
The Need for a Cooperative Model:
The Adele/Tempo Experience

Noureddine Belkhatir

LGI

BP 53

38041 Grenoble France

e-mail: belkatir@imag.fr

Walc�elio L. Melo

University of Maryland

UMIACS,

College Park, MD, 20742 USA

e-mail: melo@umiacs.umd.edu

Position

Our position is that the software process is funda-
mentally cooperative. We have been developping con-
cepts and mechanism to tackle with cooperation in the
Adele/Tempo project.

Firstly, we integrated into the Tempo software pro-
cess formalism a new concept: cooperation classes.
In addition, we provided temporal, event-condition-
action (TECA) rules in order to monitor and con-
trol cooperative activities. Based on TECA rules and
cooperation classes, we can describe exchange infor-
mation policies between software developers as well
as rules about the organization, evolution and consis-
tency of software projects.

Secondly, we have been developing a transaction
management system which is able to support the
Tempo cooperative model. This system has been built
up to deal with un-predicted events provoked by ac-
tivities carried out in cooperative work environments.

Overview of Adele/Tempo concepts

In our previous papers, we presented the process
modeling strategy Tempo [2], which uses the Adele
database as a resource manager. Tempo is an ap-
proach where activities and resources are represented
as active objects. Each software process step is mod-
eled as an active object which encapsulates opera-
tions, a collection of tailored resources and recursively,
other process steps. Activities executed by humans are
modeled as methods associated with processes and re-
sources. Rules are used in order to control, order and
monitor activity execution.

Software processes are performed by humans in
Working Environments (WE) according to policies de-
�ned in a software process type. In fact, a work envi-
ronment is the \implementation" of a software process
type de�ned in a software process schema. As dis-
cussed in [1], software engineers are allowed to work
in parallel.

Using the role concept [2], each WE can cus-
tomize the characteristics of manipulated resources
(attributes) and the activities on such resources
(methods and rules), thus providing a kind of sup-
port for dynamic points of view [3]. In this way, the

behavior of a resource object depends on the role it is
playing in a WE. Fundamentally, a software process
model is treated as a set of asynchronous and paral-
lel WE's. This approach nicely combines the proce-
dural [6] and declarative paradigms [5] where objects
and human interactions are described structurally, by
means of attributes and process types, and function-
ally, by means of methods and rules controlling the
execution of such methods.

Rules are not simply used to control method execu-
tion. In fact, rules explicitly describe how software ac-
tivities can or cannot be enacted (prescriptive and pro-
scriptive knowledge) by humans and automated tools.

Discussion

We have splitted Tempo in two layers in order improve
the way Tempo supports cooperation in a multi-user
software development environment (see �gure1).

Adele database
Transaction 
Manager

Process
Engine

Figure 1: Conceptual architecture of Tempo.

1. Tempo process engine layer. Tempo process en-
gine is responsible for monitoring the software
process enacting in each single WE. It is also re-
sponsible for dealing with pre-de�ned cooperation
policies. That is, cooperation scenarios can be de-
�ned and supported by the Tempo process engine
using the concept of sensitive-connections, pro-
cess type and object with roles. However, when
an un-predicted cooperation situation (coopera-
tion break-down) occurs, for example two work
environments try to update a shared object, the
transaction management layer is called to moni-
tor the negotiation between conicting WE's.

2. Tempo transaction manager layer. This layer is
responsible for preventing/monitoring/resolving



conicts when a shared object is accessed by co-
operative WE's.

To clarify these two layers. Consider a simple sce-
nario of cooperation in a software process engineering
environment composed of only two WE's. A user is
developing the interface of a module whereas another
one is developing the body. Each user works in a dif-
ferent WE.

� At the process layer, we de�ne for each process
what activities should be performed and under
what constraints and how these activities can nor-
mally cooperate using Tempo process program-
ming language. For instance how to compile, test
the module.

� The transaction manager is in charge to control
situations where the development of the body
need to be synchronized with the development of
the interface to prevent the development of an old
version of a body while a new version of interface
has been developed.

Object-Oriented technology and Tempo

Object-oriented (O.O.) technology is suitable for our
needs because it nicely integrates three important di-
mensions:

� What an object has (its composition).

� What an object is (inheritance).

� And how an object behaves.

The O.O. approach facilitates hierarchical decom-
position of activities and the modeling of relations be-
tween data. Each activity in our model is a collec-
tion of conceptually related entities. Each WE has an
owner. The WE determines:

� The representation of structural aspects of related
entities by means of objects extended by roles.

� The scope of rules controlling the process enact-
ment (WE creation and resource allocation to it)
and performance in a WE.

To integrate cooperation explicitly, we extend the
Tempo process programming language with:

1. A complex object describing the structural and
functional aspects of the communication between
WE's { the connection concept. A connection is
an active object linking two WE's. A connection
type describes the template for communication
between WE's, i.e., (situations such as commu-
nication establishment and break-down, circum-
stances for collaboration and collateral e�ects of
collaboration). These details are described by a
special kind of rule (plug-on, plug-o� and active-
rules) and are supported by a trigger mechanism
integrated into a broadcast management system.

2. Rules for controlling the communication and
coordination between processes. Human in-
teractions are driven and controlled by event-
condition-action rules. Such a rule includes a pre-
condition for interactions, the e�ects caused by
interactions (event) and the interaction itself (ac-
tion).

Temporal rules and Tempo

Considering the change evolution scenario presented in
[4], we identify time as a primary component in sup-
porting user interaction and cooperation. Thus, our
research is concerned with the conceptual description
of time. We incorporate the time dimension by ex-
tending the event-based rules. This results in a tempo-
ral, event-based rule processing approach. At the level
of the database system, major attention is dedicated
to the problem of managing temporal information by
storing past history states.
ON logical expression combining present and/or

past events
DO Action

Using temporal rules:

� The control of user interactions is facilitated be-
cause we can distinguish between completed and
future interactions.

� User actions is better monitored because we can
determine which activities have been carried out
in a WE and the results produced by those activ-
ities.

� The management of user activities can be im-
proved because the audit process is facilitated.

Conclusion

The main result of our approach is the view of the soft-
ware process as a cooperative system where coopera-
tion needs to be considered as a separate conceptual
unit.

The necessity to model cooperation as a separate
conceptual unit in our approach has been highlighted
in the development of the Tempo system. The explicit
de�nition of communication is a major support of co-
operation. We can summarize the main results of this
work as the following:

� The adaptation of O.O. techniques to capture hu-
man interactions;

� The adaptation of event-based rule processing to
control the enactment and performance of soft-
ware processes by humans and automated tools;

� The necessity of a conceptual framework in which
the time dimension can be captured. This fact
has led us to propose temporal-event-based rule
processing for the management of temporal infor-
mation in the database system;

� The necessity of treating cooperation as a top
level object on the conceptual level.



Referring to our experience in developing tools and
environments for programming-in-the-large, we have
argued that the software processes are mainly coop-
erative. So far, most of the work of the process com-
munity has focused on architectural aspects, (i.e. co-
operation is considered as a way to decompose and
schedule activities.)

This position paper argued for the necessity to in-
troduce cooperative concepts at a formal level. We
have proposed:

� The concept of programmable and active con-
nection where cooperative activities can be de-
scribed.

� Temporal-rules which make it possible to control
user activities and interactions.

Our long term objective is to build a framework
that identi�es relevant parameters for evaluating and
measuring the performance and cooperation in a soft-
ware process multi-agents environment. We are only
at the beginning of this challenging task.

Acknowledgements

We would like to express our thanks to Gianluigi
Caldiera, Carolyn Seaman and Roseanne Tesoriero
for suggesting substantial and helpful revisions to the
original text.

References

[1] N. Belkhatir and W. L. Melo. Supporting soft-
ware maintenace processes in Tempo. In Proc.
of the Conf. on Software Maintenance, pages 21{
30, Montreal, Canada, September 1993. IEEE CS
Press.

[2] N. Belkhatir and W. L. Melo. Evolving software
processes by tailoring the behavior of software ob-
jects. In Proc. of the Conf. on Software Mainte-
nance, Victoria, Canada, September 19934. IEEE
CS Press.

[3] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkel-
stein, and M. Goedicke. Viewpoints: a framework
for integrating multiple perspectives in system de-
velopment. Int'l Journal of Software Engineering
and Knowledge Engineering, 2(1):31{57, 1992.

[4] M. I. Kellner, P. H. Feiler, A. Finkelstein,
T. Katayama, L. J. Osterweil, M. H. Penedo, and
H. D. Rombach. ISPW-6 software process exam-
ple. In M. Dowson, editor, Proc. of the First Int'l
Conf. on the Software Process, pages 176{186, Re-
dondo Beach, CA, October 21{22 1991. IEEE CS
Press.

[5] D. E. Perry. Policy-directed coordination and co-
operation. In I. Thomas, editor, Proc. of the 7th
Int'l Software Process Workshop, San Francisco,
CA, October 16{18 1991. IEEE CS Press.

[6] M. Suzuki, A. Iwai, and T. Katayama. A for-
mal model for re-execution in software process. In
L. Osterweil, editor, Proc. of the 2nd Int'l Conf.
on the Software Process, pages 84{99, Berlin, Ger-
many, February 1993. IEEE CS Press.


