
Collaborating Software Engineering Processes in Tempo

Walc�elio L. Melo

University of Maryland

UMIACS,

College Park, MD, 20742 USA

e-mail: melo@umiacs.umd.edu

Noureddine Belkhatir

LGI

BP 53

38041 Grenoble France

e-mail: belkhatir@imag.fr

Abstract

We will show in this article how Tempo, a process-
centered software engineering environment (SEE), as-
sists in cooperative work by means of an approach
based on a communicationmodel. We will describe the
executable formalism used to de�ne software engineer-
ing activities, and we will show how constraints related
to the use of objects in these activities are expressed
using the role concept. We will then present our com-
munication model. In this model, strategies governing
the cooperation between various software processes are
speci�ed by the concept of active, programmable con-
nections. A connection is a communication channel
that links two roles. Message exchange is controlled
using TECA rules (Temporal-Event-Condition-Action
rules), executed by a trigger mechanism. These al-
low for programming of synchronization strategies be-
tween processes, propagating the e�ects of an executed
action on one or more connection points. The Tem-
porary modes of TECA rules allow for transactions of
long duration, because these can be used to reason on
past activities. Coherence control of objects handled
by activities of long duration is performed by the work
environments. The union between connections and
work environments makes it possible to support co-
operating processes and object sharing between these
processes.
Keywords: Cooperative work, software engineer-
ing process, software engineering environments, con-
textual behavior of objects, trigger rules, support for
communication and synchronization.

1 Introduction

The problems of developing large-scale software sys-
tems can be classi�ed as programming-in-the-small,
programming-in-the-large [21] and programming-in-
the-many [12]. By programming-in-the-small we mean

those activities associated with someone who devel-
ops a module or program alone. When a small group
of software performers is in charge of developing or
maintaining a software product composed of di�erent
kinds of software artifacts each of which can evolve
into di�erent versions, di�erent kinds of problems
are encountered | programming-in-the-large prob-
lems. Programming-in-the-many refers to software
those activities involving the coordination and the
control of activities carried out by large and/or dis-
tributed teams of software performers. Program-
ming environments have been built to deal with
programming-in-the-small problem. Version and con-
�guration management systems have been constructed
to face programming-in-the-large problems. With the
more recent development of process-centered software
engineering environments, programming-in-the-many
has been identi�ed as a major �eld where concepts,
mechanisms and tools need to be provided [9]. Exper-
imental studies show that most of the e�ort of soft-
ware performers is spent on managing communication
and collaboration between development team mem-
bers working on the same project. Cooperation sup-
port mechanisms should be integrated into a software
engineering environment (SEE) to o�er a conceptual
framework where activities involving resource sharing,
coordination, collaboration and synchronization can
be described and controlled by the environment. By
using such an approach, the resource sharing strate-
gies, communication and coordination within the de-
velopment team, and synchronization of software en-
gineering activities may be explicitly described using
an executable formalismand then enforced in the soft-
ware organization by a process-centered SEE.

Based on our experience in the development of
Adele [4], an environment for programming-in-the-
large which supports software product structuring and
versions of software objects, we started the Tempo [5]
project in order to take into account the production
and evolution strategies of software systems. Tempo is

a SEE driven by an executable formalismwhich allows
description of software process models, object views,
and elaboration on the strategies of cooperation and
communication [17]. In this paper, we will stress those
aspects of Tempo which relate to cooperation support,
with particular emphasis on the two following aspects:

1. Resource coordination. This is the problem of ob-
ject sharing among team members. We will show
how Tempo supports activities of long duration.
Many software artifacts can be manipulated by
activities which execute concurrently (cooperat-
ing processes). An activity takes place within a
context called a work environment. A work en-
vironment can be linked to other work environ-
ments by a particular level of communication.

2. Cooperation between the agents who share the
model of a common software process. We will
introduce and develop the concept of active, pro-
grammable connections as a means of expressing
the cooperation and synchronization strategies.

In order to achieve this objective this paper is orga-
nized as follows. Section 2 presents the architecture of
the kernel of the Tempo environment. Section 3 treats
the aspects related to the description and the control
of software engineering activities by presenting sug-
gested concepts for modeling the software processes.
Next will be discussed the problem related to the de-
scription and management of multiple viewpoints and
show how our approach, via the role concept, o�ers
a contribution on this issue. Section 4 will deal with
the communication model used to describe communi-
cation policies between software process occurrences.
Section 5 will show how cooperative work is supported
by work environments. Conclusions are given in sec-
tion 6, with indications of further work.

2 The architecture of Tempo

As shown in �gure 1, Tempo consists of the follow-
ing components:

� A resource manager. Tempo's resource manager
uses the Adele database as a persistent object
base for storing objects and activities, and for
tracing the project's progress [4]. It supports
an entity-relationship data model which is ex-
tended with object-oriented concepts like inher-
itance, methods and encapsulation. Simple and

composite objects with attributes and relation-
ships can be described and managed. This com-
ponent of the Tempo architecture is responsible
for the data integration according to the concep-
tual model proposed by [26].

� An activity manager which is responsible for the
control integration. This activity manager is
driven by temporal-event-condition-action rules
(TECA) and supported, in part, by Adele's trig-
ger mechanism [5]. We enhanced Adele's trigger
mechanism with the ability to manipulate tempo-
ral expressions [17].

� A process manager which o�ers the concepts of
process type and role. Process enactment is
supported by work environments (WE) wherein
software activities are performed. The process
manager, based on the activity manager, man-
ages communication and synchronization between
teams, and between agents involved in the same
project. It also controls the consistency of com-
plex objects used simultaneously in di�erent work
environments by di�erent agents [7]. This com-
ponent represents the conceptual component re-
sponsible for process integration in the Tempo ar-
chitecture.

Adele 2 plays the role of resource manager and ac-
tivity manager in the current version of Tempo [6].
Adele 2 [4] is a commercial product which is the re-
sult of the union of two long term projects in the
framework of the Laboratoire de G�enie Informatique
de Grenoble. Adele 2 integrates the results produced
by the Adele 1 and Nomade projects [3]. Adele 1 [3]
was a version management system hard-coded with a
con�guration builder quite similar to the one of Rcs
[25]. Nomade was a prototype of an active software
engineering database. This database was driven by
an object-oriented data model. The active part of
this database was supported by a trigger mechanism,
which was driven by event-condition-action rules. No-
made incorporated the version management system of
Adele 1 for dealing with the evolution of software ar-
tifacts in versions. Adele 1's con�guration manager
was also included in the nucleus of Nomade. Tempo
[17] is the successor of Nomade. Tempo is able to
deal with user de�ned software process models, multi-
points of view of software artifacts, temporal events,
long-time duration activities, and it provides support
for communicationof software activities. The concepts
and mechanisms proposed by Tempo are going to be
incorporated into Adele 3, which is will be the new
commercial version of Adele.

Adele DB
Software Artifacts
Software Process

Version control
Conf. Manager

Trigger mechanism WE-2

WE-1

WE-3

Process
Engine

Activity Manager Process Manager
Ressource Manager

Figure 1: Conceptual architecture of Tempo.

3 The Tempo software process model-
ing language

The Tempo language is an executable formalism for
describing and enacting software processes. It is an ob-
ject oriented approach extended by the addition of a
multi-behavioral facility. The multi-behavioral facil-
ity is a major problem currently being researched in
a wide range of �elds. The problem arises when de-
veloping large complex systems characterized by the
presence of several agents, working on shared resources
and using multiple representations and multiple devel-
opment strategies. In this context we need a way of ex-
pressing relationships between multiple points of view.
This requires the expression of relationships between
various representations and development activities.

There are four sides to our approach:

� The modeling of software activities by software
process types.

� The analysis of the various points of view and
software product life cycle using the role concept.

� The description of software temporal constraints
by temporal-event-condition action rules. TECA
rules are extended using a temporal modality, in
order to support long transactions (long duration
activities). The temporal modality is applied to
events and allows reasoning in relation to past
activities.

� Strategies governing the synchronization and co-
operation between di�erent concurrent process
occurrences are speci�ed by connections referred
to as active and programmable. The communica-
tion description strategy is made by rules de�ning
speci�c synchronization strategies between roles,
and propagating their e�ects when an action ex-
ecutes on one of the two connection points.

3.1 Data modeling

3.1.1 Objects and relationships

At the basis of the Tempo environment we �nd Adele's
database which is used as a resource manager (objects,
tools and activities) [4]. Software objects are repre-
sented using Adele's data model. This data model
is based on the entity-relationship data model and
integrates object-oriented concepts. Base entities of
the model are object type and relation type. Each
object (object like relation) has static properties (at-
tributes) and dynamic properties (methods, temporal-
event-condition-action rules).

The di�erent software object types, such as Pascal
programs, C programs, binary code, texts written in
Latex or with any other text editor can be modeled
by a set of object types. For each object type, a set of
attributes can be de�ned to characterize those objects
which belong to this type. A special attribute is also
provided for storing the content of the software object,
for example, the source code of a program. All objects
can evolve by generating revisions. Abstract objects
can also evolve in versions.

Another characteristic of the Adele data model is
the framework it provides for supporting relations be-
tween software objects. Semantic relationships be-
tween software objects can be modeled by relation
types. The Adele database's data model supports
only binary relations. A relationship always links a
source object to a destination object and its existence
is linked to that of the objects it connects.

3.1.2 Versions

The Adele data model is based on the branch concept.
A branch models the evolution of a simple object. A
branch object is a sequence of revisions. Each revision
contains a snapshot of the object attributes, such as
in Nse [18] and Rcs [25].

Di�erent kinds of derivation graphs can be de�ned,
establishing explicit relationships between branches.

Version groups can be de�ned, establishing explicit
relationships between branches. In this way, versions
groups can thus be easily de�ned. The Adele database
supports the generic concept of object (a branch is also
an object) and a mechanism for shared attributes. Ar-
bitrary versions and composite objects are created and
managed using explicit relationships between the dif-
ferent components.

As we shall see later in this paper, Tempo's coop-
erative work support mechanisms use Adele's version
management system. This system provides a simple,
but e�cient, way to support long-time duration tasks
and parallel manipulation of software objects. Gen-
erally during the execution of the software processes,
software tasks can spend many hours, days, or even
moths to be accomplished. During that time a soft-
ware object, O, can be allocated for long time to a task,
T, in which the object O will be modi�ed. However
other tasks may also need of the object O. If a ver-
sion management system is not used these later tasks
would be suspended until the task T has produced a
new release of the object O | cooperative work is
absent is this scenario. With the support of a ver-
sion management system, a version of the object O,
say O', can be created and allocated to the task T
whereas other tasks can continue to execute using the
object O. This mode of work has been popularized in
the literature as being the check-in/check-out model.
Depending on the version management system used,
access to the object O can be restricted to only those
tasks that will use the object O as an input resource,
i.e. the object O can be used but it cannot be modi-
�ed whereas the task T has not released it. Other more
powerful systems, like Nse [18], make it possible the
modi�cation in parallel of a same object. In this way,
a version of the object O will be created to all tasks
that request the manipulation of the object O. More
elaborate merge mechanisms must be provided to sup-
port this high-demanding check-in/check-out model.
Nowadays many version management systems provide
some kind of support for merging versions of software
objects. However, as far we know, only text objects
are actually supported. Merge of structured objects
continues to be a research topic.

3.2 Process modeling

3.2.1 The software process types

Software development policies of a speci�c software or-
ganization are formally described by a set of software
process types. A software process type has a recursive
de�nition, where a software process type can be com-

posed of several others software process types. The
concepts of specialization/generalization and compo-
sition/decomposition, de�ned in the data modelling
portion, are also used to model the software process.

For example, an activity to check a module design
document consists of two sub-processes:

1. A sub-process which models the modi�cation ac-
tivity allowing modi�cations to the design docu-
ment.

2. A sub-process which models the revision activity
allowing approval of any design document modi-
�cations which have been made.

MonitorDesign ISA PROCESS;

CONTROL md;

sub = ModifyDesign;

card = 1;

CONTROL rd;

sub = ReviewDesign;

card =1;

END_OF MonitorDesign;

ModifyDesign ISA PROCESS;

ATTRIBUTES

begin_date = DATE := now();

end_date = DATE;

deadline = DATE;

METHODS . . .

RULES . . .

END_OF ModifyDesign;

ReviewDesign ISA PROCESS; ...

The example above shows the software process type
\MonitorDesign", composed of the sub-processes
\ModifyDesign" and \ReviewDesign". The activ-
ity coordinating the module design document mod-
i�cation is represented in the Tempo formalism by
the \MonitorDesign" type. This is composed of two
sub-processes: \ModifyDesign"and \ReviewDesign".
\ModifyDesign" is the type which describes the design
document modi�cation process, and \ReviewDesign"
is for revising this modi�cation.

For every process type it is possible to de�ne at-
tributes, methods and temporal constraints by using
the temporal event-condition-action rules.

3.2.2 Temporal constraints

The ow of the software production process is con-
trolled by temporal constraints. We need to provide

a conceptual framework allowing the tracing and per-
sistency of anterior (past) states of software objects.
On the other hand we need to provide a formalism in
which constraints about software development activi-
ties can be described. Mechanisms which make it pos-
sible to enforced constraints in a software development
environment must be also provided. The de�nition
of constraints involves the speci�cation of conditions
about the current state of the software development
environment as well about its past states.

Temporal constraints are described in the Tempo
soft-
ware process language by Temporal-Event-Condition-
Action rules (TECA) and supported by an enhanced
version of Adele's trigger mechanism [7]. TECA rules
are de�ned both in the data model and in the activity
model. They are inherited in the hierarchy of types.
In the data model, the TECA rules describe integrity
constraints independently of the context of utilization.
In the activity model, these rules are used to express
software development policies: the execution order of
activities, their synchronization, and constraints above
the use of software resources.

A TECA rule that goes like this:
\WHEN event Do Method"
where:

event is a predicate expressing an event about the
present or past state of the system or about the
object base.

method is a program written in a simple imperative
language similar to Unix's shell language.

Temporal constraints are checked following a re-
verse scanning of the history from the triggering of the
event to the satisfaction of the temporal constraint.
These constraints are expressed in relation to object
properties (attributes and events stored in the objects
log). If temporal constraints are not checked at any
time at all, then no operation will be executed.

As shown in �gure 2, when event e4 occurs, the rule

WHEN (e4 and @(e1)) DO method-X;

is triggered. The object history in which event e4
occurred is scanned to check if event e1 occurred previ-
ously (the \@" constructor allows expressing conditions
in the past). \method-X" is executed if event e1 has
already been recorded in the object history. Even if
the history holds other information that might change
the execution context of the rule (late-binding of in-
formation), the scanning process of the history stops
when the expression given in the \@" constructor is

the rule is triggered

e0

e1

e2

e3

e4

Evolution in time
of an object

scanning of object history
-> option PAST

e1,....e4::=events

TECA RULE:
 TYPE T;
 WHEN (e4 and @e1)
 DO method-X;
 END T;

Figure 2: TECA rules execution.

met. For example, with the previously de�ned rule,
\@" constructor will only be satis�ed when the scan-
ning process of the history meets the last e1 event (see
�gure 3).

the rule is triggered

e0

e1

e2

e3

e4 scanning of object history
-> option PAST

e1,....e4::=events

e1

e4

the scanning of
the history stops

Figure 3: TECA rules execution and past events.

TECA Rules and short transactions

A TECA rule, de�ned in a type, is executed by Adele's
trigger mechanisms [4] when the associated event is
true for an instance of this type. The execution of
TECA rules is related to the transaction mechanism
in Adele.

Some rules can be de�ned as preconditions (before
the main action), others as post-conditions (after the
main action). Any incoherence detected during the
execution of the rules leads to the rejection of the op-
eration performed on the database. Thus, for every
operation, the following block is executed:

PRE (list of triggers)

methods

POST (list of triggers)

The whole block is considered a unique action even
if the related rules or corresponding actions trigger

other operations. A primitive residing in this chunk,
called \EXCEPTION", enables annulment of all the op-
erations carried out in the chunk, causing the transac-
tion to abort. If the transaction is validated, the rules
associated with the block \AFTER" are executed; other-
wise, the rules associated with the block \EXCEPTION"
will be executed once the transaction is undone.

Some related work

Other SEE's, such as AP5 [19], Alf [20], Triad
[22] and Appl/A [24], use ECA rules. Alf and
Tempo provide four TECA rules execution modes
(PRE,POST,AFTER and EXCEPTION) whereas
AP5, Marvel, Triad and Appl/A support only one
mode of execution, the mode POST. All these sys-
tems do not provide concepts for handling temporary
constraints.

Tempo's event-condition-action rules are similar to
those o�ered in Alf. However, Alf does not have the
concept of method. Similarly to Marvel, the actions
in Alf must be de�ned by the operators (production
rules according to the MASP formalism). The exe-
cution of an operator can trigger a forward chaining
process in the user's private space (ASP in the Alf
terminology). ECA rules are de�ned elsewhere and
executed by another mechanism called \trigger". In
Tempo, we adopted only one concept to de�ne both
the constraints on the execution of methods and the
constraints on the utilization of objects, i.e, the TECA
rules.

Some other systems like AP5 [19], ODE [14] and
SAMOS [13] also, in a way, provide ECA rules con-
cerning time. However, these systems do not allow the
speci�cation of conditions about past actions. They
limit themselves to specifying that for example, some
actions (mainly methods) must be executed at an ab-
solute/particular time in the future (every day at 9
a.m or tomorrow at 6 p.m.), etc.

3.2.3 Object with roles

Motivation

The problem of multiple perspectives or multiple view-
points often occurs in the lifetime of a software. In this
situation, users handle objects simultaneously, use dif-
ferent viewpoints of these objects, and carry out ac-
tions limited and directed by the constraints of their
own activities. These users, directed by multiple de-
velopment strategies, handle di�erent models of the
same product.

A SEE must therefore provide a framework per-
mitting the description and control of these aspects

in the environment. Tempo o�ers concepts allowing
the description and structuring of multiple viewpoints.
Based on the rule concept and for each object han-
dled, every occurrence of software process can have
constraints (TECA rules), local operations (methods)
and local properties (attributes). For example, a mod-
ule belonging to the Pascal object type, M1, has prop-
erties and constraints inherited from this type. Via the
role concept, a module M1 can have new properties,
new methods and new temporal constraints based on
its role in an activity. For example:

TYPEOBJECT C_body ISA body;

METHOD

compilation;

With debug option

link;

END C_body;

test ISA PROCESS;

ROLE under_test;

derived_from := C_body;

METHOD

compilation;

without debug option

END_OF test;

integration ISA PROCESS;

ROLE under_integration;

derived_from := C_body;

METHOD

compilation;

without debug option, but

with optimization option

END_OF integration;

The above example shows that the objects of the
C body type can be handled di�erently depending on
the role they play. Objects of C body type acting
as under-integration in an integration process will be
compiled di�erently from the one described in the
C body type. Likewise , when these objects act as
under-test in a test process, they will be compiled dif-
ferently.

Roles are de�ned by types. A role type can refer to
di�erent types of objects. This allows the integration
of many behaviors and properties, coming from di�er-
ent types of objects, in a unique view. By using this
concept, Tempo uni�es the processing of a heteroge-
neous set of objects. The advantage of this strategy
is that, using the role concept, a set of objects hav-
ing di�erent static and dynamic characteristics can be
perceived in a homogeneous manner during the execu-

tion of a particular software process phase. This ho-
mogeneity is maintained by multiple inheritance rules
used in the object-oriented models.

For example:

test ISA PROCESS;

ROLE under_test;

derived_from := C_body;

METHOD

compilation;

without debug option

ROLE interfaces;

derived_from := C_interface,

CPP_interface;

METHOD

list;

END_OF test;

The C interface types (C programming inter-
faces) and CPP interface (C++ programming in-
terfaces) are specialized in the test process via the
\interfaces" role. Objects of the \C interface" or
\CPP interface" type playing this role will be han-
dled by the methods described in the role. Therefore,
the list method can be applied both to the C inter-
faces and to the C++ interfaces. Many roles can be
described by a software process which then becomes
a list of roles where every type of object can play dif-
ferent types of roles. As a result, two objects of the
same type can be managed in di�erent ways in a soft-
ware process. Parallel to this, the same object can
play di�erent roles in di�erent software processes.

Role discussion

In Tempo, objects can change the way they behavior
depending on the context without changing their iden-
tity. A role is a template applied to a set of instances
sharing the same de�nition (static and behavioral).
A given object can simultaneously be a member of
several roles. In other words, an object can simulta-
neously be shared and play di�erent roles. The role
mechanism corresponds thus to the grain size with re-
spect to collaboration support.

The role concept is, in part, supported by Adele's
version management system. In order to support con-
current manipulation of software objects, an objet,
when playing a role, is duplicated and managed like
an object branch. Such duplication is supported by
Adele's version management system. In this way, the
role concept provides a conceptual framework for ver-
sion management and the branch mechanism provides
the support mechanism of this framework.

By the role concept, it is possible to specify user-
de�ned version management strategies. In some sys-
tems, like Nse [18], software performers, when trying
to manipulate in parallel a same object in order to
improve their productivity, have to follow the strat-
egy provided by the underling version management
system. In order words, cooperative work strategies
are hard-coded in the core of those systems. In some
tools, like Rcs [25], software performers can count only
on very basic mechanisms for supporting cooperative
work | ad hod strategies. Although, in some way co-
operative work is supported by such tools, because a
same object can be manipulated in parallel by several
software performers, cooperative work strategies can-
not be described neither automatically enforced in the
environment. We belive that the role concept coupled
to Adele's version management system provides a solu-
tion to these problems. The exibility of version man-
agement tools, like Rcs, is used, i.e., cooperative work
strategies are not hard-coded. Moreover, user-de�ned
cooperative work policies can be both described in a
model and automatically enforced by Tempo.

4 Communications protocol

Software engineering activities are characterized by
a heavy demand for coordination, collaboration and
synchronization, since software objects are shared by
multiple users. One problem in such a situation is
found at the level concerning the control of shared
objects. For example, questions such as those listed
below must be answered by the SEE:

� When, why and by whom was an object changed?

� How and when must these changes be given to the
users who share that object?

� What are the e�ects of this change?

� In which cases must the modi�cations be accepted
or refused?

These problems have been the object of numerous
studies in various �elds of research, especially in the
database �eld. To solve them, various mechanisms
have been proposed. In the sections below we will show
how these problems guided our research, and Tempo's
solutions for solving them.

4.1 Cooperation

In order to permit data exchange between users,
mechanisms which aid and stimulate collaboration be-
tween themmust be furnished. The environment must

furnish a communications protocol so that users may
be advised of activity status within the environment.
Owing to such noti�cations, users can know when
and with whom they must exchange data, or in other
words, when and under what conditions they must col-
laborate with each other. This is only possible when
each user can be noti�ed of the status of software pro-
cesses being used by his colleagues in the environment.

During the life of the software processes, there may
be several software process occurrences executing con-
currently. Each user must therefore select those en-
vironments for which he wants to be noti�ed. The
SEE must allow each user to specify the important
events needed to complete his activities, according to
what is supposed to be accomplished. After taking
the noti�cation into account, the user can enter into
the data exchange process and thus collaborate. The
collaboration process is therefore composed of three
steps: noti�cation, decision and data exchange. Each
of these steps must be supported by the SEE.

4.2 Synchronization

To ensure that communication between SEE users
is controlled, they must be able to synchronize with
each other while they develop their activities. With-
out a synchronizing control mechanism, a SEE can-
not ensure that the results exchanged between users is
correct. In a programming-in-the-large context, activ-
ities have a long duration; it is therefore necessary that
users be synchronized as they develop their activities
so that results obtained may be integrated. If the SEE
does not control concurrent activity synchronization,
results may develop such a degree of divergence that
they then become impossible to integrate.

Suppose, for example, that two activities of long
duration, A1 and A2, execute concurrently in the en-
vironment. Suppose also that these two activities si-
multaneously modify the same object, O. If the two
activities are not synchronized during execution, there
is the danger that modi�cations to object O will be im-
possible to integrate. The SEE must therefore support
synchronization between activities of long duration as
well as control that synchronization.

4.3 Our proposal for communications
support

We have found a lot of work which concerns com-
munication, collaboration, coordination and synchro-
nization with a SEE. We concentrated our attention
on the coordination, collaboration and synchroniza-
tion strategies between software activities. To achieve

this, we furnished a concept by which communication
strategies between software activities can be described
| connection concept.

Connections are used to allow two software process
occurrences to become synchronized during execution.
The connections are thus a communication channel
between two occurrences. Figure 4 gives an example
in which two software process occurrences, WE-1 and
WE-2, are linked by a connection. By using this con-
nection, the two occurrences can exchange messages
during their execution.

By using connections, a software process occurrence
can synchronize the sharing of its results with another
occurrence which is neither a \child" nor a \parent"
of that software process occurrence. This means that
connections allow a software process occurrence to be
informed of the status of other software process oc-
currences, and thus authorize an occurrence to react
to those events caused by other occurrences. For ex-
ample, an update of object O2 in the software process
occurrence WE-2 can trigger operations in occurrence
WE-1 because these occurrences are connected. Since
the TECA rules may be used to reply to these events,
the connections can thus be used to support collab-
oration between two or more software process occur-
rences.

To furnish a model in which connections and mes-
sage exchange strategy can be described, we provide
connection types. A connection type has the following
style:

designing ISA CONNECTION;

DOMAIN

ModifyDesign:UnderDesign ->

ReviewDesign:UnderRevision;

PLUG-ON-RULES . . .

ACTIVE-RULES . . .

PLUG-OFF-RULES . . .

END_OF designing;

The connection type's domain is provided by the
DOMAIN clause. Connections are always binary,
meaning that they exist to connect one software pro-
cess occurrence with another. A connection's granu-
larity level is its role. This means that one connection
type describes the connection strategy between one
software process type and another, in a role. Con-
nection instances are thus established between the
roles of one occurrence and the roles of another occur-
rence. In the example above, the software process oc-
currences \ModifyDesign" and \ReviewDesign" can

Monitor Design

WE-1 WE-2
DesignDocument

WE-1

work space

Occurence of the
ModifyDesign
Process type

UnderDesign

o1

communication channel between ROLES

sensitive connection

WE-2

work space

Occurence of the
ReviewDesign
Process type

UnderReview

o2

Figure 4: Example of a connection between two software process occurrences.

synchronize themselves and exchange data by means
of the designing connection. This connection will
be established between the roles \Underdesign" and
\UnderReview", respectively.

4.3.1 Connection plug-on rules

The conditions under which two occurrences must be
automatically connected are described in the PLUG-
ON clause. For example:

designing ISA CONNECTION;

DOMAIN

ModifyDesign:UnderDesign ->

ReviewDesign:UnderRevision;

PLUG-ON-RULES

(1) WHEN createprocess

UPON (SOURCE OR DEST);

(2) WHEN allocate_ressouces

UPON (SOURCE OR DEST);

(3) WHEN continue_execution

UPON (SOURCE OR DEST)

COLLABORATION-RULES . . .

PLUG-OFF-RULES . . .

END_OF designing;

In the example shown above, a connection of the
designing type will automatically be established for
the following events:

1. Whenever an occurrence of the software process
type \ReviewDesign" or \ModifyDesign" is cre-
ated.

2. Whenever new resources are allocated by the roles
\UnderDesign" or \UnderReview''.

3. Finally, whenever the roles \UnderDesign" or
\UnderReview" receive a message allowing them
to continue execution.

4.3.2 Connection plug-o� rules

In a manner similar to connection plug-on rules, we
can describe for each connection type those conditions
in which a connection must be broken. These con-
ditions are described in the PLUG-OFF clause. For
example:

designing ISA CONNECTION;

DOMAIN

ModifyDesign:UnderDesign ->

ReviewDesign:UnderRevision;

PLUG-ON-RULES

WHEN createprocess

UPON (SOURCE OR DEST);

WHEN allocate_ressouces

UPON (SOURCE OR DEST);

WHEN continue_execution

UPON (SOURCE OR DEST)

COLLABORATION-RULES . . .

PLUG-OFF-RULES

1) WHEN stop_execution

UPON (SOURCE OR DEST);

2) WHEN finish_execution

UPON (SOURCE OR DEST);

END_OF designing;

This example describes the following plug-o� rules:

1. Whenever a message con�rms validation of a halt
in activity of one of the two connected software
occurrences, then the connection between these
two occurrences is broken.

2. Similarly, if one of the two cooperating processes
terminates its activities, the connection between
them is broken.

4.3.3 Collaboration rules

For every connection type we can describe a set of tem-
poral event-condition-action rules which control the
data exchange between two software process occur-
rences. To make this possible, collaboration rules must
have access to objects handled for the two occurrences
linked by the connection. The connection must also
be capable of following operations performed on these
objects. This means that an update on objects han-
dled by the two software process occurrences A and B,
which are linked by connection C, must trigger events
not only in the context of occurrences A and B but
also in the context of connection C. The TECA rules
de�ned for this connection therefore deal with these
events. For example:

designing ISA CONNECTION;

DOMAIN

ModifyDesign:UnderDesign ->

ReviewDesign:UnderRevision;

PLUG-ON-RULES

WHEN createprocess

UPON (SOURCE OR DEST);

WHEN allocate_resources

UPON (SOURCE OR DEST);

WHEN continue_execution

UPON (SOURCE OR DEST)

COLLABORATION-RULES

1) WHEN design_completed

UPON SOURCE

2) DO promote(%source);

3) allocate(%source,occurenc_of(%dest));

4) WHEN design_reviewed

UPON DEST

5) DO promote(%dest);

6) IF (%dest.no_of_changes >= 0) THEN

7) allocate(%dest,occure_of(%source));

PLUG-OFF-RULES

WHEN stop_execution

UPON (SOURCE OR DEST);

WHEN finish_execution

UPON (SOURCE OR DEST);

END_OF designing;

The rules described in the COLLABORATION-
RULES clause state that:

1. When the modi�cation activity of the de-
sign document is completed by the responsi-
ble software process occurrence (line 1), the
\design completed" event is taken into account.

2. The modi�cations performed must then be prop-
agated (line 2).

3. This document must be allocated to the software
process occurrence undertaking the revision (line
3).

4. Once the revision activity of the design docu-
ment is completed, the \design reviewed" event
is taken into account and processed by this rule
(line 4).

5. The results obtained by this revision must be pro-
moted. The promote operation is given for this
purpose (line 5).

6. After promoting the revision activity results, ver-
i�cation of corrections is performed on the design
document (line 6).

7. If corrections have been made, the design doc-
ument is automatically allocated to the software
process occurrence responsible for its modi�cation
(line 7).

The keywords
\ON SOURCE event/ON DEST event" serve to inform
that the operation which started the event event was
performed on either the connection's source role or
destination role, respectively.

5 Resource coordination: the work en-
vironments

In traditional database management systems object
coherence must always be ensured by the system. In
the software engineering context, where activities are
of long duration, it is di�cult to require that these
objects stay coherent during software process execu-
tion [1]. For one thing, such incoherence comes from
the integration of di�erent views within a single de-
scription. On the other hand, this incoherence stems
from the fact that di�erent activities may share the
same object over a long period of time. Nonetheless, a
SEE must manage this incoherence so as to ensure co-
operative, parallel processing during all stages of the
software's life cycle [23].

To manage the coherence (or incoherence!) of
shared objects, it is necessary to provide mechanisms
to coordinate the people who manipulate concurrently
those objects. With relational databases, coherence is
assured by the concept of transactional atomicity, and
coordination is taken into account by the serialization
of these transactions. Although this type of mecha-
nism is also necessary in software engineering, it does
not provide an adequate solution since in a software
engineering environment several concurrent activities
share objects over a long period of time. In such a
context, the transactional mechanism must be modi-
�ed and/or extended to meet this new requirement.

5.1 The check-in/check-out model

A lot of work has been done in the �eld of SEE's
to furnish a framework which supports coordination
by building mechanisms to manage long transactions
[2]. Generally, such work results in models for long
transactions similar to the check-in/check-out model
[10, 11, 15]. In this model, shared objects are taken
from the central database and made available to users
in their respective workspaces. Generally a workspace
is implemented in the form of a �le management sys-
tem directory [25]. Once in the workspace, the user
can modify the shared object with no conict from
other users in the environment who can continue to
consult the version available in the central database.

5.2 Our approach

For every software process occurrence, Tempo pro-
vides a work environment in which activities are ex-
ecuted, and objects are modi�ed by the use of auto-
mated (such as compilers) or interactive (such as text
editors) tools, etc.

An object shared by multiple work environments
may be modi�ed within each work environment where
that object is used. We start from the notion that we
can create one or many versions of the same software
object (Adele's object database allows this). Once a
shared object becomes a target for modi�cation, a new
version of this object is created and made available to
the user in the work environment where that modi�-
cation was requested. The modi�cation is made to the
new object version, and not to the source object. This
new version has a life span limited to that of the work
environment in which it is located.

In order to control coherence between long transac-
tions, we require that these transactions be performed
in a hierarchical manner, like the one described in
[11, 15, 18]. Thus, whenever two work environments
wish to share the same object concurrently and mod-
ify it, these two environments must use the same root
object.

5.3 Example of object sharing

Figure 5 shows an example of sharing a software
object. The object O is shared between the software
processes WE-1 and WE-2. After placement in the
work environments of these two occurrences, object O
may undergo updating. The updates are not propa-
gated. That is to say, object O in occurrence WE-1
may be modi�ed without a�ecting the activities hap-
pening in occurrence WE-2, and vice-versa. To render
this possible, an alternative to object O is automati-
cally created and made available for every occurrence
whenever an update is made to this object. The cre-
ated alternative is reserved for the work environment
which corresponds to the software process occurrence.
Figure 5 shows two, alternatives O1 and O2 of object
O which are respectively reserved >from occurrences
WE-1 and WE-2. Once under the control of the WE-
1 (WE-2) work environment, the attribute values and
the contents of the O1 (O2) alternative from object O
can be changed by making revisions when object O1
(O2)'s contents are updated.

When an alternative is created and made available
to an occurrence (work environment), it acquires all
of the source object's characteristics. The alternative's
attributes and contents are therefore identical to those
of the source object. Once located within the software
process's occurrence workspace, the alternative may
be modi�ed by revision controls. The attributes may
also be updated locally.

Monitor Design

WE-1 WE-2
DesignDocument

WE-1

work space

WE schema
(ModifyDesign
Process type)

UnderDesign

o1

WE-2

work space

WE schema
(ReviewDesign
Process type)

UnderReview

o2

Figure 5: Example of object sharing between work
environments.

6 Conclusion

In this paper we have shown how cooperative work
is supported in a process-centered software engineering
environment. It is based primarily on two components:

1. An object management system for controlling the
objects shared by a unique data model which uni-
�es descriptive data and relationships. Such shar-
ing is based on the management of a hierarchy of
component versions.

2. An activity manager controlled by an executable
formalism which allows software process model
descriptions. This model structures activities into
basic units known as process types, which become
work environments at execution time. The soft-
ware production process is controlled by temporal
event-condition-action rules.

Strategies governing the synchronization and co-
operation between di�erent concurrent process occur-
rences are speci�ed by connections referred to as active
and programmable. The communication description
strategy is made by rules de�ning speci�c synchroniza-
tion strategies between roles, propagating their e�ects
when an action executes on one of the two connection
points.

The temporary modes of TECA rules allow for
transactions of long duration, because these can be
used to reason on past activities. Coherence control of
objects handled by activities of long duration is per-
formed by the work environments. The union between
connections and work environments allows for support

of the cooperating processes and object sharing be-
tween these processes.

Future development and research includes:

1. Realization of an object type ("point and click"),
user-friendly, graphic interface for Tempo to en-
able users to execute activities by means of
graphic support.

2. Management of software process evolution. Since
software engineering has a long duration period,
coordination and synchronization strategies can
change during the course of execution. We thus
need a mechanism by which these strategies can
be changed without stopping the execution of co-
operating processes. Research is this way is going
on [8].

We believe that we o�er a design context which con-
tributes to clarifying the numerous complex coordina-
tion activities found within a SEE. We feel that this
will be the challenge for the next years in process-
centered SEE's.

Acknowledgements

We would like to express our thanks to Yong-Mi Kim
for suggesting substantial and helpful revisions to the
original text. The anonymous reviewers and the ed-
itor, Prof. Claudia Medeiros, provided very valuable
comments and suggestions that helped us improve the
paper.

During this work, Dr. Walc�elio L. Melo was sup-
ported by the Technological and Scienti�c Develop-
ment National Council of Brazil (CNPq) under grant
No. 204404/89-4.

References

[1] R. Balzer. Tolerating inconsistency. In Proc.
of the 13th Int'l Conf. on Software Engineering,
pages 158{165, Austin, TX, May 1991. IEEE CS
Press.

[2] N. S. Barghouti and G. E. Kaiser. Concurrency
control in advanced database applications. ACM
Computing Surveys, 23(3):269{317, 1991.

[3] N. Belkhatir. Nomade
: un noyau d'environnement pour la programma-
tion globale. Th�ese de doctorat, INPG, Grenoble,
France, 1988.

[4] N. Belkhatir, J. Estublier, and W. L. Melo. Adele
2: a support to large software development pro-
cess. In M. Dowson, editor, Proc. of the First
Int'l Conf. on the Software Process, pages 159{
170, Redondo Beach, CA, October 21{22 1991.
IEEE CS Press.

[5] N. Belkhatir, J. Estublier, and W. L. Melo. Soft-
ware process model and work space control in
the Adele/Tempo system. In L. Osterweil, edi-
tor, Proc. of the 2nd Int'l Conf. on the Software
Process, pages 2{11, Berlin, Germany, February
1993. IEEE CS Press.

[6] N. Belkhatir and W. L. Melo. Tempo: a soft-
ware process model based on object context be-
havior. In Proc. of the 5th Int'l Conf. on Software
Engineering & its Applications, pages 733{742,
Toulouse, France, December 7{11 1992.

[7] N. Belkhatir and W. L. Melo. Supporting soft-
ware maintenace processes in Tempo. In Proc.
of the Conf. on Software Maintenance, pages 21{
30, Montreal, Canada, September 1993. IEEE CS
Press.

[8] N. Belkhatir and W. L. Melo. Evolving software
processes by tailoring the behavior of software
objects. In Proc. of the Conference on Software
Maintenance, Victoria, Canada, September 1994.
IEEE CS Press.

[9] N. Belkhatir, W. L. Melo, J. Estublier, and A.-
M. Nacer. Supporting software maintenance evo-
lution processes in the Adele system. In C. M
Pancake and D. S. Reeves, editors, Proc. of the
30th Annual ACM Southeast Conf., pages 165{
172, Raleigh, NC, April 8-10 1992.

[10] K.R. Dittrich. The Damokles database system for
design applications: its past, its present, and its
future. In K. H. Bennett, editor, Software En-
gineering Environments: Research and Practice,
pages 151{171. Ellis Horwood Books, Durhan,
UK, 1989.

[11] P.H. Feiler. Con�guration management models
in commercial environments. Technical Report
CMU/SEI-91-TR-7, Carnegie-Mellon University,
Software Enginnering Institure, March 1991.

[12] C. Floyd, F.M. Reisin, and G. Schmidt. STEPS to
software development with users. In Proc. of the
2nd European Software Engineering Conference,
Warwick, England, Septembre 1989.

[13] S. Gatziu, A. Geppert, and K. R. Dittrich. In-
tegrating active concepts into an object-oriented
database systems. In Proc. of the 3rd Int'l Work-
shop on Database Programming Languages: Bulk
Types & Persistent Data, pages 399{415, Naf-
plion, 1991. Morgan Kaufmann.

[14] N. H. Gehani, H. V. Jagadish, and O. Shmueli.
Event speci�cation in an active object-oriented
database. In M. Stonebraker, editor, Proc. of
the ACM SIGMOD 92, volume 21, no. 2 of ACM
SIGMOD Record, pages 81{90. ACM Press, June
1992.

[15] G. E. Kaiser. A exible transaction model for
software engineering. In Proc. of the 6th Int'l
Conf. on Data Engineering, pages 560{567, Los
alamitos, CA, 1990. IEEE CS Press.

[16] F. Long, editor. Proc. of Int'l Workshop on Soft-
ware Engineering Environments, volume 467 of
LNCS, Chinon, France, September 18{20 1989.
Springer-Verlag, Berlin, 1990.

[17] W. L. Melo. Tempo: Un environnement de
d�eveloppement Logiciel Centr�e Proc�ed�es de Fab-
rication. Th�ese de Doctorat, Universit�e Joseph
Fourier (Grenoble I), Laboratoire de G�enie Infor-
matique, Grenoble, France, 22 de Octobre 1993.

[18] T. Miller. Con�guration management with the
NSE. In Long [16], pages 99{106.

[19] K. Narayanaswamy. Enactment in a process-
centered softwre engineering environment. In
W. Schafer, editor, Proc. of the 8th Int'l Soft-
ware Process Workshop, Germany, 1993. IEEE
CS Press.

[20] F. Oquendo, J.-D. Zucker, and G. Tassart. Sup-
port for software tool integration and process-
centered software engineering environments. In
Proc. of the 3rd Int'l Workshop on Software En-
gineering and its Applications, pages 135{155,
Toulouse, France, December 3{7 1990.

[21] C.V. Romamoorthy. Programming in the large.
IEEE Transactions on Software Engineering,
12(7):1145{1154, July 1986.

[22] S. Sarkar and V. Venugopal. A language-based
approach to building CSCW systems. In Proc.
of the 24th Annual Hawaii Int'l Conf. on System
Sciences, pages 553{567, Kona, HI, 1991. IEEE
CS Press, Software Track, v. II.

[23] R. W. Schwanke and G. E. Kaiser. Living with in-
consistency in large systems. In J. F. H. Winkler,
editor, Int'l Workshop on Software Version and
Con�guration Control, Grassau, Germany, Jan-
uary 27{29 1988. B. G. Teubner, Stuttgart, 1988.

[24] S. M. Sutton, D. Heimbigner, and L. J. Oster-
weil. Language constructs for managing change
in process-centered environments. In R. Taylor,
editor, Proc. of the 4th ACM Soft. Eng. Sym-
posium on Soft. Practical Development Environ-
ments, volume 15 of ACM SIGSOFT Soft. Eng.
Notes, pages 206{217, Irvine, CA, 1990.

[25] W.F. Tichy. Rcs | a system for version control.
Software|Practice and Experience, 15:637{654,
1985.

[26] A. I. Wasserman. Tool integration in software
engineering environments. In Long [16].

