
Tempo:

De�ning Software Processes in an Approach Based on Objects with

Roles

Noureddine Belkhatir

LGI

BP 53

38041 Grenoble France

e-mail: belkhatir@imag.fr

Walc�elio L. Melo

University of Maryland

UMIACS,

College Park, MD, 20742 USA

e-mail: melo@umiacs.umd.edu

Published in the Proc. of the 1st Int'l Conf. on Object-Role Modelling .
Magnetic Island, Australia, July 1994.

Abstract

Recent developments have shown the need for an integrated view of the large-scale software de-
velopment environment that takes account of how software products are managed and produced.
To ful�ll these requirements, the activities carried out during software development must be man-
aged. In this paper, we describe the work we are carrying to support software process de�nition
and enacting.

We shall discuss an approach to process modeling known as an object-oriented software process
modeling language. Special attention is paid to how object-oriented concepts, the role concept,
and trigger rules can be integrated to describe software process models.

1 Introduction

There is broad agreement that software engineering environments (SEE's) should provide explicit support
for capturing and controlling software processes. Software processes should be represented explicitly and,
in part, automatically executed by a SEE [16]. To satisfy this requirement, several research programs
have explored data integration and centralized control using integrating platforms. These platforms provide
support for product structuring, versioning, software con�guration, and other engineering processes. On the
basis of this experience, the entity-relationship-attribute data model (ERA), extended with Object-Oriented
(OO) concepts, has been successful used as a conceptual framework for process de�nition. Nevertheless,
although the basic OO concepts are a good starting point, they alone are not su�cient for capturing all the
complexity of software engineering processes and their evolution. We claim that major capabilities such as
multiple object behavior and modeling of activities with long duration, including long events and the time
concept, need to be added to such a conceptual framework.

We have addressed these problems in our work in the framework of the Adele project. Adele, which was
initially a revision control system, has been extended with user-de�ned entities and relation types to support
the de�nition and control of large software systems. To make it possible to support software processes,
the Adele language has been extended with event-condition (ECA) rules, and the Adele kernel has been
extended with a trigger mechanism. This new system is called Adele 2 [2]. Adele 2 is now a commercial
software product and is used for automatic software con�guration activites in various European companies,

such as Matra-Space, and ESPRIT projects, such as REBOOT. On the basis of our experience working with
Adele 2, we have concluded the O.O. data model, even when integrated with ECA rules, is not su�cient for
de�ning software process models. Once ECA rules are fragmented among data and relation types, it becomes
di�cult to control process enacting and to manage changes in processes. To overcome such drawbacks, we
have initiated the Tempo project [4] to support software development processes. Tempo has enable an
accurate set of software activities to be aggregated in process types and the static and behavioral description
of objects, manipulated by such activities, to be re-de�ned according to their roles in a process step. As
time plays an important role in any SEE, because we deal with long transactions, we have also studied how
temporal information can be represented and how it can be exploited in the software process evolution. As
we shall show later, we have decided to extend our ECA formalism with temporal logical operators. We
have modi�ed the Tempo process engine to make it possible to interpret temporal ECA rules. This paper
discribes these extensions and shows examples of how they are used for modeling, evolving, and enacting
software processes.

1.1 Rationale

Adele/Tempo is a Process-Oriented Software Development Environment (POSE) [5] that focuses on the
following capabilities:

� management of resources shared by a team for enforcing cooperative work, by providing objects with
roles;

� activity coordination and traceability of activity execution, by providing activity management.

1.1.1 Object roles

Using object-oriented technology, we can model software process steps (or sub-processes) using complex
active objects. As software objects associated with sub-processes also provide operations (methods), the
combination of these two kinds of facilities could be used to describe statically (process model) and dynam-
ically (process enactment) the software processes of a particular environment or company.

As the only structuring concept supplied by the traditional O.O. paradigm is the classi�cation concept,
however this model supports only one object behavior description, which can be re�ned by specialization
using the class structure. All applications are supposed to conform to in that structure and consequently
to that behavior. This mono-behavioral belief, which reigns in the O.O. world, impacts directly on the
di�culties involved in process management. If we allow an object to behave di�erently depending on where,
when, and how is it used, and enable it to be seen through di�erent prisms, we claim it will be possible to
better manage process changes. Using this approach, we could modify software processes by creating new
ways to see and manipulate already-instantiated objects in harmony with old de�nitions.

1.1.2 Activity management

In an O.O. approach, objects interact by executing and exchanging messages via methods that support the
active part. A number of mechanisms have been suggested for controlling and synchronizing interaction
between methods. The most inuential is the trigger mechanism based on Event-Condition-Action rules.
ECA rules have been proposed to manage communication by extracting actions speci�c to method driving
from method de�nition.

The trigger mechanism is most integrated with mechanisms supporting only short transaction (in the sense
of dabase management systems). In the framework of software process, however activities have a long
duration (long transactions). Thus, to coordinate method execution and control activity evolution, we need
mechanisms that keep track of activity chaining and trace its execution. Therefore, we must introduce
concepts and mechanisms for dealing with time. These requirements lead to:

1. a log database that contains capabilities for tracing object states;

2. capabilities to reason with temporal events.

1.2 Outline

Section 2 presents an overview of the Adele/Tempo system. Section 3 presents an overview of the Tempo
software process modeling language. We present our conclusions in section 4.

2 An overview of Adele/Tempo

The Adele/Tempo system consists of three basic parts (see �gure 1):

� A resource manager using Adele database as a persistent object base for storing objects and activities
and for tracing the project's progress. ADL-DB supports an entity-relationship data model which
is extended with object-oriented concepts like inheritance, methods and encapsulation. Simple and
composite objects with attributes and relationships can be described and managed. This component
of Adele/Tempo architecture is responsible for the data integration according to conceptual model
proposed by [20].

� An activity manager which is the responsible for the control integration in our platform. This activ-
ity manager is driven by Temporal-event-condition-action rules (TECA) and supported by a trigger
mechanism.

� A process manager which o�ers de�nition concepts for activity structuring by the process and role
concepts. Process occurrences are supported by work environments (WE) wherein software activities
are performed. The process manager, based on the activity manager, manages communication and
synchronization between teams and between agents involved in a same project. It also controls the
consistency of complex objects used simultaneously in di�erent work environments by di�erent software
processes occurrences and agents. This component represents the conceptual component responsible
for process integration in the Adele/Tempo architecture.

ADL-DB
Software Artifacts
Software Process

Version control
Conf. Manager

Activity
Manager

instantiation WE-2

WE-1

WE-3

Process
Manager

ADL-AM

ADL-PM

Figure 1: The kernel of Adele/Tempo environment.

3 The Tempo software process modeling language

Tempo [4] is an executable formalism for describing and enacting software process models. It uses an object-
oriented approach extended by the addition of a multi-behavioral facility. The multi-behavioral facility is
a major problem currently being researched in a wide range of �elds. The problem arises when developing
large, complex systems characterized by the presence of several agents, working on shared resources and using
multiple representations and multiple development strategies. In this context we need a way of expressing
relationships between multiple view points.

There are three sides to our approach:

� modeling of software activities by software process types;

� analysis of the various view points and software component life cycle states using the role concept;

� describing software temporal constraints by temporal-event-condition action rules (triggers rules). ECA
rules are extended, using a temporal modality, to support long transactions (long duration activities).
The temporal modality is applied to events, and it allows reasoning in relation to past activities.

3.1 The Adele data model

The Adele data model is derived from an entity-association model and integrates object-oriented concepts
[2]. The basic entities of the model are object type and relationship type. Each entity (object and relation-
ship) possesses static (attributes) and dynamic (methods, event-condition-action temporal rules) properties.
Relationships are binary.

The data model supports complex objects referred to as aggregates. An aggregate is an object linked to its
components by relationships. For example, a Pascal module can consist of an interface and an implementa-
tion. Consequently, the Pascal module object can be represented as an object linked to two other objects by
two types of relationship, possesses-interface and possesses-implementation. Aggregate semantics are de�ned
by the dynamic properties of the relationship linking the aggregate to its components. The semantics are
de�ned by the user; any aggregate can thus be de�ned using its own semantics and consistency constraints.

In Adele, a type is de�ned by an interface part, and an implementation part which describe type instance
properties.

The notions of interface and implementation are similar to those used in programs written using languages
such as ADA and MODULA, or indeed certain object-oriented languages.

The interface part contains the type properties that are visible and are exported. The implementation part
contains private properties and the implementation of visible methods.

3.2 Software process types: modelling software process models

TEMPO describes and executes software processes. A software process model of considerable size may thus
be written by a group of various software process types. A software process type can aggregate other software
process types.

For example, an activity to check a module design document comprises two sub-processes:

1. A sub-process that models the modi�cation activity that makes changes to the design document.

2. A sub-process that models the revision activity that approves design document modi�cations that have
been made.

MonitorDesign ISA PROCESS;

CONTROL md;

sub = ModifyDesign;

CONTROL rd;

sub = ReviewDesign;

END_OF MonitorDesign;

ModifyDesign ISA PROCESS;

ATTRIBUTES

begin_date = DATE := now();

end_date = DATE;

deadline = DATE;

METHODS . . .

RULES . . .

END_OF ModifyDesign;

ReviewDesign ISA PROCESS; ...

The example above shows the software process type MonitorDesign, composed of the sub-processes
ModifyDesign and ReviewDesign. The activity coordinating the module design document modi�cation
is represented by the MonitorDesign type. ModifyDesign is the type which describes the design document
modi�cation process, and ReviewDesign is for revising this modi�cation.

It is possible, for every process type, to de�ne attributes, methods, and temporal constraints by using the
event-condition-action rules.

3.3 The temporal contraints

Due to the long life duration of software processes, we also need management mechanisms for time con-
straint and traceability. To support process evolution, we also need to be able to reason about execution
sequences. Thus we have introduced temporal reasoning capability in Adele/Tempo system to plan and
schedule activities in software process. Temporal constraints can be used either to schedule activities or
to aid synchronization and cooperation between activites. To integrate temporal constraints in the Tempo
language, we are incorporating temporal features in the event-condition-action rules (ECA). After we have
extended the trigger mechanism of the Adele/Tempo system to support reasoning about time. This new
formalism combines of standard ECA rules and temporal logic predicates. In this way, we are adding a new
dimension to the Adele/Tempo system for managing process evolution using temporal knowledge in the �eld
of software process management.

3.3.1 Temporal event-condition-action rules

Temporal contraints are described by temporal-event-condition-action (TECA) rules. TECA rules are sim-
ilair to Alf/Pcte [6], Damokles [7], and HiPAC [11] trigger rules. Interpretation and execution of these
rules are based on trigger mechanism integrated to the object management system of Adele/Tempo [2]. For
example:

ModifyDesign ISA PROCESS;

ATTRIBUTES

begin_date = DATE := now();

end_date = DATE;

deadline = DATE;

METHODS

continue_execution;

. . .

RULES

(1) AFTER WHEN deadline_arrived

DO stop_execution;

(2) PRE WHEN continue_execution

IFPAST not deadline_changed

FROM last(deadline_arrived) UNTIL now()

DO ABORT;

END_OF ModifyDesign;

1. The rule described in line 1 speci�es the design document modi�cation activity must stop when the
date foreseen has been reached.

2. The rule in line 2 states that resumption of the activity (it hasn't been completed yet) �rst requires
the termination date be changed.

3.3.2 TECA rules execution module

TECA rules are de�ned in the data model (not shown in this article) and in the software process module.
They are inherent in the hierarchy of object types and software processes. In the data model, the TECA
rules describe integrity limitations that are independent of the object's usage context. On the other hand,
these rules are used to express the software development strategy used in the software process model: order
of activity execution, activity synchronization, and software resource usage limitations.

A TECA rule is expressed in the following manner: "WHEN temporal-event DO Method", where "temporal-
event" is the temporal predicate expressing:

1. an event in the present state of the developpement environment (e.g., objects, tools and agents states)
or

2. an event about the past state of the developpement environment which has been stored in the database
of the Adele/Tempo system.

Method is an instruction sequence.

DEFEVENT delete_obj = [!cmd = rmobj] ;

The delete obj event is de�ned in this example as being the event that survives whenever the current
command (!cmd) is an object removal command (rmobj).

A method is a program written in simple, direct language similar to the Unix shell.

METHOD delete ;

IF [state = stable] THEN ABORT

ELSE "rmobj %name ";

END delete;

This method allows for object removal in an unstable state.

Triggers rules can be de�ned to control the execution of methods. Some triggers will be executed before
the methods, acting as pre conditions, others after the method execution, as post-conditions. Since triggers
are (originally) intended to enforce consistency, any inconsistency found by a trigger must be able to undo
(roll-back) the method execution. Thus for any method the following instructions will be executed:

PRE list of triggers

Action (Method)

POST list of triggers

The whole execution is always a single transaction, even if the triggers or the methods send messages to other
objects. The execution of a primitive ABORT, anywhere in a block (PRE/Action/POST) will undo everything
that was done in this block. AFTER triggers are executed after transaction committing; they are used to
execute actions when sure that the transaction succeeded, as for example sending noti�cations, or to execute
new actions whose failure must not undo the main action.

If the transaction failed, ERROR triggers are executed.

Thus for each object and relation type, there are �ve blocks:

PRE list of triggers

METHOD list of methods

POST list of triggers

AFTER list of triggers

ERROR list of triggers

3.3.3 Related work

Other SEEs use ECA rules, such as AP5 [12], Alf/Pcte [6] and Appl/A [19]. Alf and Tempo provide four
TECA rules execution modes (PRE,POST,AFTER and EXCEPTION) whereas AP5, Marvel, Triad and
Appl/A support only one mode of execution, the mode POST. All these systems do not provide concepts
for handling Temporary constraints.

Alf's event-condition-action rules are similar to those o�ered by Adele/Tempo. However, Alf does not have
the concept of method. Such as in Marvel, all the actions must be de�ned by the operators (production rules
according to the MASP formalism). The execution of an operator can trigger a forward chaining process
in the user's private space (ASP in the Alf terminology). ECA rules are de�ned elsewhere and executed by
another mechanism called \trigger". In Tempo, we adopted only one concept to de�ne both the constraints
on the execution of methods and the constraints on the utilization of objects, i.e, the TECA rules.

Some other systems like AP5 [12] and ODE [9] also, in a way, provide ECA rules concerning time. However,
these systems do not allow the speci�cation of conditions about past actions. They limit themselves to
specifying that for example, some actions (mainly methods) must be executed at an absolute/particular
time in the future, for example, every day at 9 a.m or tomorrow at 6 p.m. etc.

3.4 Object with roles

Multiple perspectives or view points often occur during a software product life cycle. Several users treat
objects concurrently, using di�erent views of the objects with limited, controlled actions speci�c to their
activity. These users, controlled by multiple development strategies, handle di�erent models of the same
product. A SEE should provide a work environment that can describe and control these various aspects.

Owing to the role concept, Tempo language allows each software process occurrence to have local contraints
and properties for each object treated [3].

Roles have a de�ned type. A role type may reference di�erent types of objects. This strategy allows the
integration of various types of behaviour and properties, coming from di�erent types of objects, within a
single perspective. This strategy uni�es thus the treatment of a heterogeneous set of objects. The advantage
of this approach is that a set of object types with di�erent static and dynamic characteristics can be viewed,
using the role concept, during a speci�c software process execution step in a coherent, homogeneous fashion.
This coherence is maintained by using the multiple heritage rules available in object-oriented models. The
principal di�erence is based on the extent of the roles. At the de�nition level, a role type is viewed as the
specialisation of the types it contains. However, at the instance level:

1. Objects created from a role are not included in the role's specialised type extensions.

2. A subset of objects pertaining to these types may belong to the role.

A software process type may have several role types; a software process becomes a list of roles whereby
each object type may have di�erent roles. Consequently, two objects of the same type may be controlled
di�erently within the same software process. At the same time, an object can play roles within di�erent
software processes. For example:

ReviewDesign ISA PROCESS;

ROLE under_review;

derived_from = specification_document;

. . .

ROLE requested_change;

derived_from = cc_request;

. . .

END_OF ReviewDesign;

3.5 Role discussion

One may claim that this kind of contextual behavior can be achieved by standard object-oriented techiniques.
Roles and type look similar. This raises the question: Can roles be implemented in terms of typing and
sub-typing? Is the concept of role needed? We claim the role concept has the following properties:

1. Prevent type explosion.
A role, as well as a type, is a template applied to a set of instances sharing the same de�nition (static
and behavioral). A given object instance can be simultaneously a member of di�erent roles (classes).
Both roles and types can be seen as a viewing mechanism since a given object instance has a di�erent
description depending on the role (class) from which it is managed. One would need to create a sub-
type for all the possible combinations of roles for a single type, and to change instance type dynamically
each time a new role is applied to it. However, there is a fundamental di�erence:

The association between an instance and its type is de�ned statically at instantiation time,
while an instance can be bound dynamically to an arbitrary role at any time.

Furthermore, since the instance can be share and play di�erent roles simultaneously, dynamic typing
cannot be used. We introduce the possibility of changing type dynamically. In an OO system the type
de�nition is created �rst, and then the instances of the types. In the Adele/Tempo system, on the
other hand, the instances usually are created �rst, and are associated dynamically, for a while, to a
(set of) role(s).

2. Identity is not altered.
Since a given object can be simultaneously a member of di�erent roles, there are compatibility rules
between the roles allowed for shared objects. In TEMPO, objects can change behavior depending on
the context without changing identity.

3. Schema evolution-version.
Schema evolution support is an important facility for a software engineering environment, because
we need to make it possible to evolve the characteristics of software objects manipulated during the
software processes. The role concept naturally integrates a type evolution facility, since role types are
similar to object types in O.O. languages. The role concept o�ers two kinds of evolution:

(a) role de�nition can change generating role version;

(b) objects can change their roles dynamically.

3.6 Related work

Other SEEs have recently integrated concepts similar to the role concept proposed in Tempo, for example,
ES-TAME [13] and Alf/Pcte with its \Work Scheme" concept [6].

ES-TAME allows dynamic change of object type during the execution of software activities. As a result,
object attributes and methods can change depending on the activity under which this object is handled.
This exibility of type modi�cation can be taken as the implementation mechanism for the role concept
proposed in Tempo.

In Alf/Pcte [6], the same object can have di�erent properties (attribute and relations) depending on the
\Work Scheme" under which it is handled. Altough Alf/Pcte o�ers also trigger rules [14], but time dimension

is not taken into account.

In the �eld of databases, the problem related to the modelling of object roles tend to be used as a means of
improving the description of object evolution phases or object utilization facets. Several studies have been
and are still on this problem. In general, the strategy used is to adopt a persistent object-oriented language
and then extend it with the view concept, like the Aspect languages [17], Fibonacci [1] and Views [18].
Object handling is therefore carried out via its view. The limits presented by these approaches as compared
to ours are the following:

� They o�er no concepts for modelling activities where objects can be handled. Therefore, the way in
which an object is perceived and handled is described without considering the context in which the
said object will be used.

� The choice of the use of a view is left to the application's programmer. This decision is based on the
description, in the program, of the view that must answer to the messages sent to the object.

� In general,these languages, do not o�er concepts for aggregation of di�erent points of view.

4 Conclusions

The Tempo language is designed for describing software processes and, in particular, for enforcing cooperative
work.

The main capabilities of Adele/Tempo system are:

� The model used to describe processes is an object-oriented model. Each process step occurrence
aggregates a set of entities. Each entity is managed by Adele database. When an entity is manipulated
it is considered by Tempo as process resource. A resource \plays a role" in a software process step. The
role concept makes it possible to customize the characteristics and behavior of a resource. Resource
attributes can be forbidden, modi�ed, created, and overloaded to satisfy the requirements of a process
step. In the same way, resource behavior can be tuned, and speci�c communication and synchronization
operations can be described take account of events generated inside/outside a software process step.

� Adele/Tempo provides new facilities for working with object log and process evolution. The trigger
mechanism is under extension to support temporal event interpretation, i.e. event-condition-actions
rules can be speci�ed with temporal logic predicates. In this way, long transactions can be controlled
more successfully. Rules can verify objects manipulation and evolution by analyzing operations per-
formed on such objects during the software process life.

We believe the uni�cation of these features contributes to improved cooperative work in a team of developers
and proper sharing of resources among a set of processes. The management of software process evolution is
accomplished by (a) making it possible for an object, already instantiated, to change its behavior and static
properties dynamically using the role concept, (b) following object evolution in time by a log database, and
(c) controlling such evolution by temporal ECA rules.

Acknowledgements

During this work, W. Melo was supported by the Technological and Scienti�c Development National Council
of Brazil (CNPq) under grant No. 204404/89-4.

The authors would like to thank one of the anonymous referees for his valuable comments and suggestions.

References

[1] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with roles. In R. Agrawal,
S. Baker, and D. Bell, editors, Proc. of the 19th Int'l Conf. on Very Large Data Bases, pages 39{51,
Dublin, Ireland, August 24{27 1993.

[2] N. Belkhatir, J. Estublier, and W. L. Melo. Adele 2: a support to large software development process.
In Dowson [8], pages 159{170.

[3] N. Belkhatir, J. Estublier, and W. L. Melo. Software process model and work space control in the
Adele/Tempo system. In Osterweil [15], pages 2{11.

[4] N. Belkhatir and W. L. Melo. Tempo: a software process model based on object context behavior.
In Proc. of the 5th Int'l Conf. on Software Engineering & its Applications, pages 733{742, Toulouse,
France, December 7{11 1992.

[5] N. Belkhatir and W. L. Melo. Supporting software maintenace processes in Tempo. In Proc. of the
Conf. on Software Maintenance, pages 21{30, Montreal, Canada, September 1993. IEEE Press.

[6] J.-C. Derniame, C. Godart, V. Gruhn, and J. Lonchamp. Process-Centered IPSEs in ALF. In N. H. Mad-
havji G. Forte and H. A. Muller, editors, Proc of the 5th Int'l Workshop on Computer-Aided Software
Engineering (CASE'92), pages 179{190, Montr�eal, Qu�ebec, Canada, July 6{10 1992. IEEE Computer
Society Press.

[7] K.R. Dittrich. The Damokles database system for design applications: its past, its present, and its
future. In K. H. Bennett, editor, Software Engineering Environments: Research and Practice, pages
151{171. Ellis Horwood Books, Durhan, UK, 1989.

[8] M. Dowson, editor. Proc. of the First Int'l Conf. on the Software Process, Redondo Beach, CA, October
21{22 1991. IEEE Computer Society Press.

[9] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event speci�cation in an active object-oriented database.
In volume 21, no. 2 of ACM SIGMOD Record, pages 81{90. ACM Press, June 1992.

[10] F. Long, editor. Proc. of Int'l Workshop on Software Engineering Environments, volume 467 of LNCS,
Chinon, France, September 18{20 1989. Springer-Verlag, Berlin, 1990.

[11] D. R. McCarthy and U. Dayal. The architecture of an active database management system. In Proc.
of ACM SIGMOD 89, pages 215{224, Portland, OR, May 1989.

[12] K. Narayanaswamy. Enactment in a process-centered softwre engineering environment. In W. Schafer,
editor, Proc. of the 8th Int'l Software Process Workshop, Germany, 1993. IEEE Computer Society Press.

[13] M. Oivo and V. R. Basili. Representing software engineering models: the TAME goal oriented approach.
IEEE Transactions on Software Engineering, 18(10):886{898, 1992.

[14] F. Oquendo, G. Boudier, F. Gallo, R. Minot, and I. Thomas. The PCTE+'OMS: A software engineering
database system for supporting large-scale software developpement environments. In Proc. of the 2nd
Int'l Symp. on Database Systems for Advanced Applications, Tokyo, Japan, April 1991.

[15] L. Osterweil, editor. Proc. of the 2nd Int'l Conf. on the Software Process, Berlin, Germany, February
1993. IEEE Press.

[16] L. J. Osterweil. Software processes are software too. In Proc. of the 9th Int'l Conf. on Software
Engineering, pages 2{13, Monterey, CA, March 30-April 2 1987.

[17] J. Richardson and P. Schwartz. Aspects: Extending objects to support multiple, independent roles. In
Proc. of the Int'l Conf. on Management of Data, volume 20 of ACM SIGMOD Record, pages 298{307,
May 1991.

[18] J.J. Shilling and P.F. Sweeney. Three steps to view: Extending the object-oriented paradigms. In Proc.
of the OOPSLA'89, volume 24, no. 10 of ACM SIGPLAN Noticies, pages 353{361, Oct. 1989.

[19] S. M. Sutton, D. Heimbigner, and L. J. Osterweil. Language constructs for managing change in process-
centered environments. In , volume 15 of ACM SIGSOFT Soft. Eng. Notes, pages 206{217, Irvine, CA,
1990.

[20] A. I. Wasserman. Tool integration in software engineering environments. In Long [10].

