
A Software Engineering Environment driven by

Event-Condition-Action Rules and its Trigger Mechanism
�

Walc�elio L. Melo

University of Brasilia

Dep. of Computer Science

Brasilia, DF, Brazil

e-mail: melo@cic.unb.br

Noureddine Belkhatir and Jacky Estublier

Laboratoire de Genie Informatique

BP 53

38041 Grenoble France

e-mail: belkhatir@isis.imag.fr

Abstract

Recently, PSEE's (Process-Centered Software Engineering Environments) have been investigated as a

new architecture of SEE's in which the software processes are explicitly described and drive the user

interactions. A typical PSEE is composed of two components: a resource manager and a process man-

ager. The resource manager is responsible for the management and control of all objects manipulated

during the software processes. The process manager is the component supporting an explicit formalism

to describe software processes. ADELE/TEMPO is a sample of this new tendency. This paper presents

the main components of the kernel of the ADELE/TEMPO system, i.e., its resource manager and pro-

cess manager. Special attention is given to how these di�erent basic components are integrated into a

platform where software process models can be explicitly described by event-condition-action rules and

supported by an active software engineering database.

key-words: trigger, active software engineering database, role concept, process modeling, event-

condition-action rules, knowledge-based software engineering environments.

�This paper is a revised and extended version of \Software process model and work space control in the ADELE/TEMPO

system", N. Belkhatir, J. Estublier and W. Melo, published in the Proc. of the 2nd Int'l Conf. on the Software Process,

pp. 2{11, Feb. 1993, IEEE Press.

1

1 Introduction

During the last decade, projects on SEE (Software Engineering Environments) pointed out the im-

portance of data integration and the role of an object management system as a kernel of SEE's, e.g.

ADELE [Belkhatir and Melo, 1994] and PCTE+ [Boudier et al., 1988].

Recently PSEE's (Process-Centered Software Engineering Environments) have been investigated as a

new architecture of SEE's in which the software processes are explicitly described and drive the user

interactions. A typical PSEE is composed of two components: a resource manager and a process man-

ager. The resource manager is responsible for the management and control of all objects manipulated

during the software processes. The process manager is the component supporting an explicit formalism

to describe software processes. In general, the resource manager uses an object-oriented database for

controlling the allocations of resources to the software processes.

Due to the fact that objects are potentially shared simultaneously by di�erent software processes (in

which they play di�erent roles), the behavior of an object should not be de�ned statically; it is context

dependent, i.e the object behavior depends on the processes in which it is used.

Faced with the problem of multiple behavior de�nitions, we have used a two layer approach: (1) a

kernel providing a general purpose set of concepts and mechanisms, and (2) an enactable formalism for

software process de�nition and control oriented towards team coordination and synchronization.

Based on our industrial experiments with ADELE 2 [Belkhatir and Melo, 1994] (a software engineering

database), we developed a prototype of a PSEE, called ADELE/TEMPO. TEMPO makes intensive

use of OO (Object-Oriented) concepts and adapts them to software process description and enactment.

The main characteristics of the software process language used by the ADELE/TEMPO system are the

heavy use of trigger rules and OO concepts, such as inheritance, late-binding and methods.

2

In the remainder of this paper, we will show that the rule trigger is an e�cient paradigm to be used

by a process manager and illustrate how an active software engineering database can support the

dynamic points of view of software objects. We shall present the formalism used by ADELE/TEMPO

for modeling software policies and the enforcement of those policies in the environment by a trigger

mechanism integrated with a software engineering database. Section 2 presents the lessons learned from

other active software engineering databases. Section 3 discusses the kernel of the ADELE software

engineering database, focusing on its active part. Section 5 gives an overview of the TEMPO software

process modeling language.

2 Lessons learned from software engineering databases

Software artifacts involved in software processes are complex and highly inter-related. Many projects

note the inadequacies of �le systems to manage software artifacts and focused early on database tech-

nology [Belkhatir and Melo, 1994, Kaiser et al., 1988, Oquendo et al., 1991]. The database technology

has been used at two levels of software development: programming-in-the-small (hereafter PITS) and

programming-in-the-large (hereafter PITL).

PITS is related to the activity of the individual developer that creates and maintains monolithic pro-

grams. PITL deals with activity of development of large systems composed of modules and involving a

team of several persons.

Referring to PITS, database technology has been used to make the structure of a program explicit as

a monolithic entity. The structure represents �ne grained details based on an abstract syntax repre-

sentation of programs. These environments show mainly e�ciency problems related to a low level of

granularity of objects as reported by many projects [Linton, 1984, Lamsweerde, 1988].

3

Referring to PITL, many bene�ts have resulted from the use of database technology. These have been

achieved in the representation of program structuring involving many modules and the management of

evolution in versions and con�gurations. Early approaches combining a �le system to store content of

objects and a database system to manage their semantic informations as attributes and relationships

have been used, e.g. PMDB [Penedo, 1991].

3 The ADELE Kernel

Software engineering databases must manage a large amount of shared data and, as such, require

assistance when managing crucial situations. For instance, when a module interface is modi�ed, the

impact on modules using this interface must be evaluated and the impacted modules noti�ed and

eventually recompiled. Dynamic aspects have been investigated in many software databases as a way to

provide this kind of assistance. An active database is useful for implementing management policies in a

general and
exible way. The information to manage is essentially a versioned database. In this context,

trigger-actions mechanisms seem to be appropriate. Trigger mechanisms allow the de�nition of actions

to be executed automatically when some conditions hold; for instance, checking integrity constraints or

propagating changes. ADELE/TEMPO provides a formalism for describing events and triggers and an

activity manager that speci�es trigger processing and synchronization in database transactions.

The ADELE database is based on an entity relationship database, extended with Object-Oriented

facilities and an Activity Manager based on triggers [Belkhatir and Melo, 1994]. We focus here on

those features useful for our topic: managing overlapping work environments, i.e. software activities,

objects, users and tools whose behavior is highly context dependent.

4

3.1 Data model

In the ADELE database, entity types and relationships types are declared independently and may have

multiple inheritance. In a software engineering environment, versioning is a fundamental feature. In

ADELE, \revision" is a kernel feature; each object may have a version branch. The branch as well

as each revision are �rst class objects; all characteristics (attributes, relationships, triggers, rights list,

etc.) of a version branch are shared by all of its individual revisions.

The data model is based on the aggregate (or complex object) concept. Any kind of aggregate can be

user de�ned, a version branch being a kernel built-in aggregate.

3.2 Events, triggers and methods

An event is a �rst order logic expression where variables are related to the database state (machine,

current transactions, current user, local state) and object or relation attributes. Events are checked

each time a method is called. An event is declared in the following way:

event_id = logic_expression; priority n ;

A trigger is declared in a relation type de�nition or an entity type de�nition in the following way:

ON event_id DO { program }

A trigger program is executed each time the corresponding event is true. Four classes of triggers have

been de�ned: pre-triggers executed before the method execution, post-triggers executed after the

method. The set of pre-triggers, the methods and the set of post-trigger execution compose a transac-

tion in the database sense. After-triggers and error-triggers are executed after the transaction is

committed or aborted respectively.

5

A method is declared in a relation type de�nition or an entity type de�nition in the following way

METHOD method id; signature characteristics; fprogramg. The implicit associated event is the

method call. Methods can be inherited along the inheritance graph and by consequence, overloaded.

Triggers are also inherited along the inheritance graph. However, they cannot be overloaded. When

inherited, triggers are executed from the most speci�c to the most general. By default, method M on

an object or relationship of type T' produces the following execution.

Pre triggers Method M Post Triggers After/Error

Pre triggers Method M Post Triggers After/Error

Super type T

Sub-type T’

Transaction

A trigger is executed whenever the associated event becomes true. In ADELE, pre- and post- are

triggers governed by events, thus this picture can be more complex:

� Pre- and post-triggers are not simple predicates but can be arbitrary programs.

� Pre- and post-triggered are activated by events, not necessarily a given command.

� Di�erent methods can share some pre- or post-conditions.

� Events have priorities. Triggers are executed in priority order. By default, the inheritance order

is used as in the previous example.

Relationships are very similar to entities (they have attributes, triggers and methods). The only di�er-

ence is that it is not possible to create a relationship between two relationships.

6

4 Managing contextual behavior

In general, large software systems are organized in one or more con�gurations which can have overlapping

software objects. Some con�gurations are developed in parallel for di�erent clients to perform functional

extensions or technical adaptations. Some components of overlapping con�gurations can be in the design

phase while others are in development, test, validation or release. In some cases, a team using the same

con�guration can share all components because some activities can be done in parallel.

In this framework, we must handle the following problems:

� controlling the evolution of shared resources (data consistency),

� supporting a team working simultaneously on the same resources (support di�erent schemas of

collaboration / synchronization between teams and members).

To provide a solution to these problems, we have extended the ADELE data model with active relation-

ships. In the next section, we will illustrate how active relationships can support contextual behavior.

4.1 Active relationship extensions

In an Entity-Relationship model, relationships have attributes; in a pure OO model, relationships are

implemented by attributes, so we can not de�ne further attributes associated with them. In ADELE,

relationships are �rst class citizens and may have attributes as well as triggers and methods that execute

when the relationship itself \receives a message".

ADELE relationships are binary, always linking an Origin object (called !O) with a Destination object

(!D). ADELE extends the relationship concept further by allowing a relationship to change the type

de�nition of its origin and/or destination object. It is possible to de�ne triggers and methods in a

7

relationship type that will dynamically extend and override those de�ned in the origin or destination

object of that relationship. For example, the composition relationship can be de�ned in the following

manner:

TYPERELATION composition;

1 ON ORIGIN delete DO {remove !D} ;

2 ON DEST delete DO

{print "delete first its container !O";

ABORT};

3 ORIGIN METHOD duplicate -d %new ;

{copy !O -d %new };

4 ON ORIGIN duplicate DO

{makerel %new -r %realtype -d !D} ;

X

Y

Z

A Acopy

composition

!O

!D

%new

Figure 1: Containment relationships.

Line 1 stipulates that when deleting the origin of an aggregate (A) , the destinations (X, Y, Z) must

be deleted too (remove is an internal command). Line 2 stipulates that destinations cannot be deleted

individually, since any attempt should produce an abort of the delete command. (This restriction may

seem bizarre to some readers. We would like to point out that this is only an example of the utilization

of the trigger on relationships for implementing a particular con�guration management policy. Using

trigger and methods on relationships, we can implement other kinds of policies.) In the line 3, we added

a new method, duplicate, de�ned on the origin (A). Thus, when \duplicate A -d Acopy" sentence

is called, the method duplicate, which is de�ned in the relation composition, will be executed. If

duplicate is also de�ned in the A object type, it is dynamically rede�ned by the one de�ned in the

composition relation. If another relationship de�nes the same method on the same object instance, it

is an error.

8

The duplicate method only duplicates the aggregate head and its compositions relationships (line 4).

The instruction in the line 4 is executed for each instance of the composition relation type. That

composition relation de�nes an aggregate with logic duplication (sharing the content). Any other

aggregate semantics can be de�ned easily in the same way.

Using such a mechanism, we can support teams working simultaneously on shared resources as well as

evolution of shared resources:

development
context

validation
context

in_devin_valid

comp

C

foo.c

TYPERELATION in_valid ;

DEST METHOD metrics ;

{ "logicscope !D"; ..} ;

TYPERELATION in_dev ;

DEST METHOD cc ;

{ "cc -g -c !D" } ;

TYPERELATION comp ;

ORIGIN METHOD archive ;

{ ... } ;

A relationship is visible only if both the origin and destination objects are visible; therefore, in a

validation context, the metrics method is available but not the cc overload or the archive method.

The archive method will be available only in a context containing both the con�guration and its

components.

9

4.2 Contextual behavior

When used in conjunction, OO, Entity-Relationship and Contextual Behavior mechanisms allow a

separation of concerns:

� OO de�nes the structural and behavioral properties of objects of the same class. All instances of

a class have identical class properties.

� Active Relationships de�ne additional properties for the objects they relate; they allow addition,

substitution and delegation of properties as well as information
ow in both directions.

� Context de�nes the visible objects and relationships, and in addition, the object characteristics

(attributes, methods, triggers, constraints) which are relevant in a given context.

This separation of concerns has a major impact on the way software processes are described. A rela-

tionship de�nes the dynamic semantics between entities or groups of entities. Since some of the object

semantics are de�ned in the relationship type, the simple fact that a relationship instance is established

or removed changes the corresponding object behavior without any change at the schema level. The

object behavior becomes context dependent.

It is interesting to note that the creation and deletion of relationships are often performed for other

reasons other than software process control. This is the case in the above example where the contexts

and the comp relationships are created anyway. The process control comes \for free". There is no need

for explicit software process instantiation; enaction is automatic and implicit.

10

4.3 Evaluation

ADELE 2 [Belkhatir and Melo, 1994] has been in practical use for several years. Based on this utiliza-

tion, we can observe the following weaknesses:

1. Concept level. The language manages concepts such as object and relationship attributes. There

are no high level concepts such as long term software activities, user roles, communication strate-

gies, etc.

2. Fragmentation. The description of a process is often split into di�erent types of object and

relations or between methods and triggers.

3. Complexity. The large number of possibilities (pre-, post-, after, local, and global triggers; multiple

inheritance and relation overload) provide a
exible system. Object behavior can be de�ned

precisely, but it may confuse users.

To overcome these drawbacks, we implemented a software process programming language, the TEMPO

language [Melo, 1993], and a process engine, the TEMPO system, to interpret this language on top of

the ADELE system [Belkhatir and Melo, 1994]. The ADELE/TEMPO system is thus the result of the

integration of ADELE 2 [Belkhatir and Melo, 1994] with TEMPO.

ADELE 2 plays the role of resource manager in the current version of ADELE/TEMPO. ADELE 2

[Belkhatir and Melo, 1994] is a commercial product which is the result of the union of two long term

projects in the framework of the Laboratoire de G�enie Informatique de Grenoble. ADELE 2 integrates

the results produced by the ADELE 1 [Estublier et al., 1984] and NOMADE projects [Belkhatir and Estublier, 1987].

ADELE 1 was a version management system hard-coded with a con�guration builder. NOMADE was

a prototype of an active software engineering database. This database was driven by an object-oriented

data model. The active part of this database was supported by a trigger mechanism, which was driven

11

by event-condition-action rules. NOMADE incorporated the version management system of ADELE 1

for dealing with the evolution of software artifacts in versions. ADELE 1's con�guration manager was

also included in the nucleus of NOMADE. TEMPO [Melo, 1993] is, in fact, the successor of NOMADE.

TEMPO is able to deal with user de�ned software process models, multiple points of view of software

artifacts, temporal events, long-time duration activities, and support for communication of software

activities.

TEMPO de�nes a software process formalism based the role and connection concepts. A role allows

the rede�nition of the static and behavioral properties of objects when playing that role in a process;

while a connection expresses how processes collaborate in a wider context: the complete SEE. The

TEMPO language is presented in the following section.

5 The TEMPO language

A software activity or task is modeled in TEMPO by a user de�ned object type | a work-environment

type. Using the standard multiple inheritance mechanisms, a work-environment type can be re�ned and

specialized. Therefore, to some extent, software process customization is achieved by type specialization.

We use the role concept to describe the software process resources. A role customizes an object type

for a software process step. A role describes an object's contextual behavior, i.e. the description of

the operations that can be done on the object and the rules that control these operations. A role adds

temporary properties (local attributes) to the object playing this role. A software process step becomes

a list of roles which customizes the objects involved in order to satisfy the requirements of that step.

The properties and behavior of an object are speci�c to each software process in which it plays a role.

12

5.1 Process and Role de�nition

A role is a set of object instances having the same behavior and characteristics for a given process. A

role de�nes the common behavior and characteristics of its instances. Characteristics mean attributes

while behavior means methods and constraints. There is no strict relationship between roles and types:

(1) an object instance plays a single role in a given process, (2) object instances of the same type may

play di�erent roles, (3) instances of di�erent types may play the same role, provided their types are

compatible.

(We employ the term \role" in a di�erent way than people from software process community. In the

software process community, the role concept is commonly used to refer to users only, not objects

ful�lling a particular software development role (e.g., programmer, manager, testing sta�, etc.). At the

beginning of our work, we arbitrarily restricted the role concept to the commonly used de�nition. Based

on work from other domains, e.g. database and OO Persistent Programming Languages, we decided to

expand the role concept to all objects manipulated during software process execution. It is interesting

to note that IPSE 2.5 [Warboys, 1989], one of the �rst PSEE, also employs the term \role" di�erent

from the typical manner, i.e. a role in IPSE 2.5 is a software activity.

A role is de�ned by a name, a type, local attributes, methods and rules.

ROLE role_id = {type | role/expression} ;

ATTRIBUTE attribute_definition

METHOD method_definition

rule_definition

END role_id ;

The following example shows how the module type is customized inside a development WE (Work-

Environment) by the to consult and to change roles, and in a validation WE by the component

role.

13

TYPEOBJECT Module ;

ATTRIBUTE

state = tested, untested, available ;

METHOD

compile ...; -- with -C option

END Module;

WETYPE development ;

ROLE testing = unitary_testing ;

ROLE to_consult = module ;

ROLE to_change =

to_consult/(responsible=!username);

ATTRIBUTE

state = compiled,edited;

METHOD

compile ... ; -- with -g option

AFTER ON compile DO test ...;

END development;

WETYPE validation ;

ROLE component = module ;

ATTRIBUTE

test_suite = test1, test2;

...

END validation;

Role to change will be bound to those modules the current user is responsible for (current user name

(!username) equals to attribute \responsible"); whereas the role to consult is bound to the other

modules. That is, when an occurrence of the development process is created, all module instances will

be �rst bound to the to consult role, then, those modules with attribute \responsible" will be moved

to the to change role. This policy is expressed by the following expression:

ROLE to_change =

to_consult/(responsible=!username);

We de�ne a Work Environment (WE) as a set of software objects that will be manipulated inside the

border of the WE, along with the process descriptions, tools, users, etc. A WE acts as a (very) long

transaction. By default, any change performed in a WE is visible only in the WE (isolation property

of transactions). In our example, the state attribute is extended and may now contain two additional

14

values: compiled and edited. A modi�cation of the state attribute is local to the WE. In a validation

WE, the component role is also bound to modules.

Each role has methods which are used to adapt the behavior of the object to that WE. That is, a role

can rede�ne the original methods or de�ne new ones in order to customize the object behavior for the

WE in which it is used. For example, the module type has methods independent of the WE where the

module instances are used. However, when a speci�c module is used in a given WE, other methods may

be needed, e.g., the method compile may be di�erent in a development WE than in a validation

WE.

5.2 Process and Role connection

When a user is logged in a WE, she/he feels like she/he was performing her/his activities alone; which

is clearly false. Our basic hypothesis is that numerous activities are carried out in parallel. Some of the

activities collaborate to the same goal (for instance a new release of a software product), some do not

collaborate to the same goal but share objects which are, to some extent, collaborating to the evolution

of these objects. In all of these cases, the relationship between WE's must be explicitly de�ned.

We do not support the current approaches where a software process is described only as a tree of embed-

ded sub-processes, e.g. NSE [Miller, 1989], EPOS [Conradi et al., 1991] and ALF [Canals et al., 1993];

we claim that a SEE must be seen as a federation of collaborating WE, each WE being an enacted

process occurrence. It is our belief that the conceptual de�nition of the network of collaborating WE

is the major weakness in current SEE's. This idea is shared by some advanced SEE's, for instance Oz

[Ben-Shaul and Kaiser, 1994].

We assume that the level of granularity for collaboration is the role. The role collaboration is de�ned by

relationships that express the semantics of the collaboration. We provide a library of typical semantic

15

relationships: notify (which sends a noti�cation to the WE owner when an event notify when succeeds),

resynch (that re-synchronizes two objects when event resynch when succeeds), merge, duplicate, share,

deadline, protect, and so on.

To illustrate how role collaboration can be de�ned, consider the following scenario:

When a new release of a given software product must be developed, a general process, called

release, is created. An arbitrary number of development WE's and a single validation

WE can collaborate on that release process. Each development WE can change only certain

objects, but can have read access to the other objects of the release.

The synchronization between development WEs is as follows: When a given module M receives the

\ready" state in a to change role, the copy of M in each of the other to change roles must be merged,

and their owners noti�ed. If M is in a to consult role, the new M version automatically replaces the

previous one, and noti�cation is sent to the WE user.

A module M receives the available state only if all its copies have the ready state. When all modules

have the available state, the validation WE can be created.

The following example shows how this policy is described in TEMPO.

WETYPE release ;

1 EVENT ready = (state := ready) ;

ROLE USER = PMmanager;

ROLE implement = development ;

ROLE valid = validation ;

ROLE components = module ; {

ON ready DO {

2 IF implement.to_change.%name.state

== ready THEN

3 implement.to_change.%name.state

:= available ;

4 IF implement.to_change.state

== available THEN new valid ;

} } ;

16

5 TYPECONNECTION consult_change

IS notify, resynch ;

6 CONNECT implement WITH implement

7 WHEN to_consult.name = to_change.name ;

8 EVENT notify_when = ready ;

resynch_when = ready ;

END ;

TYPECONNECTION change_change

IS notify, merge ;

CONNECT implement WITH implement

WHEN to_change.name = to_change.name ;

EVENT notify_when = ready ;

merge_when = ready ;

END ;

END release ;

Line 1 stipulates that when an object gets to the state ready, the event ready is raised. In Line 2, the

expression implement.to change.%name.state evaluates to the set of values of the state attribute of

the object that produced the ready event. Operator \==" means set equality. In other words, line 2

means that all copies of the object %name have the ready state. Similarly, line 3 says that all of these

object copies must take the available state. The Line 4 expression implement.to change.state

returns all state values of all objects in all to change roles. The expression in the line 4 means that

when all objects attain the available state, a valid role (i.e. a validation WE) must be created.

A connection is a special kind of relationship that must be instantiated between pairs of role instances.

A connection is intended to de�ne how each pair of connected objects is coordinated. It may be a data

ow de�nition, a status consistency checking, noti�cation, deadline control, message passing, object

evolution control and so on. It must be emphasized that connections are not symmetric; for instance,

a development WE may automatically want to get new versions of objects as produced in a validation

WE.

Some of these basic behaviors are provided in the standard library, such as notify, resynch and merge.

Using the standard inheritance mechanism, each connection can reuse these process fragments (Line

17

5), and rede�ne, for instance, the event on which some behavior must be executed. Line 8 means that

noti�cation must succeed when the object becomes ready.

The CONNECT clause expresses which pair of objects must be connected. Line 6 means that, for a

given release process, two implement roles are connected by a consult change connection. Only those

instances satisfying the expression found after the WHEN clause are automatically connected . In line

7, instances of to consult in the �rst implement role are connected with instances of the to change

in the second implement role having the same name in both roles: the shared instances.

Thus, depending on the connections, the activity performed inside a WE may or may not interfere with

other activities carried out in parallel during the software process.

5.3 Role discussion

One may claim that this kind of contextual behavior can be achieved by standard object-oriented

techniques. Roles and types look similar. This raises the questions: Can roles be implemented in terms

of typing and sub-typing? Is the concept of role needed at all? We claim the role concept has the

following advantages:

1. It prevents type explosion.

A role, as well as a type, is a template applied to a set of instances sharing the same de�nition

(static and behavioral). A given object instance can be a member of di�erent roles (classes)

simultaneously. Both roles and types can be seen as a viewing mechanism since a given object

instance has a di�erent description depending on the role (class) from which it is managed. One

would need to create a sub-type for all of the possible combinations of roles for a single type

and change instance type dynamically each time a new role is applied to it. However, there is a

fundamental di�erence:

18

The association between an instance and its type is statically de�ned at instantiation

time, while an instance can be dynamically bound to an arbitrary role at any time.

Furthermore, since the instance may be shared and play di�erent roles simultaneously, dynamic

typing cannot be used. We introduce the possibility of changing types dynamically. In an OO

system the type de�nition is created �rst, and then the instances of the type. In TEMPO, on the

other hand, the instances are usually created �rst, and are dynamically associated temporarily to

a (set of) role(s).

2. Object identity is not altered.

Since a given object can be a member of di�erent roles simultaneously, there are compatibility

rules between the roles allowed for shared objects. In TEMPO, objects can change behavior

depending on the context without changing identity.

3. It facilitates schema evolution.

Schema evolution support is an important facility for a software engineering environment because

we need to have the capability of evolving the characteristics of software objects handled during

the software processes. The role concept naturally integrates a type evolution facility, since role

types are similar to object types in OO languages. The role concept o�ers two kinds of evolution:

(a) role de�nition can change generating a role version;

(b) objects can change their roles dynamically.

19

6 Related work

6.1 The role concept

Other SEE's have recently integrated concepts similar to the role concept proposed in TEMPO (for

example, MERLIN [Peuschel et al., 1992], ES-TAME [Oivo and Basili, 1992] and ALF/PCTE with its

\Work Scheme" concept [Canals et al., 1993]).

MERLIN allows the restriction or expansion of the user's view depending on his rank/role (manager,

programmer, engineer, etc.). It also allows the determination of actions that can be applied to the

objects which form the user's view. Thus, methods can be masked/hidden depending on the role of the

user.

In PCTE [Boudier et al., 1988], the same object can have di�erent properties (attribute and relations)

depending on the \Work Scheme" under which it is handled.

In the �eld of databases, the problem related to the modeling of object roles tends to be used as a means

of improving the description of object evolution phases or object utilization facets [Bachman and Daya, 1977].

Several studies have been examining this problem. In general, the strategy used is to adopt a per-

sistent object-oriented language and then extend it with the view concept, like the Aspect languages

[Richardson and Schwartz, 1991], Fibonacci [Albano et al., 1993] and Views [Shilling and Sweeney, 1989].

Therefore, object handling is carried out via its view. Compared to our approach, these approaches

have the following limitations:

� They o�er no concepts for modeling activities where objects can be handled. Therefore, the way

in which an object is perceived and handled is described without considering the context in which

the object will be used.

20

� The choice of the use of a view is left to the application's programmers. This decision is based on

the description in the program of the view that must respond to the messages sent to the object.

� In general,these languages do not o�er concepts for aggregation of di�erent points of view.

6.2 Rule-based systems

Other SEE's use event-condition-action (ECA) rules, such as AP5 [Goldman and Narayanaswamy, 1992],

ALF [Canals et al., 1993], Triad [Sarkar and Venugopal, 1991] and APPL/A [Sutton et al., 1990]. ALF

and TEMPO provide four ECA rules execution modes (PRE,POST,AFTER and EXCEPTION) whereas

AP5, MARVEL [Barghouti and Kaiser, 1992], Triad and APPL/A seem to support only one mode of

execution, the mode POST.

ALF's event-condition-action rules are similar to those o�ered by ADELE/TEMPO. However, ALF

does not have the concept of method. As in MARVEL, all of the actions must be de�ned by the

operators (production rules according to the MASP formalism). The execution of an operator can

trigger a forward chaining process in the user's private space (ASP in the ALF terminology). ECA rules

are de�ned elsewhere and executed by another mechanism called \trigger". In TEMPO, we adopted

only one concept to de�ne both the constraints on the execution of methods and the constraints on the

utilization of objects.

6.3 Process modeling

ADELE/TEMPO proposes an approach which combines the three major process modeling approaches:

rule-based, procedural, and behavioral. In our case, rules are derived from an event-condition-action

formalism and are enacted by triggers. We describe the software process as an aggregation of objects

21

with roles and associate constraints with each role such as pre and post-conditions which can be used

to control the consistency of object roles. From the procedural approach, rule descriptions can involve

functions and procedures. The basis of integration of these mechanisms is an object manager supporting

inheritance, aggregation, late binding and identi�cation of objects.

7 Conclusion

We believe that the de�nition of a two-level system led to an innovative approach for the programming

of con�guration management policies. We have extended the ADELE database in order to link closely,

the static aspect of con�guration management (persistent software objects management, versioning,

etc.) with the dynamic aspect, which is work environment control. One of the goals of the work is

to provide the process administrator with a simple language for the de�nition of software procedures

without cumbersome communication protocol exchanges. We use a synchronization and communication

mechanism based on propagation and noti�cation.

The contribution of this paper is the description of our two levels:

� A set of basic mechanisms for the general problem of maintaining the consistency of objects

used simultaneously, but for di�erent purposes, in distributed working environments. It is the

description of our \abstract process machine" based on a software engineering, object-oriented

database, and extended by a trigger mechanism.

� A higher level language, called TEMPO, based on this abstract machine. This language clearly

separates products and activities, inter and intra work environment communication. The data

model uses OO concepts for the structuring of the static and persistent objects. TEMPO also

uses OO concepts for structuring software processes with roles as a basic concept at the execution

22

(activity) level.

The result is an integration of software con�guration management and software process management

which we believe to be of some novelty and signi�cance. The basic layer is a stable industrial prototype;

the top layer, TEMPO, is an academic prototype.

Acknowledgements

We would like to express our thanks to Roseanne Tesoriero, Bill Thomas and to the referees for suggesting

substantial and helpful revisions to the original text, to Rubby Cassalas for extending ADELE 2 data

model with the inheritance mechanism, to Christophe Gadonna for maintaining ADELE 2, and Jean

Chouanard for extending ADELE 2 with a client-sever architecture which facilitated the implementation

of the ADELE/TEMPO prototype.

This work, in part supported by the Technological and Scienti�c Development National Council of Brazil

(CNPq) under grant No. 204404/89-4, is heavily based on [Melo, 1993].

References

[1] Albano, A., Bergamini, R., Ghelli, G., and Orsini, R. (1993). An object data model with roles. In

Agrawal, R., Baker, S., and Bell, D., editors, Proc. of the 19th Int'l Conf. on Very Large Data Bases,

pages 39{51, Dublin, Ireland.

[2] Bachman, C. and Daya, M. (1977). The role concept in data models. In Proc. of the 3rd Int'l Conf.

on Very Large Data Bases, pages 464{467.

[3] Barghouti, N. S. and Kaiser, G. E. (1992). Scaling-up rule-based development environments. Int'l

Journal on Software Engineering & Knowledge Engineering, 2(1):59{78.

[4] Belkhatir, N. and Estublier, J. (1987). Experience with a database of programs. ACM SIGPLAN

Notices, 22(1):84{91.

[5] Belkhatir, N. and Melo, W. L. (1994). Supporting software development processes in Adele 2.

Computer Journal, 37(7):621{628.

23

[6] Ben-Shaul, I. and Kaiser, G. (1994). A paradigm for decentralized process modeling and its re-

alization in the Oz environment. In Fadini, B., editor, Proc. of the 16th Int'l Conf. on Software

Engineering, Sorrento, Italy. IEEE CS Press.

[7] Boudier, G., Minot, R., and Thomas, I. M. (1988). An overview of PCTE and PCTE+. In Henderson,

P., editor, Proc. of the 3rd ACM Software Enginnering Symposium on Practical Software Development

Environments, volume 24 of ACM SIGPLAN Notices, pages 107{109, Boston, MA.

[8] Canals, G., Boudjlida, N., Derniame, J.-C., Godart, C., and Lonchamp, J. (1993). A short tour

through ALF. In Finkelstein, A., Kramer, J., and Nuseibeh, B., editors, Software Process Modelling

and Technology. Research Studies Press.

[9] Conradi, R., Osjord, E., Westby, P., and Liu, C. (1991). Initial software process management in

Epos. IEE Software Engineering Journal, 6(5):275{284.

[10] Estublier, J., Ghoul, S., and Krakowiak, S. (1984). Premilinary experience with a con�guration

control system for modular programs. ACM SIGPLAN Notes, 9(3):149{156.

[11] Goldman, N. and Narayanaswamy, K. (1992). Software evolution through interative prototyping. In

Montgomery, T., editor, Proc. of the 14th Int'l Conf. on Software Engineering, Melbourne, Australia.

IEEE CS Press.

[12] Kaiser, G. E., barghouti, N. S., Feiller, P. H., and Schwanke, R. W. (1988). Database suport for

knowledge-based engineering. IEEE Expert, 3(2):18{32.

[13] Lamsweerde, A. V. (1988). Generic lifecycle support in the Alma. IEEE Transactions on Software

Engineering, 14(6).

[14] Linton, M. A. (1984). Implementing relational views of programs. ACM SIGPLAN Notices,

19(5):132{140.

[15] Melo, W. L. (1993). Tempo: Un environnement de d�eveloppement Logiciel Centr�e Proc�ed�es de

Fabrication. Th�ese de Doctorat, Universit�e Joseph Fourier (Grenoble I), Laboratoire de G�enie Infor-

matique, Grenoble, France.

[16] Miller, T. (1989). Con�guration management with the NSE. In Long, F., editor, Proc. of Int'l

Workshop on Software Engineering Environments, volume 467 of LNCS, pages 99{106. Springer-

Verlag, Berlin, 1990, Chinon, France.

[17] Oivo, M. and Basili, V. R. (1992). Representing software engineering models: the TAME goal

oriented approach. IEEE Transactions on Software Engineering, 18(10):886{898.

[18] Oquendo, F., Boudier, G., Gallo, F., Minot, R., and Thomas, I. (1991). The PCTE+'OMS: A soft-

ware engineering database system for supporting large-scale software developpement environments.

In Proc. of the 2nd Int'l Symp. on Database Systems for Advanced Applications, Tokyo, Japan.

[19] Penedo, M. (1991). Acquiring experiences with the modeling and implementation of the project

life-cycle process. IEE Software Engineering Journal, 6(5):285{302.

[20] Peuschel, B., Schafer, W., and Wolf, S. (1992). A knowledge-based software development environ-

ment supporting cooperative work. Int'l Journal of Software Engineering and Knowledge Engineering,

24

2(1):79{1{6.

[21] Richardson, J. and Schwartz, P. (1991). Aspects: Extending objects to support multiple, indepen-

dent roles. In Proc. of the Int'l Conf. on Management of Data, volume 20 of ACM SIGMOD Record,

pages 298{307.

[22] Sarkar, S. and Venugopal, V. (1991). A language-based approach to building CSCW systems. In

Proc. of the 24th Annual Hawaii Int'l Conf. on System Sciences, pages 553{567, Kona, HI. IEEE CS

Press, Software Track, v. II.

[23] Shilling, J. and Sweeney, P. (1989). Three steps to view: Extending the object-oriented paradigms.

In Proc. of the OOPSLA'89, volume 24, no. 10 of ACM SIGPLAN Noticies, pages 353{361.

[24] Sutton, S. M., Heimbigner, D., and Osterweil, L. J. (1990). Language constructs for managing

change in process-centered environments. In Taylor, R., editor, Proc. of the 4th ACM Soft. Eng.

Symposium on Soft. Practical Development Environments, volume 15 of ACM SIGSOFT Soft. Eng.

Notes, pages 206{217, Irvine, CA.

[25] Warboys, B. (1989). The Ipse 2.5 project: process modelling as the basis for a support envrion-

ment. In Madhavji, N., Schafer, W., and Weber, H., editors, Proc. of the 1st Int'l Conf. on System

Development and Factories, Berlin, Germany. Pitman Publishing, London, March 1990.

25

