such resources, how software tools can be applied and in
which circumstances such tools must be called, etc. The POSE is the element respon-
sible for enforcing the software policies described in a process program in a software
environment. In this context, it is of paramount importance to provide support for
the evolution of process programs. For the rest of this paper, we will take evolution of
process programs to mean tailoring or customizing the behavior of a POSE in order to
adapt its functioning to new needs or new situations. Unlike previous generations of
software engineering systems, such as Pact [13], where the way the software processes
must be performed is hard-wired in the system by the tool constructor, evolving soft-
ware process programs are the core of a POSE. Thus, by changing such program, the
way the POSE interacts with software performers, controls the application of software
tools, guides the enaction of software activities, allocates software resources, etc. will
change, too.

Since Tempo is a POSE, software process evolution require changing the process
schemas and then enforcing the changed schema. Changing process schema dynami-
cally is the hard part and is the focus of the rest of the article. A process schema is
composed of description of software agents, software products and software processes.
Section 2 discusses some related work. Section 3 presents the conceptual architecutre
of the Tempo system. Section 4 discusses the main characteristics of the Tempo soft-
ware process modeling language. Section 5 presents the mechanisms which make it
possible to dealt with software process evolution in the Tempo system. Conclusions
are given in section 6, with indications of further work.

2 Some related works

Versioning mechanism, such as those used by Rcs, have been used by software engi-
neering environments (SEE's) in order to support the evolution of software artifacts.
Recently data schema evolution mechanisms, such as those found in object-oriented
database management systems, have been adapted to undertake object description
evolution. However, so far, little software engineering research work has concentrated
on supporting software process evolution.

In Prism [8] a process is managed using a change life cycle model, comprising three
phases: simulation, initialization and operation. Process evolution is supported by
providing a kind of spiral model. That is, if a problem is detected or a requirement
change is required during process performance, Prism's change model allows the pro-
cess to return from the operation phase to the simulation phase, where the process
model is modi�ed in order to stay up to date with the change. After the change, the
process is again enacted and performed. Our goal is not to develop a new process
change method, but to support software process engineering in a large-scale context.
Unlike Prism, we have not attacked methodological aspects of software process man-
agement. However, we have implicitly provided some novel and interesting facilities
for the management of change in processes and software systems by designing a new
software process paradigm, the role approach, and building an automated environ-
ment supporting various facets of process enaction, performance and evolution. In
fact, we believe that Prism's change model could be implemented using Tempo, once
the two main environmental facilities provided by Prism, i.e. dependency structure
and change structure [7], could be realized using the Tempo's resource manager of

(i.e., the Adele database) and the Tempo's activity manager [9](i.e. the Nomade
trigger mechanism [3]).

In AP5 [11] software process model evolution is provided using trigger modi�cation
commands, the addition of new rules and the removal of existing ones. As AP5
was built using LISP, an environment administrator can change the process model
without stopping software process execution. Management of consistency between
modi�cations and the currently executing processes is delegated to those responsible
for the modi�cations. As described in [9], Tempo also provides built-in commands
making it possible to add incrementally new trigger rules to data and process schema.
We discuss how Tempo provides this kind of evolution in the next section.

In Marvel [6] the process description can evolve due to changes to the pre- and
post-conditions which encapsulate rules. Marvel ensures the consistency of rules in
relation to the execution mechanism and in relation to the descriptions contained
in its data schema [2]. In contrast to AP5, process description evolution is static;
processes must be stopped in order to permit changes to their descriptions. Once it
has been modi�ed, the new description is compiled and validated. After these stages,
the processes can continue execution, in a new context which takes account of the
modi�cation.

Melmac [5] provides modi�cation points. If a modi�cation point is associated with
a software process step, for instance PS, during process enactment, but before PS
execution, Melmac could use the procedure described in such a modi�cation point to
accomplish the required process change.

Peace [1] provides meta-plans which are responsible for describing procedures to
be followed for modifying a software process model when an exception arises during
process enaction. This mechanism allows Peace to dynamically change plan de�ni-
tion, e.g., replacing one plan by another, modifying plan hierarchy, etc., using the
knowledge described in such meta-plans.

3 The architecture of the Tempo system

As �gure 1 reveals, the Tempo environment consists of following components:

� A resource manager. The Tempo's resource manages uses Adele database as
a persistent object base for storing objects and activities, and for tracing the
project's progress. It supports an entity-relationship data model which is ex-
tended with object-oriented concepts like inheritance, methods and encapsula-
tion. Simple and composite objects with attributes and relationships can be
described and managed.

� An activity manager which is responsible for the control integration in our
platform. This activity manager is driven by temporal-event-condition-action
rules (TECA) and supported by the Adele's trigger mechanism. We enhanced
Adele's trigger mechanism with the ability to manipulate temporal expressions
[9].

� A process manager which o�ers the concepts of process and role. Process exe-
cution is supported by work environments (WE) wherein software activities are
performed. The process manager, based on the activity manager, manages com-
munication and synchronization between teams, and between agents involved
in the same project. It also controls the consistency of complex objects used
simultaneously in di�erent work environments by di�erent agents [10]. This
component represents the conceptual component responsible for process inte-
gration in the Tempo architecture.

Adele 2 plays the role of resource manager and activity manager in the current
version of Tempo. Adele 2 [4] is a commercial product which is the result of the

union of two long term projects in the framework of the Laboratoire de G�enie Infor-
matique de Grenoble. Adele 2 integrates the results produced by the Adele 1 and
Nomade projects [3]. Adele 1 [3] was a version management system hard-coded with
a con�guration builder. Nomade was a prototype of an active software engineering
database. This database was driven by an object-oriented data model. The active
part of this database was supported by a trigger mechanism, which was driven by
event-condition-action rules. Nomade incorporated the version management system
of Adele 1 for dealing with the evolution of software artifacts in versions. Adele 1's
con�guration manager was also included in the nucleus of Nomade. Tempo [9] is
the successor of Nomade. Tempo is able to deal with user de�ned software process
models, multi-points of view of software artifacts, temporal events, long-time dura-
tion activities, and it provides support for communication of software activities. The
concepts and mechanisms proposed by Tempo are going to be incorporated into Adele
3, which is will be the new commercial version of Adele.

Adele DB
Software Artifacts
Software Process

Version control
Conf. Manager

Adele’s
Trigger mechanism

enhanced

instantiation WE-2

WE-1

WE-3

Process
Engine

Activity Manager
Process ManagerRessource Manager

Figure 1: Conceptual architecture of the Tempo POSE.

4 The Tempo product and process de�nition language

This section describes the main characteristics of the software process modeling lan-
guage used by Tempo for describing software products and software processes. Read-
ers familiar with the Tempo [9] can skip this section.

4.1 Product modeling

Software products are described using the Adele data model and supported by the
Adele database. The Adele data model is based on the entity-association model and
integrates object-oriented concepts. The basic entities of the model are object type
and relationship type.

The data model supports complex objects referred to as aggregates. An aggregate
is an object linked to its components by relationships. For example, a Pascal module
can consist of an interface and an implementation. The Pascal module object can
consequently be represented as an object linked to two other objects by two types of
relationship, possesses-interface and possesses-implementation. Aggregate semantics
are de�ned by the dynamic properties of the relationship linking the aggregate to
its components. The semantics are de�ned by the user; any aggregate can thus be
de�ned, using its own semantics and consistency constraints.

4.2 Process modeling

A software process model of considerable size can be written by grouping of various
software process types. A software process type has a recursive de�nition. It is a
mixture of several software process types. For example, an activity to check a module
design document consists of two sub-processes:

1. A sub-process which models the modi�cation activity allowing modi�cations to
the design document.

2. A sub-process which models the revision activity allowing approval of any design
document modi�cations which have been made.

MonitorDesign ISA PROCESS;
CONTROL md;

sub = ModifyDesign;
card = 1;

CONTROL rd;
sub = ReviewDesign;
card =1;

END_OF MonitorDesign;
ModifyDesign ISA PROCESS;

ATTRIBUTES
begin_date = DATE := now();
end_date = DATE;
deadline = DATE;

METHODS . . .
RULES . . .

END_OF ModifyDesign;

ReviewDesign ISA PROCESS; ...

The example above shows the software process type \MonitorDesign", composed
of the sub-processes \ModifyDesign"and \ReviewDesign". The activity coordinating
the module design document modi�cation is represented in the Tempo formalism by
the \MonitorDesign" type. This is composed of two sub-processes: \ModifyDesign"
and \ReviewDesign". \ModifyDesign" is the type which describes the design docu-
ment modi�cation process, and \ReviewDesign" is for revising this modi�cation.

It is possible, for every process type, to de�ne attributes, methods and temporal
constraints by using the temporal event-condition-action rules.

4.3 Temporal constraints

The ow of the software production process is controlled by temporal constraints.
For this, we need, on the one hand, to provide a conceptual framework allowing the
tracing and persistency of anterior (past) states and on the other hand, to describe
and verify temporal constraints during the execution of software processes.

4.3.1 The \temporal-event-condition-action" rules

The temporal constraints are described in Tempo software process language by
temporal-event-condition-action rules (TECA). TECA rules are de�ned both in the
data model and in the activity model. They are inherited in the hierarchy of types.
In the data model, the TECA rules describe integrity constraints independently of
the context of utilization. In the activity model, these rules are used to express soft-
ware development policies: the execution order of activities, their synchronization,
and constraints above the use of software resources.

A TECA rule that goes like this:
\WHEN event Do Method"
where:

event is a predicate expressing an event about the present or past state of the system
or about the object base.

method is a method.

Example:

EVENT
delete_sensible = (!cmd == remove AND

(!object\comp/state == released OR
!object@(status == validated));

This line expresses that event \delete sensible" will be true whenever there is
an attempt to delete a component (!cmd == remove), which is either a component
of a released con�guration (!object/comp/state == released) or which has been
in the past the status validated (!object@(status == validated)). The expression
\!object" represent the name of the object receiving method \!cmd". Similarly
all parameters of the called method can be checked, as well as previous values of
attributes and object when changed by the methods.

We added the operator \@" in the expression de�ning the event in order to be
able to lay conditions on the past. This operator is interpreted in relation to the log of
object evolution. All updates performed on an object is stored in this log (changing of
attributes and events). Temporal constraints are checked following a reverse scanning
of the history from the triggering of the event to the satisfaction of the temporal con-
straint. These constraints are expressed in relation to object properties (attributes
and events stored in the objects log). If temporal constraints are not checked at any
time at all, then no operation will be executed.

4.3.2 The methods

A method is program written in a simple imperative language similar to Unix's

METHOD delete ;
IF [%state == stable] THEN ABORT
ELSE "rmobj %name ";

END delete;

This method enables to suppress objects with unstable states. The late-binding
mechanism is used during the execution of methods. In the above example, when the
method "delete" is executed, the variable \%name" takes the identi�er of the object
being deleted as value.

4.3.3 Examples of utilisation of TECA rules

De�nition of TECA rules into data model

Figure 2 presents an example of use of TECA rules in the data model. TECA
rules describe constraints about the manipulation of software objects. Such rules are
independent of the context where and when software objects are handled. In order
words, TECA rules when de�ned in the data model are useful for description of (1)
integrity constraints about object relationships, and (2) software policies which are
context independent or invariants.

In this body type description we �nd in lines 1 the de�nition of attribute lines
which represents the number of lines in the body. Lines is declared COMP which
means the value provided at instantiation is not the attribute value but the program
that, when executed, will return the real attribute value. In line 9 the value of line is
the result of the execution by Unix shell of wc -l !�lename i.e the number of line in
�le !�lename.

TYPEOBJECT body ;
DEFATTRIBUTE

1 lines COMP = INTEGER;
2 PRE WHEN delete_official DO ABORT;
3 POST WHEN replace_body_c DO
4 "store_binary %name" ;
END body;

TYPERELATION comp ;
5 PRE WHEN DEST replace_body_c DO
6 "modify_attr !O -a line-conf = %line-conf - ~!D%lines" ;
7 POST WHEN DEST replace_body_c DO
8 "modify_attr !O -a line-conf = %line-conf + ~!D%lines" ;

END comp ;

DEFACTION store_binary;
9 IF "cc -c !filename" THEN
10 {"replace %name -do" ;
11 "modify_attr %name -a lines = \"wc -l !filename\"" } ;

END store_binary;

DEFEVENT
12 delete_official = [!command=delete, state=official];
13 replace_body_c = [!command=replace, language = c];

END

Figure 2: An example of the utilisation of TECA rules in the data model

Line 2 is a pre-condition which speci�es that if the event delete official occurs,
the command which triggered this event must be aborted. Event delete o�cial in
de�ned line 12 occurs when the command delete is applied to an o�cial body (i.e.
an object body with attribute state equal to o�cial). Line 3 expresses a post-condition
on event replace body c de�ned in line 13. When the command replace is applied
to a c program body (an object with the attribute language equal to c) this program
must be compiled. If compilation is successful (line 9) the binary object is recorded
with its source code (line 10) and the line numbers of the source object is computed
and recorded (line 11).

The relation comp relates a con�guration with its components. Before replacing
a component of a con�guration (line 5), the number of lines of the con�guration (!O
refers to the origin of the relation i.e. the con�guration), is reduced by the number
of line of the component (!D refers to the relation destination i.e. the replaced
component, !DD%lines is the value of attribute lines of the component); after the
replace command (line 7), the actual number of line of the component is added to
the number of lines of the con�guration (line 8). That way, the number of line of all
con�gurations is always up to date and recursively.

Description of TECA rules into process model

On the other hand, TECA rules when de�ned in the process model they (1) describe
fragments of software activities, (2) specify software policies which are context depen-
dent, (3) de�ne ordering of software activities, and (4) pre- and post-condition about
the actions of user performers. For instance, �gure 3 gives a fragment of software
process de�nition, where:

1. The rule described in line 1 speci�es that the design document modi�cation
activity must stop when the date foreseen has been reached.

2. The rule in line 2 states that resumption of the activity if has not been completed
yet �rst requires that the termination date be changed.

ModifyDesign ISA PROCESS;
ATTRIBUTES
begin_date = DATE := now();
end_date = DATE;
deadline = DATE;

METHODS
continue_execution;
. . .

RULES
(1) AFTER WHEN deadline_arrived

DO stop_execution;
(2) PRE WHEN (continue_execution AND

@(not deadline_changed))
DO ABORT;

END_OF ModifyDesign;

Figure 3: An example of the utilisation of TECA rules in the process model

4.4 Object with roles

4.4.1 Motivation

The problem of multiple perspectives or multiple viewpoints often occurs in the life-
time of a software. In this case, users handle objects simultaneously, use di�erent
viewpoints of these objects, and carry out actions limited and directed by the con-
straints of their own activities. These users, directed by multiple development strate-
gies, handle di�erent models of the same product.

A SEE must therefore provide a framework permitting the description and control
of these aspects in the environment. Tempo o�ers concepts allowing the description
and structuring of multiple viewpoints. Basing on the rule concept and for each
object handled, every occurrence of software process can have constraints (TECA
rules), local operations (methods) and local properties (attributes). For example,
a module belonging to the Pascal object type, M1, has properties and constraints
inherited from this type. Via the role concept, a module M1 can have new properties,
new methods and new temporal constraints based on its role in an activity. For
example:

TYPEOBJECT C_body ISA body;
METHOD
compilation; # With debug option
link;

END C_body;

test ISA PROCESS;
ROLE under_test;
derived_from := C_body;
METHOD

compilation;
without debug option

END_OF test;

integration ISA PROCESS;
ROLE under_integration;
derived_from := C_body;

METHOD
compilation;
without debug option, but
with optimization option

END_OF integration;

The above example shows that the objects of the C body type can be handled
di�erently depending on the role they play. Objects of C body type acting as under-
integration in an integration process will be compiled di�erently from the one de-
scribed in the C body type. Likewise , when these objects act as under-test in a test
process, they will be compiled di�erently.

Roles are typi�ed. A role type can refer to di�erent types of objects. This allows
to integrate many behaviors and properties, coming from di�erent types of objects, in
a unique view. By using this concept, Tempo allows enables us to unify the processing
of a heterogeneous set of objects. The advantage of this strategy is that, using the
role concept, a set of objects having di�erent static and dynamic characteristics can
be perceived in a homogeneous manner, during the execution of a particular software
process phase. This homogeneity is maintained by multiple inheritance rules used in
the object-oriented models.

For example:

test ISA PROCESS;
ROLE under_test;
derived_from := C_body;
METHOD
compilation; # without debug option

ROLE interfaces;
derived_from := C_interface,

CPP_interface;
METHOD
list;

END_OF test;

The C interface types (C programming interfaces) and CPP interface (C++
programming interfaces) are specialized in the test process via the \interfaces" role.
Objects of the \C interface" or \CPP interface" type playing this role will be
handled by the methods described in the role. Therefore, the list method can be
applied both to the C interfaces and to the C++ interfaces. Many roles can be
described by a software process which then becomes a list of roles where every type
of object can play di�erent types of roles. As a result, two objects of the same type
can be managed in di�erent ways in a software process. Parallel to this, the same
object can play di�erent roles in di�erent software processes.

5 Process evolution support in Adele/Tempo

5.1 Adding process types to a process schema

The Tempo process language is based on the object-oriented approach where process
types, data types and connection types are de�ned in a process schema and \instan-
tiated" as objects in the Adele database [9]. The consistency of the process schema

is assured by standard multiple inheritance rules. Furthermore, Tempo imposes the
two following consistency constraints:

1. types can be added to a process schema if and only if the added type will not
change the inheritance graph of the already de�ned types.

2. Process types with enacting software process occurrences cannot be removed
from the process schema.

For example, the following �gure shows two process schema changes:

isa relation

T0

T1 T2 T3

T4

T0

T1 T2 T3

T4

Snapshot: A Snapshot: B
(invalid change)

(valid change)

isa relation
T0, ..., T4 ::= process types

The Snapshot A shows an example of a valid process schema change. In this
snapshot the T4 process type has been added to the current process schema. The
already instantiated types have not changed with the T4 inclusion. The Snapshot
B shows an example of an invalid process schema change, because adding process
T4 would change the inheritance graph of the already instantiated process types.
(Tempo provides pre-de�ned commands making it possible to build up a process
schema incrementally [9]. These commands can be only used by privileged users.)

5.2 Updating Temporal-event-condition-action rules

Adele/Tempo provides pre-de�ned commands to incrementally change rules, events
and methods de�ned in the process schema [9].

The body of methods already de�ned in the process schema can be modi�ed
without triggering modi�cation of the enacting software processes occurrences.

Constraints can be relaxed by changing the event clause of the Temporal-event-
condition-action rules (TECA rules). As well, rules can be added to or removed from a
process schema, independent of the existence of already enacting processes belonging
to types under change. Given the following process schema:

DEFEVENT e1 = {condition1};

TPROCESSTYPE P1; ...
rule1: WHEN e1 DO m1;
END P1;

The rule1 associated with the P1 process type can be relaxed by adding another
event to the process schema and composing the condition part of that rule, for in-
stance:

DEFEVENT e1 = {condition1};
e2 = {condition2};

PROCESSTYPE P1; ...
rule1: WHEN e1 OR e2 DO a1;
END P1;

As well, new rules can be added to or removed from a process schema, independent
of the existence of already enacting processes belonging to types under change. For
instance:

DEFEVENT e1 = {condition1};
e2 = {condition2};

PROCESSTYPE P1; ...
rule1: WHEN e1 OR e2 DO m1;
rule2: WHEN e1 AND e2 DO m2;
END P1;

The rule number 2 has been added to the process schema. This rule says that
when the e1 event and the e2 event occur, the m2 method will be triggered.

TECA rules are always interpreted, never semantically compiled in Adele/Tempo.
A late-binding mechanism is heavily used during rule interpretation. Backward chain-
ing is not implicitly supported by Adele/Tempo, i.e, rules are not interpreted in order
to achieve a user-de�ned goal. Due to these two characteristics, TECA rules are,
unfortunately, added to and removed from the process schema without consistency
veri�cation, unlike other rule-based system, such as Marvel [2], where the pool of
rules is supposed consistent.

5.3 The role concept and process evolution

Tempo process programming language is heavily based on the role concept. A role, as
well as a type, is a template applied to a set of instances sharing the same de�nition
(static and behavioral). A given object instance can be simultaneously a member of
di�erent roles (classes). Both roles and types can be seen as a viewingmechanism since
a given object instance has a di�erent description depending on the role from which
it is managed. One would need to create a sub-type for all the possible combinations
of roles for a single type, and to change instance type dynamically each time a new
role is applied to it. However, there is a fundamental di�erence:

The association between an instance and its type is statically de�ned at
instantiation time, while an instance can be dynamically bound to an
arbitrary role at any time.

Furthermore, since the instance may shared and play di�erent roles simultane-
ously, dynamic typing cannot be used. We introduce the possibility to changing type
dynamically. In an usual O.O. DBMS the type de�nition is created �rst, and then
the instances of the types. In Tempo on the other hand, the instances are usually
created �rst, and are dynamically associated, for a while, to a (set of) role(s).

Since a given object can be simultaneously a member of di�erent roles there are
compatibility rules between the roles allowed for shared objects. In Tempo, objects
can change behavior depending on the context without changing identity.

The role concept makes it possible to evolve the characteristics of software objects
handled during the software processes. The role concept naturally integrates a type
evolution facility, since role types are similar to object types in O.O. languages. The
role concept o�ers two kinds of evolution:

1. role de�nition can change generating role version;

2. objects can change its roles dynamically.

Adding roles to enacting process

Role types are used to model the life cycle of a software object. This raises the
problem of how to integrate new role types which correspond to unforeseen situations
(exceptional situations). This approach may also be used to allow for incremental
development of the life cycle of objects, gradually de�ning roles. An object partici-
pating in an activity has a structure and behavior which complies with its role. Roles
provide a way of tracking the various facets of object evolution.

For example:

A software object representing a software con�guration evolves in confor-
mance with its life cycle: speci�cation, construction, test and quali�cation.
For each of these stages, we can de�ne \on the y" a corresponding role:

in the speci�cation role, con�guration properties are de�ned;

in the construction role, there is a description of how the con�gura-
tion should be generated;

in the test role, procedures for adjusting the con�guration are de�ned
(compilation, linking and testing);

in the quali�cation role, the con�guration is approved prior to being
made available to users.

Using this approach, the role type casting of an object represents stages in its
life cycle. Transitions from one stage to the next are governed by Temporal-event-
condition-action rules which are explicitly de�ned by the environment administrator.
For example:

The administrator will only add the quali�cation role type to the con-
�guration installation process once the con�guration has been tested and
approved.

Let W be an occurrence of the P software process type currently being executed
(see �gure 4). The objects manipulated in this occurrence are visible and behave in
compliance with the roles de�ned in P.

Adding the R1 role type to P triggers a change in the organization of the objects
manipulated in W, as certain objects which were playing R0 role in W will now be
playing R1.

The role casting has two e�ects on process evolution:

1. An existing object, O3, playing a given role, R0, in a work environment, W,
will have a new point of view, once it has changed its role to R1.

2. The behavior of the O3 object in the new R1 role changes, because new and
di�erent methods and rules can have been described in R1.

For an object, the switch from one role to another is dynamic; the switch causes
the software process to evolve. A new type of role is dynamically added to the
software process schema. At same time, the object changes its role thus changing its
behavior. In order to control these changes, Temporal event-condition-action rules
can be de�ned in the software process types.

O1
O2

O3

R0

W

P

plays_role

possesses_role

is_instance_of

O1
O2

O3

R0

W

P

R1
Role R1 is added

O1,...,O3 ::= Software objects
R0, R1 ::= roles
W ::= work environment
P ::= process step type

Figure 4: Evolving software process by role adding.

6 Conclusion and perspectives

This article has presented evolutionary features in a Software Engineering Environ-
ment. Evolution is taken into account in both the software product model and soft-
ware process model.

Changes at the software product model include changes to the schema where
software object and relationships between such objects are de�ned. At present, we
are using the same evolution mechanism proposed by Orion, which triggers database
reorganization when the object schema is modi�ed.

Software process changes make it possible to develop incrementally software pro-
cess models. This evolution is achieved by dynamic addition of roles types. A role
can either be an object view or a sub-process (role aggregate). An object view is a
de�nition of a set of encapsulated rules in a consistent unit, or in other words a sub-
process. In this way the evolution consistency of the whole depends on adding roles
with transitions implemented by temporal rules, controlling the ow of role instances.
Flow can be intra-process (evolution of a role inside a sub-process) or inter-process
by adding sub-processes.

By developing a software process language based on an object-oriented approach,
extended by the role concept, makes allowance for evolution an inherent part of soft-
ware process models. The major asset resides in the fact that role concepts and
temporal rules allow evolution to be expressed naturally, including the transfer of the
a�ected instances.

Work is moving forward in these areas, both in terms of research and development:

� Implementation and integration of schema evolution in the commercial version
of Adele is under way.

� Research work is currently striving to bring the ways product and process evolu-
tion is viewed closer together. It seems likely that models based on object roles
may be an answer to support both product and process modeling and evolution.
This would make it possible to unify process and product visions. The process
level is one level of abstraction above the product level, providing support for
activities by organizing them around the role concept.

We therefore consider that this constitutes a reasonable basis for specifying evolu-
tion in our software development environment without claiming to cover all possible

forms of software process evolution. Our principal concern is to avoid chaotic situ-
ations caused by uncontrolled evolution, resulting in the long term de-structuring of
software products and uncontrolled deviation by the processes they produce.

In our opinion, integration by the data and the software process represent a rea-
sonable basis for integrating and supporting an evolution process.

Acknowledgements

We would like to express our thanks to Barbara Swain for suggesting substantial and
helpful revisions to the original text.

During this work W. L. Melo was supported by the Technological and Scienti�c
Development National Council of Brazil (CNPq) under grant No. 204404/89-4.

References

[1] Arbaoui, S. and Oquendo, F. (1994). Peace : goal-oriented approach and non-
monotonic logic-based formalism for supporting process modeling enaction and evo-
lution. In Finkelstein, A., Kramer, J., and Nuseibeh, B., editors, Software Process
Modelling and Technology. Research Studies Press.

[2] Barghouti, N. S. and Kaiser, G. E. (1992). Scaling-up rule-based development
environments. Int'l Journal on Software Engineering & Knowledge Engineering,
2(1):59{78.

[3] Belkhatir, N. (1988). Nomade : un noyau d'environnement pour la programmation
globale. Th�ese de doctorat, INPG, Grenoble, France.

[4] Belkhatir, N. and Melo, W. L. (1994). Supporting software development processes
in adele 2. Computer Journal, 37(7):621{628.

[5] Deiters, W. and Gruhn, V. (1989). Systematic development of formal software
process models. In Proc. of the 2nd European Software Engineering Conf., Univ.
of Warwick, Conventry, UK.

[6] Kaiser, G. E. and Ben-Shaul, I. Z. (1993). Process evolution in the Marvel envi-
ronment. In [12].

[7] Madhavji, N. H. (1992). Environment evolution: The Prism model of changes.
IEEE Transactions on Software Engineering, 18(5):380{392.

[8] Madhavji, N. H. and Schafer, W. (1991). Prism | methodology and process-
oriented environment. IEEE Transactions on Software Engineering, 17(12):1270{
1283.

[9] Melo, W. L. (1993). Tempo: Un environnement de d�eveloppement Logiciel Centr�e
Proc�ed�es de Fabrication. Th�ese de Doctorat, Universit�e Joseph Fourier (Grenoble
I), Laboratoire de G�enie Informatique, Grenoble, France.

[10] Melo, W. L. and Belkhatir, N. (1994). Collaborating software engineering pro-
cesses in tempo. Journal of the Brazilian Computer Society, 1(1):24{35.

[11] Narayanaswamy, K. (1993). Enactment in a process-centered softwre engineering
environment. In [12].

[12] Schafer, W., editor (1993). Proc. of the 8th Int'l Software Process Workshop,
Germany. IEEE CS Press.

[13] Thomas, I. (1989). Version and con�guration management on a software engin-
nering database. ACM Software Engineering Notes, 14(7):23{25.

