PAGE
6

THE CENTRAL PROCESSING UNIT

It performs most of the data processing operations.

Most of the operations performed by the CPU fall in these categories:

Transfer Instructions: Register – Register, Register – Memory, Memory - memory,

 Interface – Register, Interface - memory.

Arithmetic Instructions: Negation, Addition, Subtraction, Multiplication,
 Division, Comparisons.

Bit Manipulations: Complementation, ANDing, ORing, XORing, Testing, Shifting, Rotating

Branch: Unconditional, Conditional, Looping, Procedure Call, Procedure Return

The CPU is made up of three main parts:

(i) The Register Set: for storing intermediate data used during execution of the instructions.

(ii) The Arithmetic and Logic Unit (ALU) which performs the required operations and

(iii) The control Unit which supervises the transfer of information among the registers and instructs and instructs the ALU about which operations to perform.

The functions of the CPU depend on the type of instructions incorporated within the computer (instruction formats, addressing modes, instruction set, and the general organization of the CPU registers).

General Register organization:

Referring to memory often is time consuming. It is more convenient to store intermediate values in the processor registers and connect the registers through a common bus.

The figure shows a bus organization for 7 registers. The output of each register is connected to two multiplexers to form the two buses A and B. the selection lines in each multiplexer select one register or the input data for the particular bus. The buses A and B form the inputs to a common Arithmetic Logic (ALU). The operation selected in the ALU determines the operation that is to be done. The result is available for output data or goes into one of the registers which is selected by a decoder. The control unit directs the information flow through the registers and the ALU by selecting the required components.

 Input

 Load

 (7 lines)

 SELA

 SELB

 A bus B bus

 SELD

 OPR

 Output

E.g.
to perform the operation R1 R2 + R3 the control must provide binary selection variables to the following selector inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A

2. MUX B selector (SELB): to place the content of R3 into bus B

3. ALU operation selector (OPR): to provide the arithmetic addition A + B

4. Decoder destination selector (SELD): to transfer the contents of the output bus into R1.

 All the four control selection variables are generated in the control unit and must be available at the time of the beginning of the clock cycle.

The control Word

 3 3 3 5

It has 14 binary selection inputs and their combined value specifies a particular microoperation. The three bits of each of SELA SELB and SELD specify a register that is selected and the 5 bits of OPR specify the operation in the ALU e.g. a combination of 001 in SELA indicates that Register R1 is selected as a source register for the A input. When SELA or SELB is 000 the corresponding multiplexer selects the external input data. When SELD = 000 no destination register is selected but the contents of the output are available at the external output.

ALU Operations

	OPR Select
	Operation
	Symbol

	00000
	Transfer A
	TSFA

	00001
	Increment A
	INCA

	00010
	Add A + B
	ADD

	00101
	Subtract A – B
	SUB

	00110
	Decrement A
	DECA

	01000
	AND A and B
	AND

	01010
	OR A and B
	OR

	01100
	XOR A and B
	XOR

	01110
	Complement A
	COMA

	10000
	Shift Right A
	SHRA

	11000
	Shift Left A
	SHLA

The ALU performs arithmetic and logic operations. It also performs the shift operations. Each of the 5 OPR bits in the control word specifies a particular operation.

Examples:

	Microoperation
	Control Word

	R1 R2 – R3
	010 011 001 00101

	R4 R4 R5
	100 101 100 01010

	R6 R6 + 1
	110 000 110 00001

	R7 R1
	001 000 111 00000

	Output R2
	010 000 000 00000

	Output Input
	000 000 000 00000

	R4 SH1 R4
	100 000 100 11000

	R5 0
	101 101 101 01100

N.B A register can be cleared to 0 with an exclusive – OR operation because X + X = 0.

Control words with a large number of bits are stored in a memory unit. A memory unit that stores control words is referred to as control memory. By reading consecutive control words from memory, it is possible to initiate the desired sequence of microoperations for the CPU. This type of control is referred to as microprogrammed control.

Stack Organization

Most computers have stacks in their CPU’s. A stack in digital computers is a memory unit with a register called a Stack Pointer whose value always points to the top item of the stack. The two operations of a stack are the insertion of items onto the stack (push) or deleting items from the stack (pop). Nothing is however pushed or popped from the stack; these operations are simulated by incrementing or decrementing the Stack Pointer.

The Register Stack

A stack can be placed in a portion of a large memory or it can be organized as a collection of a finite number of memory words or registers. The stack pointer contains a binary number whose value is equal to the address of the word that is currently at the top of the stack. When a memory word is read out (popped), the stack pointer is decremented by 1. This becomes the current item that is now at the top of the stack.

A 64 word register stack would contain would have a stack pointer contain 6 bits (26 = 64), 000000 to 111111. Attempting to add an item after 63 (111111) pushes the SP contents to 000000. Similarly decrementing 000000 will produce 111111. There is a one bit register FULL which is set to 1 when the stack is full and the one bit register EMTY is also set to one 1 when the stack is empty of items. Another register DR contains data to be written into or read out of the stack.

Initially SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0. If the stack is not full (FULL = 0), a new item can be inserted with a push operation.

 The push operation is implemented with the following sequence of microoperations.

SP SP + 1 Increment Stack Pointer

M[SP] DR Write item on top of the stack

If (SP = 0) then (FULL 1) Check if stack is full

EMTY 0 Mark the stack not empty

The first item stored in the stack is at address 1 and the last item is stored at address 0. If SP reaches 0 the stack is full, so FULL is set to 1.

The pop operation is implemented with the following sequence of microoperations

DR M[SP] Read item from Top of the stack

SP SP - 1 Decrement Stack Pointer

If (SP = 0) then (EMTY 1) Check if stack is empty

FULL 0 Mark the stack not full

The Memory Stack

A portion of memory is assigned to stack operations and a processor register is used as a stack pointer. A portion of memory below is partitioned into three segments; a program, data, and a stack. The address register AR points to an array of data. The stack pointer points at the top of the stack. The three registers are connected to a common address bus. address
 Memory Unit

 1000

 2000

 3000

 3997

 3998

 3999

 4000

 4001

PC is used during the fetch phase of an instruction, AR is used during the execute phase to read the operand and SP is used to push and pop the stack.

The initial value of SP is 4001 and the stack grows with decreasing addresses. The first item in the stack is at address 4000, the second is at 3999 and the last item is at address 3000.

A new item is inserted with a push operation as follow:

SP SP - 1

M[SP] DR

The stack pointer is decremented to point at the address of the next word and a memory write operation inserts the word from DR into the top of the stack.

An item is deleted with a pop operation as follows:

DR M[SP]

SP SP + 1
Most check stack limits by using two processor registers, one to hold the upper limit and the other to hold the lower limit. After a push operation, the SP is compared with the upper-limit register and after a pop the SP is compared with the lower limit register.

SP is always loaded with an initial value which is either incremented or decremented.
REVERSE POLISH NOTATION

· When writing an algebraic expression we use parenthesis to indicate the order in which the elementary operations are to be performed.

· If the ordering is specified by using parenthesis the expression is said to be in an infix notation because the operators are placed between their operands.

· The postfix or reverse Polish Notation places operators after the operands.

e.g.:
A/(B + C) = ABC+/

(A + B) * [C * (D + E) + F] = AB+CDE+*F+*

a + b * c(d + e) = abc * de + *+ fgh - * /

 f * (g + h)
Evaluating Postfix Expressions

Uses LIFO Structure (Stack)

AB*CDE/-+ = (A * B) + (C – D/E)

Prefix

A/B^C + D*E – A*C = +/A^BC – *DE * AC OR -+ / ^ BC * DE * AC

INSTRUCTION FORMATS

Most common fields found in an instruction formats are:

1. An operation code that specifies the operation to be performed.

2. An address field that designates a memory address or a processor register and

3. A mode field that specifies the way the operand or the effective address is determined.

Operands residing in processor registers are specified with a register address which is a binary number of k bits that define one of 2k registers in the CPU. A CPU with 16 processor registers R0 through R15 will have a register address field of four bits; the binary number 0101 would designate register R5.

Most computers fall into of three types of CPU organizations:

1. Single accumulator organization

2. General register organization and

3. Stack organization.

Single Accumulator Organization

All operations are performed with an implied accumulator register. The operand field is an address e.g. with ADD
X, X is the address of the operand. A A + M[X].

General Register Organization

The format involves three registers.

e.g. ADD
R1, R2 R3, would imply R1 R2 + R3. The number of address registers can be reduced to two if the destination register is one of the source registers e.g. ADD
R1, R2 would imply R1 R1 + R2.

The field register can also be specified using a memory word e.g.

ADD
R1, X implies R1 R1 + M[X].

Stack Organization

The instructions PUSH and POP which require an address field are used e.g. PUSH X places contents of X on top of the stack. Operation type instructions do not require an address in stack organized computers e.g. ADD in a stack computer pops two numbers from the stack, adds them together and pushes the sum onto the stack.

Consider the operation
 X = (A + B) * (C + D) which can be performed using either zero, one, two, or three address instructions.

Three Address Instructions

The operands can be processor register or a memory location.

ADD
R1, A, B
(R1 M[A] + M[B]

ADD
R2, C, D
(R2 M[C] + M[D]

MUL
X, R1, R2
(R1 R1 * R2

The advantage of three address instructions is that they produce short programs; disadvantage is that the instructions are quite long.

Two Address Instructions

The operands can also be processor registers or memory locations.

MOV
 R1, A
(R1 M[A]

ADD
R1, B
(R1 R1 + M[B]

MOV
 R2, C
(R2 M[C]

ADD
R2, D
(R2 R2 + M[D]

MUL
R1, R2
(R1 R1 * R2

MOV
 X, R1
(M[X] R1

One Address Instructions

An implied accumulator is used for most of the instructions. All operations are done between the accumulator and a memory operand.

LOAD A

(AC M[A]

ADD
 B
(AC AC + M[B]

STORE T

(M[T] AC

LOAD C

(AC M[C]

ADD D

(AC AC + M[D]

MUL
 T
(AC AC * M[T]

STORE X

(M[X] AC

Zero Address Instructions

A stack organized computer is used.

PUSH A

(TOS A

PUSH
 B
(TOS B

ADD

(TOS (A + B)

PUSH C

(TOS C

PUSH D

(TOS D

ADD

(TOS (C + D)

MUL

(TOS (C + D) * (A + B)

POP
 X

(M[X] TOS

RISK Instructions.

The instructions set of a RISK processor uses only LOAD and STORE instructions when communicating between memory and the CPU. All the other instructions are executed within the register of the CPU without referring to memory. The LOAD instruction transfers operands from memory to the CPU registers. ADD and MULTIPLY instructions are executed with data within the registers without accessing memory.

LOAD R1, A

(R1 M[A]

LOAD R2, B

(R2 M[B]

LOAD R3, C

(R3 M[C]

LOAD R4, D

(R4 M[D]

ADD R1, R1, R2
(R1 R1 + R2

ADD R3, R3, R4
(R3 R3 + R4

MUL
 R1, R1, R3
(R1 R1 * R3

STORE X, R1

(M[X] R1
DATA TRANSFER AND MANIPULATION
There is a set of basic operations that are common to all computers although the instruction sets may differ. They are classified into 3 categories:

1. Data Transfer Instructions

2. Data manipulation Instructions and

3. Program Control Instructions.

Data transfer instructions cause data to be transferred from one location to another without changing its contents.

Data manipulation instructions perform arithmetic, logic, and shift operations.

Program control instructions provide decision making capabilities and change the path taken by the program.
Data Transfer Instructions

Most common transfers are between memory and processor registers, between the registers and I/O, and between registers themselves.
Below are the mostly used data transfer instructions.

	Name
	Mnemonic

	Load
	LD

	Store
	ST

	Move
	MOV

	Exchange
	XCH

	Input
	IN

	Output
	OUT

	Push
	PUSH

	Pop
	POP

Note that different computers use different mnemonics for the same instruction name.

Some assembly language conventions modify the mnemonics to differentiate between the different addressing modes e.g. MVI, and LDI are move immediate and load immediate respectively. Others use special characters to designate the addressing mode e.g. # placed before an operand designates immediate addressing. Each instruction can occur with a variety of addressing modes, e.g. Loading the accumulator can be used with eight different addressing modes.

Below are the mostly used data transfer instructions.

	Mode
	Assembly Convention
	Register Transfer

	Direct Address
	LD ADR
	AC M[ADR]

	Indirect Address
	LD @ADR
	AC M[M[ADR]]

	Relative Address
	LD $ADR
	AC M[PC + ADR]

	Immediate Operand
	LD #NBR
	AC NBR

	Index Addressing
	LD ADR(X)
	AC M[ADR + XR]

	Register
	LD R1
	AC R1

	Register Indirect
	LD (R1)
	AC M[R1]

	Autoincrement
	LD (R1)+
	AC M[R1], R1 R1 + 1

Data Manipulation Instructions
Usually divided into 3

1. Arithmetic instructions

2. Logical and bit manipulation instructions

3. Shift instructions.

Execution of each instruction involves fetching its opcode from memory, bring operand into the processor registers and then execution comes last.

Arithmetic Instructions
The four basic arithmetic operations are addition, subtraction, multiplication and division.

	Name
	Mnemonic

	Increment
	INC

	Decrement
	DEC

	Add
	ADD

	Subtract
	SUB

	Multiply
	MUL

	Divide
	DIV

	Add with carry
	ADDC

	Subtract with borrow
	SUBB

	Negate (2’s complement)
	NEG

When a binary number containing all 1’s is incremented the result is zero and when a number containing all zeros is decremented the result is 1’s

Logical and Bit Manipulation Instructions
Logical operations perform binary operations on bits stored in registers. They can manipulate individual bits or a group of bits.

	Name
	Mnemonic

	Clear
	CLR

	Complement
	COM

	AND
	AND

	OR
	OR

	Exclusive OR
	XOR

	Clear Carry
	CLRC

	Set Carry
	SETC

	Complement Carry
	COMC

	Enable Interrupt
	EI

	Disable Interrupt
	DI

There are three bit manipulation operations; a selected bit can be cleared to a zero or can be set to a 1 or can be complemented.

The AND instruction is used to clear a bit or selected group of bits of an operand

The OR instruction is used to set a bit or selected group of bits of an operand. The XOR instruction is used to selectively complement bits of an operand.

These instructions are performed with a second byte called as mask which helps to effect the required changes, e.g. if bits 2, 3 and 5 in a byte are to be set and the remaining bits are to be left unchanged one could perform the operation

10011000

byte to be selectively set

OR

00101100

Mask

10111100

Result
To test a given combination of bits we set the corresponding bits in the mask to 1 and the remaining bits to 0. When the mask is ANDED with the byte to be tested the Z flag will not be set if any of the bits tested are 1, and it will be set if all the bits being tested are 0. A branch could then be taken according to the Z flag setting.

Assume bits 2 and 3 of a given byte are to be set, bit 6 to be cleared and bit 5 is to be changed and then tested.

LXI

H, MASKS

LDA

CTRL

ORA

M

INX

H

ANA

M

INX

H

XRA

M

STA

CTRL

ANA

M

JNZ

EXIT

MASKS

DB

0CH, BFH, 20H

CTRL

DS

1

Shift Instructions
The bits of a word are moved to the left or the right. Shift instructions may specify either a logical shift, an arithmetic shift or a rotate operation.

A logical shift inserts a zero to the end bit position. Arithmetic shifts conform with rules for signed 2’s complement numbers. The shift right operation preserves the sign bit in the leftmost position. An arithmetic shift to the left multiplies a signed binary number by 2. It inserts a 0 to the end position and is identical to the logical shift left instruction.

	Name
	Mnemonic

	Logical Shift right
	SHR

	Logical Shift Left
	SHL

	Arithmetic Shift Right
	SHRA

	Arithmetic Shift Left
	SHLA

	Rotate Right
	ROR

	Rotate Left
	ROL

	Rotate Right through carry
	RORC

	Rotate Left through carry
	ROLC

One way of programming the multiplication of two single precision integers is to zero the pair of registers that will hold the result and successively examine the bits of the multiplier starting with the least significant bit. If the bit is 1 the multiplicand is added to the product register pair otherwise no addition is done; then the multiplicand is shifted one to the left and the next bit in the multiplier is tested. The process is continued until all the multiplier bits have been examined.

Consider initially A = 01101001 and the carry flag (c) = 1

ROL

11010010

ROR

10110100

ROLC
11010011

RORC
10110100

Rotate instructions produce a circular shift. Bits shifted out at one end of the word are circulated back into the other end. Rotation through a carry treats the carry bit as an extension of the register whose word is being rotated.

Register Set

Control Unit

ALU

R1

R2

R3

R4

R5

R6

R7

 MUX

 MUX

3 x 8

decoder

 Arithmetic Logic Unit

SELA SELB SELD OPR

Program

(Instructiona)

Data

(Operands)

 Stack

SP

SP

SP

DR

