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Abstract

Contemporary evidence suggests that most ®eld faults in software applications are found in a small percentage of the software's

components. This means that if these faulty software components can be detected early in the development project's life cycle,

mitigating actions can be taken, such as a redesign. For object-oriented applications, prediction models using design metrics can be

used to identify faulty classes early on. In this paper we report on a study that used object-oriented design metrics to construct such

prediction models. The study used data collected from one version of a commercial Java application for constructing a prediction

model. The model was then validated on a subsequent release of the same application. Our results indicate that the prediction model

has a high accuracy. Furthermore, we found that an export coupling (EC) metric had the strongest association with fault-proneness,

indicating a structural feature that may be symptomatic of a class with a high probability of latent faults. Ó 2001 Elsevier Science

Inc. All rights reserved.
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1. Introduction

Recent evidence indicates that most faults in soft-
ware applications are found in only a few of a sys-
tem's components (Moller and Paulish, 1993;
Kaaniche and Kanoun, 1996; Ohlsson and Alberg,
1996; Fenton and Ohlsson, 2000). The early identi®-
cation of these components allows an organization to
take mitigating actions, such as focus defect detection
activities on high risk components, for example, by
optimally allocating testing resources (Harrison, 1988),
or redesigning components that are likely to cause
®eld failures.

In the realm of object-oriented systems, one approach
to identify faulty classes early in development is to
construct prediction models using object-oriented design
metrics. Such models are developed using historical
data, and can then be applied for identifying potentially
faulty classes in future applications or future releases.
The usage of design metrics allows the organization to

take mitigating actions early and consequently avoid
costly rework.

A considerable number of object-oriented metrics
have been constructed in the past, for example, Li and
Henry (1993), Abreu and Carapuca (1994), Chidamber
and Kemerer (1994), Lorenz and Kidd (1994), Hender-
son-Sellers (1996), Briand et al. (1997), Benlarbi and
Melo (1999), Tang et al. (1999) and Cartwright and
Shepperd (2000). There have also been empirical studies
validating object-oriented metrics and constructing
prediction models that utilize them, such as Li and
Henry (1993), Abreu and Melo (1996), Basili et al.
(1996), Briand et al. (1997, 1998b, 2000), Binkley and
Schach (1998), Chidamber et al. (1998), Harrison et al.
(1998), Nesi and Querci (1998), Benlarbi and Melo
(1999), Melo et al. (1999), Tang et al. (1999) and Cart-
wright and Shepperd (2000). However, most of these
studies did not focus exclusively on metrics that can be
collected during the design stage.

In this paper, we report on a study that was per-
formed to construct a model to predict which classes in a
future release of a commercial Java application will be
faulty. In addition to identifying the faulty classes, the
model can be applied to give an overall quality estimate
(i.e., how many classes in the future release will likely
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have a fault in them). The model uses only object-ori-
ented design metrics. Our empirical validation results
indicate that the model has high accuracy in identifying
which classes will be faulty and in predicting the overall
quality level.

Furthermore, our results show that the most useful
predictors of class fault-proneness are a metric mea-
suring inheritance depth and a metric measuring export
coupling (EC), with EC having a dominating e�ect.
These results are consistent with a previous study on a
C++ telecommunications system, which found that EC
was strongly associated with fault-proneness (El-Emam
et al., 1999).

The paper is organized as follows. In Section 2, we
provide an overview of the object-oriented metrics that
we evaluate, and our hypotheses. In Section 3, we pre-
sent our research method, and in Section 4 the detailed
results, their implications, and limitations. We conclude
the paper in Section 5 with a summary and directions for
future research.

2. Background

2.1. Metrics studied

Our focus in this study are the two metrics sets de®ned
by Chidamber and Kemerer (1994) and Briand et al.
(1997). In combination these constitute 24 metrics. Of
these, only a subset can be reliably collected during the
design stage of a project. This subset includes inheri-
tance and coupling metrics (and excludes cohesion and
traditional complexity metrics).

At the design stage, it is common to have de®ned
the classes, the inheritance hierarchy showing the
parent±child relationships among the classes, identi®ed
the methods and their parameters for each class, and
the attributes within each class and their types. De-
tailed information that is commonly available within
the de®nition of a method, for example, those meth-
ods from other classes which are invoked, would not
be available at design time. The cohesion metrics de-
®ned in these metrics suites were not collected for the
same reason. This leaves us with a total of 10 design
metrics that can be collected, two de®ned by Chid-
amber and Kemerer (1994), and eight by Briand et al.
(1997).

The two Chidamber and Kemerer metrics are DIT
and NOC. The depth of inheritance tree (Chidamber
and Kemerer, 1994) metric is de®ned as the length of the
longest path from the class to the root in the inheritance
hierarchy. It is stated that as one goes further down the
class hierarchy, the more complex a class becomes, and
hence more fault-prone. The number of children inher-
itance metric (Chidamber and Kemerer, 1994) counts
the number of classes which inherit from a particular

class (i.e., the number of classes in the inheritance tree
down from a class).

The Briand et al. coupling metrics are counts of in-
teractions among classes (Briand et al., 1997). The
metrics distinguish the types of relationships among the
classes (i.e., friendship, inheritance, or another type of
relationship), di�erent types of interactions, and the
locus of impact of the interaction. The acronyms for the
metrics indicate what type of interactions are counted.
We de®ne below the acronyms and their meaning, and
then summarize the design metrics.
· The ®rst two letters indicate the relationship (A: cou-

pling to ancestor classes; D: descendents; and O: oth-
er, i.e., none of the above). Although the Briand et al.,
metrics suite covers it, friendship is not applicable in
our case since the language used for the system we an-
alyze is Java.

· The next two letters indicate the type of interaction
between classes c and d (CA: there is a class±attribute
interaction between classes c and d if c has an attrib-
ute of type d; and CM: there is a class±method inter-
action between classes c and d if class c has a method
with a parameter of type class d). There is a method±
method interaction between classes c and d if c in-
vokes a method of d, or if a method of class d is
passed as a parameter to a method of class c. Meth-
od±method interactions are typically not available
at design time, however. 1

· The last two letters indicate the locus of impact (IC:
import coupling; and EC). A class c exhibits IC if it
is the using class (i.e., client in a client±server rela-
tionship), while it exhibits EC if it is the used class
(i.e., the server in a client±server relationship).

Ancestor-based coupling metrics that we considered
were ACAIC and ACMIC. The descendent-based cou-
pling metrics that we considered were DCAEC and
DCMEC. The remaining coupling metrics cover the
four combinations of type of interaction and locus of
impact: OCAIC, OCAEC, OCMIC, and OCMEC.

2.2. Hypotheses

An articulation of a theoretical basis for developing
quantitative models relating object-oriented metrics and
external quality metrics has been provided in Briand
et al. (1998b), and is summarized in Fig. 1. This illus-
trates that we hypothesize a relationship between the
object-oriented metrics and fault-proneness due to the
e�ect on cognitive complexity.

1 According to the mapping between the development phases of a

generic object-oriented development process and coupling metrics in

(Briand et al., 1999a), metrics that count method±method interactions

can be approximated during low level design, but are only stable at the

implementation stage. Methods that count class±attribute and class±

method interactions can be approximated during the analysis phase,

but are stable before implementation.
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There, it is hypothesized that the structural properties
of a software component (such as its coupling) have an
impact on its cognitive complexity. Cognitive complex-
ity is de®ned as the mental burden of the individuals
who have to deal with the component, for example, the
developers, testers, inspectors, and maintainers. High
cognitive complexity leads to a component exhibiting
undesirable external qualities, such as increased fault-
proneness and reduced maintainability.

Therefore, our general hypothesis is that the metrics
that we validate, and that were described above, are
positively associated with the fault-proneness of
classes. This means that higher values on these metrics
represent structural properties that increase the prob-
ability that a class will have a fault that causes a ®eld
failure.

3. Research method

3.1. Data source and measurement

The system that was analyzed is a commercial Java
application. The application implements a word pro-
cessor that can either be used stand-alone or embed-
ded as a component within other larger applications.
The word processor provides support for formatted
text at the word, paragraph, and document levels,
allows the de®nition of groupings of formatting ele-
ments as styles, supports RTF and HTML external
®le formats, allows spell checking of a range of words
on demand, supports images embedded within docu-
ments or pointed to through links, and can interact
with external databases.

We consider two versions of this application: versions
0.5 and 0.6. Version 0.5 was ®elded and feedback was
obtained from its users. This feedback included reports
of failures and change requests for future enhancements.
For our study, we only used the failure reports. To ad-
dress the additional functionalities, version 0.6 involved
an extensive redesign of the application, partially to
avoid using an externally provided GUI library which
had critical limitations.

Version 0.5 had a total of 69 classes. The design metrics
were collected using an especially developed Java static
analysis tool (Farnese et al., 1999). No Java inner classes
were considered. For each class, the design metrics were
collected. Also, for each class, it was known how many
®eld failures were associated to a fault in that class. In
total, 27 classes had faults. Version 0.6 had 42 classes.

This version was also used in the ®eld and based on
failure reports, a subsequent version of the application
was released. For version 0.6, 24 of the classes had faults
in them that could be traced to ®eld failures.

In addition to the inheritance and coupling metrics,
we collected two measures of size: the number of attri-
butes de®ned in a class and the number of methods.
Both were de®ned as size measures for object-oriented
classes of the past (Briand et al., 2000). Since our con-
clusions are not changed by the choice of size measure,
we only consider the ATTS measure in this paper.

In our analysis, we used data from version 0.5 as a
training data set, and data from version 0.6 as the test
data set. As noted above, all faults were due to ®eld
failures occurring during actual usage. For each class,
we characterized it as either faulty or not faulty (i.e., a
binary characterization). A faulty class had at least one
fault detected during ®eld operation.

It has been argued that considering faults causing ®eld
failures is a more important question to address than
faults found during testing (Binkley and Schach, 1998).
In fact, it has been argued that it is the ultimate aim of
quality modeling to identify post-release fault-proneness
(Fenton and Neil, 1999a). In at least one study, it was
found that pre-release fault-proneness is not a good
surrogate measure for post-release fault-proneness, the
reason posited being that pre-release fault-proneness is a
function of testing e�ort (Fenton and Ohlsson, 2000).

3.2. Data analysis methods

Our data analysis approach consists of four steps: 2

1. variable selection;
2. calibration;
3. prediction;
4. quality estimation.
We describe the objectives of each of these steps as well
as the analysis techniques employed below.

3.2.1. Variable selection
During this step, the objective is to identify the subset

of the object-oriented metrics that are related to fault-
proneness. These variables are then used as the basis
for further modeling steps explained below. We select
variables that are individually associated with fault-
proneness and that are orthogonal to each other.

Fig. 1. Theoretical basis for the development of object-oriented product metrics.

2 The research method presented here and that we use in our study is

a re®nement of the methodology used in a previous study (El-Emam

et al., 1999).
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Variable selection is achieved by ®rst looking at the
relationship between each metric and fault-proneness
individually. 3 The statistical modeling technique that
we use is logistic regression (henceforth LR). This is
further explained in Appendix A, as well as some diag-
nostics that are applied to check the stability of the re-
sulting models.

A recent study highlighted the potential confounding
e�ect of class size (El-Emam et al., 2000) and demon-
strated it on the Chidamber and Kemerer metrics
(Chidamber and Kemerer, 1994) and a subset of the
Lorenz and Kidd (Lorenz and Kidd, 1994) metrics.
Speci®cally, this demonstration illustrated that without
controlling the confounding e�ect of class size, one ob-
tain results that are systematically optimistic. It is
therefore necessary to control class size to get accurate
results. Our approach accounts for the potential con-
founding e�ect of class size.

A measured confounding variable can be controlled
through a regression adjustment (Breslow and Day,
1980; Schlesselman, 1982). A regression adjustment en-
tails including the confounder as another independent
variable in a regression model. Our LR model is there-
fore

p � 1

1� eÿ�b0�b1x1�b2x2� ; �1�

where p is the probability of a class having a fault, x1 the
object-oriented metric being validated, and x2 is the size,
measured as ATTS. We construct such a model for each
object-oriented metric being validated.

It should be noted that the object-oriented metric and
the size confounding variable are not treated symmet-
rically in this model. Speci®cally, the size confounder
(i.e., variable x2) should always be included in the model,
irrespective of its statistical signi®cance (Breslow and
Day, 1980). If inclusion of the size confounder does not
a�ect the parameter estimate for the object-oriented
metric (i.e., the b1 parameter of variable x1), then still we
get a valid estimate of the impact of the metric on fault-
proneness. The statistical signi®cance of the parameter
estimate for the object-oriented metric, however, is in-
terpreted directly since this is how we test our hypoth-
esis.

In constructing our models, we follow previous liter-
ature in that we do not present results for interactions
nor higher order terms, for example, see Basili et al.
(1996), Briand et al. (1997, 1998a,b, 2000), Benlarbi and
Melo (1999), Tang et al. (1999) and El-Emam et al.
(2000). This is to some extent justi®able given that there
is no clear theoretical basis to assume any of the above
as yet.

Building LR models as in Eq. (1) for each metric will
result in a subset of the metrics that have statistically
signi®cant parameters being retained. However, it is
likely that some of these retained metrics are associated
with each other. We use the robust Spearman correla-
tion coe�cient for investigating such associations (She-
skin, 1997). 4 For metrics that are strongly associated
with each other, we select only one of them for further
consideration. The selected metric would be the one that
has the largest change in odds ratio (i.e., the largest
impact on fault-proneness).

The consequence of this step is a small number of
metrics remaining that are both associated with fault-
proneness and that are orthogonal to each other.

3.2.2. Calibration
After identifying a subset of metrics that are associ-

ated with fault-proneness and that are orthogonal, we
construct a multivariate model that combines all of these
metrics. The construction of such a model follows the
same procedure described in Appendix A, except that
more variables will be incorporated.

The multivariate model can be practically applied in
identifying which classes are likely to contain a fault
(prediction step) and to estimate the overall fault con-
tent of a system (quality estimation step). However, ®rst
it must be calibrated.

During calibration, we identify the optimal operating
point for the model. This operating point maximizes the
prediction accuracy. Recall that a LR model makes
predictions as a probability rather than a binary value
(i.e., if we use a LR model to make a prediction, the
predicted value is the probability of the occurrence of a
fault). It is common to choose a cuto� value for this
predicted probability. For instance, if the predicted
probability is greater than 0.5, then the class is predicted
to be of high risk. Instead of using such a generic cuto�,
it is possible to select an optimal cuto�. In Appendix C,
we describe the use of receiver operating characteristic
(ROC) curves for identifying the optimal cuto�. This
is achieved by computing accuracy measures for all

3 We do not employ automatic selection procedures since they are

known to be unstable. It is more common to use a forward selection

technique rather than backward selection. The reason being that

backward selection starts o� with all of the variables and then

eliminates variables incrementally. The number of observations is

usually not large enough to justify constructing a model with all

variables included. On the other hand, a Monte Carlo simulation of

forward selection indicated that in the presence of collinearity among

the independent variables, the proportion of `noise' variables that are

selected can reach as high as 74% (Derksen and Keselman, 1992). It is

clear that many object-oriented metrics are inter-correlated (Briand

et al., 1998b, 2000).

4 We do not employ a multivariate technique such as a principal

components analysis because usually a small number of metrics are

retained and a simple correlation matrix makes clear the associations

among them. If many metrics are retained, then it would be more

appropriate to use a data reduction technique such as principal

components analysis.
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possible cuto� points and selecting the best one. An-
other useful measure from a ROC curve is the area
under the curve (AUC). The AUC value characterizes
the accuracy of the model across all possible cuto�
values.

During calibration, only the training data set is used
(version 0.5). It has been recommended that in studies
where sample sizes are less than 100, as in our case, a
leave-one-out approach provides reliable estimates of
accuracy (Weiss and Kulikowski, 1991). Therefore, we
use this approach during calibration.

3.2.3. Prediction
The calibrated model (with its optimal cuto� point

already computed) can be used to predict which classes
have a fault in the test data set (version 0.6). To evaluate
the binary prediction accuracy of the calibrated model,
we use the J coe�cient. This is described further in
Appendix B. The prediction results on a test data set
provide a realistic assessment of how accurate this
multivariate model will perform in actual projects.

3.2.4. Quality estimation
The calibrated model can also be used to estimate the

overall quality of an object-oriented application. Here,
quality is de®ned as the proportion of classes that are
faulty. Appendix D explains how quality estimates may
be calculated. We use the techniques in Appendix D to
estimate the quality of the test data set (version 0.6), and
then compare this estimate to the actual quality.

3.2.5. Summary
An overall summary of each of the four steps in our

research method is provided in Table 1, including a
description of the outputs.

4. Results

4.1. Descriptive statistics

The descriptive statistics for the object-oriented met-
rics and the size metric for the train and test data sets are
presented in Tables 2 and 3, respectively. The tables
show the mean, standard deviation, median, inter-
quartile range (IQR), and the number of observations
that are not equal to zero. In general, there are strong
similarities between the two data sets. It is noticable that
the OCAEC metric has a rather large standard deviation
compared to the other metrics.

Variables ACAIC, ACMIC, DCAEC, and DCMEC
have less than six observations that are non-zero on the
training data set. Therefore, they were excluded from
further analysis. This is the approach followed in pre-
vious studies (Briand et al., 2000; El-Emam et al., 2000).

4.2. Variable selection results

Table 4 contains the results of the LR models after
controlling class size. The table only shows the param-
eters of the object-oriented metrics since this is what we
draw conclusions from. This analysis was performed
only on the training data set.

Only four metrics out of the six had a signi®cant as-
sociation with fault-proneness: OCAEC, OCMEC,
OCMIC, and DIT. The change in odds ratio for the
OCAEC metric is quite large. The change in odds ratio
(see Appendix A) is a function of the standard deviation
of the metric. OCAEC had a rather large standard de-
viation. This was due to a handful of observations that
were extreme and hence in¯ated the variation. In gen-
eral, the standard deviation of this metric was sensitive
to a minority of observations (i.e., removing them would

Table 1

A summary of the steps in our research method

Step Procedure Outcome

Variable selection For each metric, construct an LR model with two

independent variables: a size measure and the

object-oriented metric

A subset of the original metrics that are associated with

fault-proneness and that are orthogonal

Retain the metrics that have a statistically signi®cant

parameter

Look at the metrics' inter-correlations and select a subset

that is orthogonal

Calibration Construct an LR model with size and all of the retained

metrics from the above step

An LR model with the size metric and the retained

metrics from the previous step as independent variables

Using a leave-one-out approach, construct the ROC

curve and determine the optimal operating point

Identi®cation of the optimal cuto� value

Prediction Using the model from the above step, predict the fault

status for the test data set at the optimal operating point

An estimate of the prediction accuracy using the J
coe�cient

Estimate the prediction accuracy

Quality estimation Estimate the proportion of faulty classes on the test data

set (the quality estimate) using the calibrated model and

evaluate its accuracy

The quality estimate on the test data set and its accuracy
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have non-negligible impacts on the standard deviation).
Therefore, the estimate of the change in odds ratio for
OCAEC is quite unstable.

Out of the remaining signi®cant metrics, OCMEC had
the largest change in odds ratio, indicating its strong
impact on fault-proneness.

The Spearman correlations among the signi®cant
metrics are shown in Table 5. It is seen that all the
coupling metrics are strongly associated with each other,
with the strongest association between OCMEC and
OCAEC. This is not surprising given that they are both
EC metrics. The DIT metric has much weaker associa-
tion with the coupling metrics.

We therefore select OCMEC and DIT for further
investigation. We exclude OCAEC due to its unstable
standard deviation (i.e., its usage would give us unstable

results), 5 and exclude OCMIC since its change in odds
ratio in Table 4 is smaller than that of OCMEC.

4.3. Calibration

At this juncture, we have identi®ed two metrics that
have value additional to class size, and that carry com-
plementary information about the impact of class
structure on fault-proneness. We now construct a mul-
tivariate LR model using these metrics.

Table 2

Descriptive statistics for all of the object-oriented metrics on the training data set (version 0.5)

Mean Median Standard deviation IQR NOBS 6� 0

ACAIC 0.043 0 0.205 0 3

ACMIC 0.173 0 0.839 0 3

DCAEC 0 0 0 0 0

DCMEC 0 0 0 0 0

OCAIC 3.144 1 4.512 4 40

OCAEC 2.695 1 6.181 2 47

OCMIC 1.681 1 2.933 2 39

OCMEC 2.072 1 5.140 2 40

DIT 1.217 1 1.069 2 47

NOC 0.188 0 0.624 0 7

ATTS 9.159 7 10.745 13 52

Table 3

Descriptive statistics for all of the object-oriented metrics on the test data set (version 0.6)

Mean Median Standard deviation IQR NOBS 6� 0

ACAIC 0.047 0 0.215 0 2

ACMIC 0.214 0 0.976 0 2

DCAEC 0 0 0 0 0

DCMEC 0 0 0 0 0

OCAIC 3.809 2 4.880 6 25

OCAEC 3.238 1 5.917 1 35

OCMIC 2.119 1 3.394 3 26

OCMEC 2.595 1 5.401 2 29

DIT 1.428 1 1.085 1 32

NOC 0.142 0 0.472 0 4

ATTS 12.642 10.5 12.270 11 37

Table 4

Results of the validation, including the LR parameters and diagnosticsa

Metric G (p-value) R2 g b1 coe�cient (S.E.) p-value DW

OCAEC 42.45 (<0.0001) 0.49 5.80 2.5766 (0.6846) 0.0001 123

OCAIC 3.91 (0.1415) 0.0423 3.697 0.0541 (0.0801) 0.2498 1.276

OCMEC 29.57 (<0.0001) 0.33 3.64 1.2144 (0.3455) 0.0002 12.2

OCMIC 11.52 (0.0032) 0.124 2.61 0.3494 (0.1500) 0.0099 2.78

DIT 12.68 (0.0018) 0.137 3.869 0.7681 (0.2712) 0.0023 2.273

NOC 8.96 (0.0113) 0.099 2.239 )7.02 (25.07) 0.389 0.016
a The G coe�cient tests the hypothesis if any of the regression parameters is di�erent from zero. The R2 is a goodness-of-®t measure, g the condition

number to determine the extent of collinearity, b1 the estimated coe�cient for the object-oriented metric, (S.E.) the standard error of the coe�cient

estimate, the p-value the one-sided probability of getting an coe�cient as extreme under the null hypothesis, and DW is the change in odds ratio.

5 We also constructed a prediction model using the OCAEC metric

instead of the OCMEC metric. The prediction accuracy was almost the

same as that of the model using the OCMEC metric, but the model

was, as expected, unstable.
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Table 6 shows the multivariate LR model incorpo-
rating the two metrics and size. It will be noted that the
e�ect of the size measure, ATTS, is not signi®cant.
However, as noted earlier, we keep it in the model to
ensure that the parameter estimates for the remaining
variables are accurate.

The ROC curve for the model in Table 6 is shown in
Fig. 2. This curve was constructed using a leave-one-out
approach. The area under this curve is 0.87, which is
rather high in comparison to a previous study with ob-
ject-oriented metrics (El-Emam et al., 1999). The opti-
mal cuto� value for this LR model is 0.33, which is quite
di�erent from the traditonally utilized cuto� values
(which are typically P 0.5). The sensitivity and speci-
®city of this model at the optimal operating point are
estimated to be 0.81 and 0.83, respectively. Sensitivity is
the proportion of high risk classes that are correctly
classi®ed as high risk. Speci®city is the proportion of low
risk classes that are correctly classi®ed as low risk.

Now that we have calibrated the model (i.e., deter-
mined its optimal operating characteristics), it can be
applied to predict which classes in the test data set
(version 0.6) are going to be faulty.

4.4. Prediction

We used the model in Table 6 to predict which classes
in the test data set will have a fault. Note that since we
only use design metrics, this prediction can be per-
formed at design time.

The ROC curve for the predictions on the test data set
is shown in Fig. 3. This curve has an area of 0.78, which
is not far o� from the leave-one-out estimate, and is very
good. This indicates that this model would have a good
prediction accuracy. The predictions at the optimal
cuto� of 0.33 are shown in Table 7. The J value for this
model is 0.49, which can be considered to be high.

In practice, it is also informative to calculate the
proportion correct accuracy for a prediction model when

Table 6

LR results for the best modela

G R2 g

38.98;

p < 0:0001

0.4355 6.1737

Intercept ATTS OCMEC DIT

b coe�cient )3.9735 0.0464 1.4719 1.0678

p-value 0.0001 0.1141 0.0004 0.0039

DW 1.603 20.746 3.156
a The G coe�cient tests the hypothesis if any of the regression pa-

rameters is di�erent from zero. The R2 is a goodness-of-®t measure,

g the condition number to determine the extent of collinearity, b the

estimated coe�cient for the variable, the p-value the one-sided prob-

ability of getting an coe�cient as extreme under the null hypothesis,

and DW is the change in odds ratio.

Fig. 2. ROC curve for the calibration model. The area under the ROC

curve is 0.87. The optimal operating point is at a cuto� value of 0.33,

with a sensitivity of 0.81 and a speci®city of 0.83.

Fig. 3. ROC curve for the test set. The area under the ROC curve is

0.78.

Table 5

Spearman correlations among the metrics that were found to be

associated with fault-proneness after controlling for size

OCAEC OCMEC OCMIC

OCMEC 0.81

(<0.0001)

OCMIC 0.50

(<0.0001)

0.71

(<0.0001)

DIT 0.30

(0.0015)

0.15

(0.1067)

0.09

(0.3480)
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used in a particular context. The following equation
formulates the relationship between sensitivity, speci-
®city, prevalence of faulty classes, and proportion cor-
rect accuracy:

A � �s� h� � �f � �1ÿ h��; �2�

where A is the proportion correct accuracy, h the pro-
portion of faulty classes, s sensitivity, and f is the spec-
i®city. For example, if our prediction model is to be used
on an actual project where only 10% of the classes are
expected to have faults in them, then the proportion
correct accuracy would be approximately 0.77.

4.5. Quality estimation

In version 0.6 of the system, the prevalence of classes
that were faulty was 0.57, as can be seen in Table 7. The
na�õve estimate of the prevalence of faulty components is
0.50 (21/42). This is smaller than the actual prevalance.
By using Eq. (A.7) in Appendix D and the estimated
sensitivity and speci®city, we can correct this estimate to
obtain an estimate of 0.52. The corrected estimate is
closer to the actual value.

In this particular example the LR model that we
constructed was rather accurate on the test data set
(version 0.6). Therefore, the na�õve and corrected esti-
mates were not far apart. However, it is clear that the
corrected estimate is an improvement over the na�õve
estimate.

In general, an LR model constructed from the train-
ing data set can provide rather good quality estimates
using the formula provided in Appendix D. This is a
considerable advantage as the LR model is usable at the
design stage of a project.

4.6. Discussion of results

Our results indicate that, in addition to a simple size
metric, the OCMEC and DIT metrics can be useful in-
dicators of fault-prone classes. They are both associated
with fault-proneness after controlling size, and when
combined in a multivariate model can provide accurate
predictions of which classes are likely to contain a fault.
The added advantage of both of the above metrics is

that they can all be collected at design time, allowing
early management of software quality.

We have also added to the methodology initially
presented in El-Emam et al. (1999, 2000) by providing a
correct technique for estimating the quality of an object-
oriented system using design metrics. Our results indi-
cate that such an estimate is rather accurate.

We found that an inheritance metric and an EC
metric are both associated with fault-proneness. We
discuss this ®nding and its implications on the design of
object-oriented systems.

4.6.1. Relationship between inheritance depth and fault-
proneness

Previous studies suggest that depth of inheritance has
an impact on the understandability of object-oriented
applications, and hence would be expected to have a
detrimental in¯uence on fault-proneness (Cartwright,
1998; Unger and Prechelt, 1998). However, this con-
clusion is equivocal as a contradictory result was found
in Daly et al. (1996). Some authors (Unger and Prechelt,
1998) contend that inheritance depth per se is not the
factor that a�ects understandability, but the number of
methods that have to be traced. Further support for this
argument can be found in a recent study of a telecom-
munications C++ system (El-Emam et al., 1999),
whereby an ancestor-based IC metric was found to be
associated with fault-proneness, whereas depth of
inheritance tree was not.

The fact that we found that the depth of inheritance
tree to be associated with fault-proneness may be, ac-
cording to previous literature reviewed above, due to
two reasons:
· a badly designed inheritance hierarchy such that

inherited classes are inconsistent with their super-
classes;

· the DIT metric is confounded with method invoca-
tions up the inheritance hierarchy, and in fact inher-
itance depth is not the cause of fault-proneness.

Further focused studies are required to determine which
of the above explanations are closer to reality.

4.6.2. Relationship between export coupling and fault-
proneness

The e�ect of the EC metric in our results was much
stronger than that of DIT. The EC metric that we se-
lected considered class±method interactions, although
we did ®nd that it is strongly associated with class±at-
tribute interactions as well. Therefore, a priori it seems
reasonable to talk about EC in general since these two
types of interactions tend to co-occur.

A previous study of a C++ telecommunications sys-
tem (El-Emam et al., 1999) also noted that EC is asso-
ciated with fault-proneness. While two studies do not
make a trend, there appears to be some initial consis-
tency in ®ndings.

Table 7

Prediction results in a confusion matrix for the optimal cuto�. The

J value for this is 0.49

Predicted fault status

Not faulty Faulty

Real fault

status

Not faulty 14 4 18

Faulty 7 17 24

21 21 42
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One can make two hypotheses about why EC is
strongly associated with fault-proneness:
· Classes that have a high EC are used more frequently

than any other classes. This means that in operational
systems their methods are invoked most frequently.
Hence, even if all classes in a system have exactly
the same number of faults in them, more faults will
be discovered in those with high EC simply because
they are exercised more. This hypothesis suggests that
cognitive complexity is not the causal mechanism that
would explain our ®ndings.

· A client of a class d makes assumptions about d's be-
havior. A class with more EC has more clients and
therefore more assumptions are made about its be-
havior due to the existence of more clients. Since
the union of these assumptions can be quite large, it
is more likely that this class d will have a subtle fault
that violates this large assumption space, compared
to other classes with a smaller set of assumptions
made about their behavior.

If either of the above hypotheses is true, it remains that
they are not speci®c to object-oriented programs. The
same phenomena can occur in traditional applications
that followed structured design methodology.

4.6.3. Summary
Our results have highlighted certain structural prop-

erties of object-oriented systems that are problematic.
While we cannot provide exact causal explanations for
the ®ndings that inheritance depth and EC are strongly
associated with fault-proneness, we have posited some
precise hypotheses that can be tested through further
empirical enquiry.

4.7. Limitations

This study has a number of limitations which should
be made clear in the interpretation of our results. These
limitations are not unique to our study, but are char-
acteristics of most of the product metrics validation
literature. However, it is of value to repeat them here.

This study did not account for the severity of faults.
Lack of accounting of fault severity was one of the
criticisms of the quality modeling literature in Fenton
and Neil (1999b). In general, unless the organization has
a reliable data collection program in place where se-
verity is assigned, it is di�cult to retrospectively obtain
this data. Therefore, the prediction models developed
here can be used to identify classes that are prone to
have faults that cause any type of failure.

It is also important to note that our conclusions are
pertinent only to the fault-proneness dependent vari-
able, albeit this seems to be one of the more popular
dependent variables in validation studies. We do not
make claims about the validity (or otherwise) of the
studied object-oriented metrics when the external attri-

butes of interest are, for example, maintainability (say
measured as e�ort to make a change) or reliability (say
measured as mean time between failures).

It is unwise to draw broad conclusions from the re-
sults of a single study. Our results indicate that two
structural properties of object-oriented metrics are as-
sociated with fault-proneness. While these results pro-
vide guidance for future research on the impact of
coupling and inheritance on fault-proneness, they
should not be interpreted as the last word on the subject.
Further validations with di�erent industrial systems are
necessary so that we can accumulate knowledge and
draw stronger conclusions, and perhaps explain the
causal mechanisms that are operating.

5. Conclusions

In this paper, we performed a validation of object-
oriented design metrics on a commercial Java system.
The objective of the validation was to determine which
of these metrics were associated with fault-proneness.
This would allow the prediction of the classes that will
be fault-prone and estimating the overall quality of fu-
ture systems. Our results indicate that an inheritance
and an EC metric were strongly associated with fault-
proneness. Furthermore, the prediction model that we
constructed with these two metrics has good accuracy,
and the method we employed for predicting the quality
of a future system using design metrics also has a good
accuracy.

While this is a single study, it does suggest that per-
haps there are a small number of metrics that are
strongly associated with fault-proneness, and that good
prediction accuracy and quality estimation accuracy can
be attained. This conclusion is encouraging from a
practical standpoint, and hence urges further studies to
corroborate (or otherwise) our ®ndings and conclusions.

Appendix A. Overview of logistic regression

In this appendix, we provide an overview of LR and
the various diagnostics and tests that were applied
during the construction of our models.

Binary LR is used to construct models when the de-
pendent variable is binary, as in our case. The general
form of an LR model is

p � 1

1� eÿ b0�
Pk

i�1
bixi

ÿ � ; �A:1�

where p is the probability of a class having a fault, and
the xi's are the independent variables. The b parameters
are estimated through the maximization of a log-likeli-
hood (Hosmer and Lemeshow, 1989).
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A.1. Magnitude of association

The magnitude of an association can be expressed in
terms of the change in odds ratio as the x1 variable (i.e.,
object-oriented metric) changes by one standard devia-
tion, and is denoted by DW, and is given by 6:

DW � W x1 � r� �
W x1� � � eb1r; �A:2�

where r is the standard deviation of the x1 variable.
When computing the change in odds ratio, it is also
necessary to inspect each independent variable for out-
liers since a single extreme observation can increase the
standard deviation and hence in¯ate the change in odds
ratio. This only involves the detection of univariate
outliers, and therefore can be performed by inspecting
the variable distribution.

A.2. Collinearity

Since we control through regression adjustment for
the size confounder, careful attention should be paid to
the detection and mitigation of potential collinearity.
Strong collinearity can cause in¯ated standard errors for
the estimated regression parameters. We use the condi-
tion number (denoted by g) as described by Belsley et al.
(1980). Further discussion of collinearity diagnostics in
the context of validating object-oriented metrics can be
found in (El-Emam et al., 2000). Belsley et al. suggest
that a condition number greater than 30 indicates mild
to severe collinearity.

A.3. Hypothesis testing

The next task in evaluating the LR model is to de-
termine whether any of the regression parameters are
di�erent from zero, i.e., test H0: b1 � b2 � � � � � bk � 0.
This can be achieved by using the likelihood ratio G
statistic (Hosmer and Lemeshow, 1989). If the likeli-
hood ratio test is found to be signi®cant at a � 0:05,
then we can proceed to test each of the individual
parameters. This is done using a Wald statistic,
b̂j=�S:E:�b̂j��, which follows a standard normal distri-
bution. These tests were performed at an one-tailed al-
pha level of 0.05. We used one-tailed test since all of our
alternative hypotheses are directional: there is a positive
association between the metric and fault-proneness.

For each object-oriented metric, if the parameter of
the object-oriented metric is statistically signi®cant, then
this metric is considered further. Statistical signi®cance
indicates that the metric is associated with fault-prone-
ness. If the parameter for the object-oriented metric is
not statistically signi®cant then that metric is dropped
from further consideration.

A.4. Goodness of ®t

In previous studies another descriptive statistic has
been used, namely an R2 statistic that is analogous to the
multiple coe�cient of determination in least-squares
regression (Briand et al., 1998b, 2000). We use a cor-
rected version of this suggested by Hosmer and Leme-
show (1989). It should be recalled that this descriptive
statistic will in general have low values compared to
what one is accustomed with in a least-squares regres-
sion. In our study, we will use the corrected R2 statistic
as an indicator of the quality of the LR model.

A.5. In¯uence analysis

In¯uence analysis is performed to identify in¯uential
observations (i.e., ones that have a large in¯uence on the
LR model). Pergibon (1981) has de®ned the Db diag-
nostic to identify in¯uential groups in LR. The Db di-
agnostic is a standardized distance between the
parameter estimates when a group of observations with
the same xi values is included and when they are not
included in the model. We use the Db diagnostic in our
study to identify in¯uential groups of observations. For
groups that are deemed in¯uential, we investigate this to
determine if we can identify substantive reasons for
them being over in¯uential. In all cases in our study
where a large Db was detected, its removal, while af-
fecting the estimated coe�cients, did not alter our
conclusions.

Appendix B. Measures of prediction accuracy

It is common that prediction models using object-
oriented metrics are cast as a binary classi®cation
problem. We ®rst present some notation before dis-
cussing the binary accuracy measure that we use.

Table 8 shows the notation in obtained frequencies
when a binary classi®er is used to predict the class of
unseen observations in a confusion matrix. We consider
a class as being high risk if it has a fault and low risk if it
does not have a fault.

Such a confusion matrix also appears frequently in
the medical sciences in the context of evaluating diag-
nostic tests, for example, see Gordis (1996). Two im-
portant parameters have been de®ned on such a matrix

6 In some instances the change in odds ratio is de®ned as:

DW � W�x1 � 1�=W�x1�. This gives the change in odds when the

object-oriented metric increases by one unit. Since di�erent metrics

utilize di�erent units, this approach precludes the comparison of the

change in odds ratio value. By using an increment of one standard

deviation rather than one unit, as we did, we can compare the relative

magnitudes of the e�ects of di�erent object-oriented metrics since the

same unit is used.
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that will be used for our exposition, namely sensitivity
and speci®city.

The sensitivity of a binary classi®er is de®ned as

s � n22

n21 � n22

: �A:3�

This is the proportion of high risk classes that have been
correctly classi®ed as high risk classes.

The speci®city of a binary classi®er is de®ned as

f � n11

n11 � n12

: �A:4�

This is the proportion of low risk classes that have been
correctly classi®ed as low risk classes.

Ideally, both the sensitivity and speci®city should be
high. A low speci®city means that there are many low
risk classes that are classi®ed as high risk. Therefore, the
organization would be wasting resources reinspecting or
focusing additional testing e�ort on these classes. A low
sensitivity means that there are many high risk classes
that are classi®ed as low risk. Therefore, the organiza-
tion would be passing high risk classes to subsequent
phases or delivering them to the customer. In both the
cases, the consequences may be expensive ®eld failures
or costly defect correction later in the life cycle.

The J coe�cient of Youden (1950) was suggested in
El-Emam et al. (2001) as an appropriate measure of
accuracy for binary classi®ers in software engineering.
This is de®ned as

J � s� f ÿ 1: �A:5�

This coe�cient has a number of desirable properties.
First, it is prevalence independent (i.e., it does not de-
pend on the proportion of faulty classes in the data set).
For example, if our classi®er has speci®city and sensi-
tivity equal to f � 0:9 and s � 0:7, then its J value is 0.6
irrespective of prevalence. The J coe�cient can vary
from )1 to +1, with +1 being perfect accuracy and )1
being the worst accuracy. A guessing classi®er (i.e., one
that guesses high/low risk with a probability of 0.5)
would have a J value of 0. Therefore, J values greater
than zero indicate that the classi®er is performing better
than would be expected from a guessing classi®er.

Appendix C. Overview of ROC curves

Previous studies have used a plethora of LR cuto�
values to decide what is high risk or low risk, for ex-
ample, 0.5 (Basili et al., 1996; Morasca and Ruhe, 1997;
Briand et al., 1998b, 1999b), 0.6 (Briand et al., 1998b),
0.65 (Briand et al., 1998b, 2000), 0.66 (Briand et al.,
1998a), 0.7 (Briand et al., 2000), and 0.75 (Briand et al.,
2000). In fact, and as noted by some authors (Morasca
and Ruhe, 1997), the choice of cuto� value is arbitrary,
and one can obtain di�erent results by selecting di�erent
cuto� values, for example, see El-Emam et al. (1999).

A general solution to the arbitrary thresholds problem
mentioned above is ROC curves (Metz, 1978). One se-
lects many cuto� points, from 0 to 1 in our case, and
calculates the sensitivity and speci®city for each cuto�
value, and plots sensitivity against one-speci®city as
shown in Fig. 4. Such a curve describes the compromises
that can be made between sensitivity and speci®city as
the cuto� value is changed. One advantage of expressing
the accuracy of our prediction model (or for that matter
any diagnostic test) as an ROC curve is that it is inde-
pendent of the cuto� value, and therefore no arbitrary
decisions need be made as to where to cut o� the pre-
dicted probability to decide that a class is high risk
(Zweig and Campbell, 1993). Furthermore, using an
ROC curve, one can easily determine the optimal op-
erating point, and hence obtain an optimal cuto� value
for an LR model.

Fig. 4. Hypothetical example of an ROC curve.

Table 8

Notation for a confusion matrix

Predicted Risk

Low High

Real Risk Low n11 n12 N1�
High n21 n22 N2�

N�1 N�2 N
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For our purposes, we can obtain a summary accuracy
measure from an ROC curve by calculating the AUC
using a trapezoidal rule (Hanley and McNeil, 1982). The
area under the ROC curve has an intuitive interpreta-
tion (Hanley and McNeil, 1982;Spiegelhalter, 1986): it is
the estimated probability that a randomly selected class
with a fault will be assigned a higher predicted proba-
bility by the LR model than another randomly selected
class without a fault. Therefore, an AUC of say 0.8
means that a randomly selected faulty class has an es-
timated probability larger than a randomly selected not
faulty class 80% of the time.

When a model cannot distinguish between faulty and
not faulty classes, the area will be equal to 0.5 (the ROC
curve will coincide with the diagonal). When there is a
perfect separation of the values of the two groups, the
area under the ROC curve equals 1 (the ROC curve will
reach the upper left corner of the plot).

Therefore, to compute the accuracy of a prediction
LR model, we use the area under the ROC curve, which
provides a general and non-arbitrary measure of how
well the probability predictions can rank the classes in
terms of their fault-proneness.

The optimal operating point on the ROC curve is the
point closest to the top-left corner. This gives the cuto�
value that will provide the highest sensitivity and spec-
i®city. At the optimal cuto�, one can also estimate the
sensitivity, ŝ, and speci®city, f̂ . These values are then
used for quality estimation.

Appendix D. Quality estimation

Using a calibrated LR model (i.e., where the optimal
cuto� point has been identi®ed), it is possible to estimate
quality on a new data set. Here, quality is de®ned as the
proportion of classes that have at least one fault. A
na�õve estimate of the proportion of faulty classes is

t̂ � N�2

N
: �A:6�

However, as shown in Rogan and Gladen (1978), this
will only be unbiased if both sensitivity and speci®city
are equal to 1. The corrected estimate of the proportion
of faulty components is given by

p̂ � t̂ � f̂ ÿ 1

ŝ� f̂ ÿ 1
: �A:7�

If both ŝ and f̂ are equal to 1, then p̂ � t̂. Since in
practice this is unlikely to be the case, we should use
Eq. (A.7) to make the estimate.
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