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Course Objectives.

1. To provide the basic knowledge necessary to understand the hardware operation of digital computers.

2. Learn of the control and management of the processes that are carried out by the computer.

Grading Policy:


40% course work which includes tests and assignments.


60% Final Examination.

Recommended Text Books

1. Computer Systems Architecture by M. Morris Mano
2. Structured Computer Organisation by Andrew S. Tanebaum 

3. Microcomputers for Engineers and Scientists by Glenn A. Gibson and Yu-cheng Liu
4. Computer Systems - Concepts and Design by Glenn A. Gibson.

Important dates to note.

1. Test 1


11th  October 2005

2. Test 2


8th – November 2005

N.B.
 Late homework decreases your overall score by 20% per day.
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DATA REPRESENTATIONS

· Several formats are used to store data.

· Because a computer uses binary numbers all these formats are patterns of 1’s and 0’s.

· These binary digits are called BITS.

· In Computer circuits, 0’s and 1’s are voltage levels where a 0 is low voltage / OFF and a 1 is high Voltage /ON

These formats fall in two main categories

1. Number Formats: They store only numbers; There are three number formats:

· Integer or Fixed point Formats.

· Floating Point Formats

· Binary Coded decimal (BCD)

2. Alphanumeric Codes: These store both numbers and characters including the alphabetic characters.

NUMBER FORMATS

Integer Formats

Human beings are trained to understand decimal system.

e.g. 5437 = 5000 + 400 + 30 + 7 =    (5 * 103) +  (4 * 102) + (3 * 101) + (7 * 100) 

In Binary

11011 = (1 * 24) + (1 * 23) + (0 * 22) + (1 * 21)+ (1 * 20) = 16 + 8 + 0 + 2 + 1 = 2710
Horner’s Rule: Used to convert binary numbers to decimal.

e.g. 101101 = (1 * 25) + (0 * 24) + (1 * 23) + (1 * 22) + (0 * 21) + (1 * 20)

=   32 + 0 + 8 + 4 + 0 + 1 = 4510 

Using Horner’s Rule: ((((1 * 2 + 0)2 +1)2 + 1)2 + 0)2 + 1 = 4510 

· To convert from decimal to binary you perform successive divisions.

· e.g. 4510 = 1011012;          13710 = 10010012
Hexadecimal

It has 15 digits 0 – 15

	Decimal
	Hexadecimal
	Binary
	Octal

	0
	0
	0000
	0

	1
	1
	0001
	1

	2
	2
	0010
	2

	3
	3
	0011
	3

	4
	4
	0100
	4

	5
	5
	0101
	5

	6
	6
	0110
	6

	7
	7
	0111
	7

	8
	8
	1000
	10

	9
	9
	1001
	11

	10
	A
	1010
	12

	11
	B
	1011
	13

	12
	C
	1100
	14

	13
	D
	1101
	15

	14
	E
	1110
	16

	15
	F
	1111
	17

	16
	10
	10000
	100


It’s easier to represent numbers in hexadecimal than in binary.

e.g. To convert 1100110112 to Hexadecimal 

(1 * 28)+ (1 * 27) + (1 * 24) + (1 * 23)+ (1 * 21)+ (1 * 20)

256 + 128 + 16 +8 + 2 + 1 = 41110
411 / 16 = 25 rem 11                         B

25/16 = 1 rem 9                                 9                                => 41110 = 19B16 
· Each Hexadecimal digit can be represented by a unique combination of 4 binary bits

· = > 1  1001  1011  = 0001   1001    1011

                                                 1         9          B

· To convert 1C2E16 to decimal you expand.

· To convert 1579710 to hexadecimal you perform successive divisions.

Octal System

Each octal digit can be represented by a unique combination of three bits.

e.g. to convert 1100110112 to base 8 first covert to decimal then perform successive divisions of 8 on the decimal number.

1100110112 = 41110 

411/8 = 51 rem 3

51/8 = 6 rem 3         => 1100110112 = 41110 = 6338 

1010110001102 = 101  011  000  110 = 53068
                           = 1010  1100  0110  = AC616
15738 = 001  101  111  011

           = 0011  0111  1011  = 37B16 

A74816 = 1010  011  0100  1000 =

             = 001  010  011  101  001  000 = 1235108 

In decimal you can expand numbers with fractions. E.g.

631.25 = (6 * 102) + (3 * 101) + (1 * 100) +(2 * 10-1) +(5 * 10-2)

Similarly in binary;

101.11 = (1 * 22) + (0 * 21) + (1 * 20) + (1 * 2-1) + (1 * 2-2) = 4 + 0 + 1 + ½ + ¼ = 5.7510 

· If a decimal number is given the binary equivalent of the integer portion is obtained as usual but the fraction part is obtained by successively multiplying by 2.

· e.g. 13.6875;                         

13 = 1101                                   1  0  1  1

         .6875 * 2 = 1.375

                              .375 * 2 = 0.75

                                                .75 * 2 = 1.5

                                                                       .5 * 2 = 1.0

=> 13.6875 = 1101.1011

Similarly 150.312510 = 10010110.01012 

· If a binary number contains digits to the right of the decimal point we convert them by starting at the binary point and move to the right.

e.g. 11.10100110112 = 011  101  001  101  100 = 3.51548 

                                 = 0011  1010  0110  1100 = 3.A6C16 

Similarly 

5.1458 = 101 001 100 101 = 0101 0011 0010 1000 = 5.32816 

· Just like in Base 10 the decimal point can be moved by multiplying by the appropriate power of the base.

e.g. 101.11 = 1011 * 2-2  = 0.1011 * 23 

· Horner’s Rule can also be applied to numbers with fractions

e.g. 0.0101 = 0 + (0 * 2-1) + (1 * 2-2) +(0 * 2-3) +(1 * 2-4) = ¼ + 1/16 = 5/16 = 0.3125

Using Horner’s rule

0.5(0 + 0.5(1+0.5(0+0.5 * 1))) = 0.3125

REPRESENTATION OF NUMBERS IN COMPUTERS

Because the storage capacity of a computer’s memory and control circuitry is finite, it is necessary to group the bits it operates on into finite sequences. The size of bit groupings is an important factor in designing a computer.

Once a group of bits is decided upon there are only finite numbers of integers that can be represented by the group.

If there are n bits in a group the number of possible combinations of 0’s and 1’s is 2n.

If the bits are used to represent non–negative integers, integers 0 through 2n  - 1 can be represented.

With 8 bits integers 0 – 255 can be represented.

We usually estimate high powers when the groups are large where n may be 24, 32, 64 etc.

210 = 1024 = 103 

e.g. 236 = 26.230 = 26(210)3  = 26(103)3 = 64 * 109
If the result of any operation does not fit into the number of bits reserved for it an overflow is said to occur.

All the 4 arithmetic operations can cause an overflow.

360 + 720 – 300 = 360 + (720 – 300) and (360 + 720) – 300
SIGNED INTEGERS

Normally a negative number is written by writing its magnitude and then placing a negative sign to the left of the magnitude of the number.

· A computer element can take only a 0 or 1; so a minus sign must be represented by a 0 or a 1.

· If a number is to be stored in n bits, the magnitude is placed in the n – 1 right most bits and the MSB represents the sign.

· A negative number is represented by a 1 and a positive number by a 0.

· Such a format is called the Sign Magnitude Format.

In this format there is a difference between – 0 and + 0 but they both have the same magnitude.

· The range of integers that can be expressed in a group of 8 bits is from – (27 – 1) = -127  to (27 – 1) = +127 

· In general a d bit binary sign magnitude representation in which the first bit represents the sign has a range of 

– (2d-1 – 1) to + (2d-1 – 1).

In an 8 bit signed magnitude format, numbers

001010112 = + 4310                                        10101011 = -4310

011111112 = + 12710                                      11111111 = -12710
000000002 = + 0                                             10000000 = -0

To add two sign magnitude numbers, we follow the usual addition rules.

· If the sign differs we subtract the smaller number from the larger number and give the result the sign of the larger number.

· If the signs are the same we add them and we give the result the same sign.

· +5 + -7 = 10000111                            -5 + -7 = 10000101

  - 00000101                                         - 10000111

    10000010 (-2)                                     10001100 (-12)
COMPLEMENTS

They are used to simplify subtraction & logical operations.

Consider numbers –1000 to 999 and let X be any number in that range.

The 4 digit 10’s complement of X is defined as 104 – X

If X = 0572, the 4 digit 10’s complement of X is 10000 – 0572 = 9428

Consider the addition 0557 + - 328 = 229

The 10’s complement of 328 = 104 – 328 = 9672

Add    0557                 The 10’s complement is used to represent its negative value
       + 9672                            

     1    0229                            Only 4 of the significant digits are saved.
                            This one is lost                                
        0557 + - 725    => 104 – 725 = 9275   = >    0557 +9275 = 9832

(i) A 9 in the most significant Digit indicates that the sum is negative. If the magnitude is wanted the 10’s complement of the sum is taken.

i.e. 104 – 9832 = 0162
(ii) N.B. The most significant digit is reserved to represent the sign leaving 3 digits for the magnitude.

2’s Complement
The d digit 2’s complement of a d bit binary integer N is equal to 

2d – N where the subtraction is done in binary.

=>
The eight bit 2’s complement of an 8 bit binary number 000000101 is 100000000 – 00000101 = 11111011

· Subtraction of  01101010 – 01011011 = 00001111
· Using 2’s complement, the complement of 01011011 = 100000000 – 01011011 = 10100101
· 01101010

     + 10100101
    1  00001111

1 is lost
The 2’s complement may also be computed by applying the following rules.

(1) Invert the bit values; the result is called one’s complement.

(2) Add 1

e.g. for N = 00000101        Invert        11111010 + 1 = 11111011 

1710    = 00010001      Invert                 11101110 + 1 = 11101111  = -17

11910 = 00010001      Invert                 10001000 + 1  =10001001  = -119


N.B. Note the difference between the sign magnitude representation and the 2’s complement representation.

Rules to convert to decimal:

(i) If a number is positive (beginning with a 0), convert it to base 10 directly as usual.

(ii) If it is negative (begins with 1) get its 2’s complement and convert it to base 10. 

e.g. to convert a 2’s complement number 11111001 to decimal:

· It is a 2’s complement number; it is negative because it begins with a 1

· Get its complement ; i.e. 11111001 Invert   00000110 + 1 = 00000111 = - 7

Addition of 2’s Complement Binary Integers:
Note that the left most bits are not treated separately as in signed magnitude numbers.

(a) 7
00000111
(b)
-7
11111001

         + 5
00000101

+5
00000101
          12
00001100

-2
11111110

(c)
-7
11111001
(d)
7
00000111

        +- 5
11111011
        + -5
11111011
         -12      1 11110101

2       1 00000010

                            The carry is discarded

Overflow in 2’s complement:
An overflow in 2’s complement occurs when:

(i) The sign of the result differs from the sign of the common numbers being added OR 

(ii) There is a carry into but not out of the MSB OR

(iii) There is a carry out of but not into the MSB.

e.g.
126         01111110               -126
    10000010

         +    5      +  00000101               + - 5          11111011
            131         10000011               -131           01111101

FLOATING POINT FORMATS

It is a format for storing numbers given in scientific notation inside the computer. This helps to handle very large and very small numbers. It also helps to reduce leading and trailing zeros. It is written in the form 


Fraction * baseexponent 
e.g in base 10
0.000000357 = 0.357 * 10-6 ,

625000000 = 0.625 * 109
The fraction part is sometimes called the significand and the exponent the characteristic. 

A floating point format is designated by:

(i) The base

(ii) The number of bits reserved for the exponent

(iii) The number of bits reserved for the fraction

(iv) The method for storing the sign and magnitude of the exponent

(v) The method for storing the sign and magnitude of the fraction.

(vi) The order in which the two signs and the two magnitudes are to occur.

The combination of the above factors for a given computer depends upon the designer.

The Typical floating Point Format:


                        (1 bit--((----N bits------------- >< 1 bit  >  (------------M bits--------(
· Although a base is chosen, it never appears in the format; once chosen it is fixed. Bases are always powers of 2, 8, and 16.

· 1 bit is needed for each sign 

· The total number of bits therefore in the FPF is N + M + 2 where N = bits reserved for the magnitude of the exponent and M = bits reserved for the magnitude of the fraction.

Designers usually determine

i. The resolution (number of bits reserved for the magnitude of the fraction) that the system must be able to accommodate and 

ii. The largest and smallest non-zero magnitude that the system must be able to handle.

If base 2 is assumed the largest number that can be stored using a 

                                                                   N

floating point format is approximately 22-1 where N = number of bits reserved for the exponent.

If N = 7 the largest number is approximately 

2127 = 27(210)12 = 128 * 1036 = 1038 and the smallest is 2-126 = 10-38
· If an operation results in a number that is so large that the maximum size of the exponent is exceeded an exponent overflow is said to occur.

· Similarly if the exponent is negative and the magnitude becomes too large, then an exponent underflow occurs.

· If N + 1 bits are reserved for the exponent and the sign, the offset or bias chosen = 2N and the format is called the excess 2N format 

· If N = 7 the offset = 27 = 128 = 100000002 and the format is called the excess 128 format.

· When using the excess format the exponent is obtained from the quantity by subtracting the offset.

· In excess 128 format, the number 01111110 = 126 implies that the exponent = -2.

· In Excess 2N format a 1 in the MSB represents a positive exponent and a 0 in the MSB represents a negative exponent.

The Typical 32 bit floating Point Format:


                  (------8 bits----((-1 bit->(---------------23 bits--------------------------(
                   (------8 bits----------(  <    1 bit  >(----------------------23 bits---------------------------(
Consider a number –13.6875 = - 1101.10112 = - 0.11011011 * 24 

· The Exponent in excess 128 = 128 + 4 = 132 = 100001002 

· Sign of the fraction is negative => 1

10000100        1           1101101100000000……

    Exponent           sign           fraction =      84ED80000

· To reverse consider a number 7E5C0000

· => Exponent = 7E = 01111110 = 126   => 126 – 128 = -2
5C = 0 .101 1110
= > 0.101111 * 2-2 = 0.00101112 = 0.179687510
          Sign of fraction                                      

Steps in Arithmetic

1. Pre-normalisation if the operands are not normalized.

2. Alignment

3. Post normalization of the result.

Examples

(1)     826013AC   Alignment    826013AC

       +8040AB04                        82102AC1
                                                   82703E6D

(2)     83600000      No Alignment    

       +83C00000                            

         83200000    normalisation      82400000


(3)     82600000      No Alignment    

       x 85D00000                            

         87BC0000    normalisation        86F80000

The IEEE/INTEL 32 bit floating Point Format:

It has 2 forms; the single precision and the double precision format where N = 127 and 1023 respectively.


                   (-  1 bit->   (--------8 bits----------((----------------------23 bits---------------------------(

                      (-1  bit->(--------11 bits--------((--------------------52 bits------------------------------(
e.g. –5.375 = -101.011 = -1.01011 * 22 

Exponent = 2 + 127 = 129 = 10000001

1 10000001  01011 ….. = C0AC0000
Conversely 3E600000 = 0011 1110 0110 0000 00000 …

=>Exponent = 01111100 = 124 – 127 = -3

=>Fraction = 0.11

Significant = 1.11 * 2-3 = 0.00112 = 0.2187510 
Examples

(1)     40700000



(2)
40C00000      No Alignment    

       +C0580000                             

         + C0800000                            

          40180000               3EC00000


40C00000                    40000000
(3)
  41380000


(4)
  C0A80000     


*3F400000



/  40E00000     


  410A0000



   BF400000    
BINARY CODED DECIMAL (BCD)

In BCD each figure of the number to be coded is represented by its 4 bit binary equivalent e.g.


8159   = 1000   0001   0101   1001

There are two BCD formats.

1. Packed (Condensed) BCD: In this format each figure occupies half a byte; e.g. 341   = 0011   0100   0001

2. Extended (unpacked) BCD: Each decimal figure is represented by a byte. In this case the first 4 bits of a byte can be filled with zeros or ones depending on the manufacturer, e.g.


341  = 00000011   00000100   00000001

· Hardware designed for BCD is more complex than that for binary formats. E.g. 16 bits are used to write 8159 in BCD while only 13 bits (1111111011111) would be required in binary.

The advantage of BCD format is that it is closer to the alphanumeric codes used for I/Os.

Numbers in text data formats must be converted from text form to binary form. Conversion is usually done by converting text input data to BCD, converting BCD to binary, do calculations then convert the result to BCD, then BCD to text output.

To convert a BCD number to binary, multiply consecutively by 10 = 10102 

e.g.
82510  = 1000  0010   0101


((1000 * 1010) + 0010)1010 +0101 = 1100111001.
The reverse conversion is done by successive divisions by 10 (10102) then using the 4 bit remainder as the BCD digit, e.g. Using the above example:

1100111001/1010 = 1010010  rem  0101;
1010010/1010 = 1000  rem 0010

· 1000 0010 0101

Because only 10 of the 16 bit combinations are needed to represent the decimal digits, any 2 of the remaining combinations can be used to represent positive and negative signs.

The four bit combinations representing the sign can appear either to the left or to the right of the combinations.

The signs often used are 1100 for positive and 1101 for negative.

e.g.     –34 = 0011 0100 1101;
+159 = 0001  0101  1001  1100
BCD addition can be done by successively adding the binary representation of the digits and adjusting the results.

The adjustment rule is: If the sum of 2 digits is > 9, add 6 to the sum.

1748


0001   0111   0100   1000

+
2925


0010   1001   0010   0101


4673


0100   0000   0111   1101






0110              0110





0100   0110   0111   0011

ALPHANUMERIC CODES

It is the assignment of bit combinations to the letters of the alphabet, decimal digits 0 – 9, punctuation marks and several special characters.

The two most prominent Alphanumeric Codes are:

1. EBCDIC (Extended Binary Coded Decimal Interchange Code); this is mostly used by IBM.

2. ASCII: (American Standard Code for Information Interchange); used by other manufacturers.

ASCII represents each character with a 7 bit string

· The total number of characters that can be represented is 27 = 128


e.g.  J O H N = 4A  6F  68  6E  = 1001010  110111  1101000   1101110

Since most computers manipulate an 8 bit quantity, the extra bit when 7 bit ASCII is used depends on the designer. It can be set to a particular value or ignored.

ASCII CODE


 ASCII
HEX
Control

     ASCII
HEX
Control       ASCII
HEX
Control

 Char
Code
Character                 Char
Code
Character   Char
Code
Character

NUL
00
Null                            +

2B                              V

56

SOH
01
Start heading              ,

2C                              W

57

STX
02
Start text                    -

2D                              X

58

ETX
03
End text                      .

2E                              Y

59

EOT
04
End transmission        /

2F                               Z

5A

ENQ
05
Inquiry                       0

30                               [

5B

ACK
06
Acknowledgment      1

31                               \

5C

BEL
07
Bell                            2

32                               ]

5D

BS
08
Backspace                  3

33                               ^

5E

HT
09
Horizontal tab            4

34                               _

5F

LF
0A
Line feed                    5

35                               ‘

60

VT
0B
Vertical tab                6

36                               a

61

 FF
0C
Form feed                  7

37                               b

62

 CR
0D
Carriage return           8

38                               c

63

 SO
0E
Shift out                     9

39                               d

64

 SI
0F
Shift in                      :

3A                               e

65

 DLE
10
Data link escape        ;

3B                               f

66

 DC1
11
Device control 1        <

3C                               g

67

 DC21
12
Device control 2        =

3D                               h

68

 DC3
13
Device control 3        >

3E                               i

69

 DC4
14
Device control 4        ?

3F                               j

6A

 NAK
15
Neg. acknowledge     @

40                               k

6B

 SYN
16
Synchronous/Idle      A

41                               l

6C

 ETB
17
End trans. Block        B

42                               m

6D

 CAN
18
Cancel data                C

43                               n

6E

 EM
19
End of medium          D

44                               o

6F

 SUB
1A
Start special seq.        E

45                               p

70

 ESC
1B
Escape                        F

46                               q

71

 FS
1C
File separator             G

47                                r

72

 GS
1D
Group Separator        H

48                                s

73

 RS
1E
Record separator        I

49                                t

74

 US
1F
Unit separator            J

4A                               u

75

 SP
20
Space                         K

4B                               v

76

 !
21                                             L

4C                               w

77
 “
22                                             M

4D                               x

78

 #
23                                             N

4E                                y

79

 $
24                                              0

4F                                z

7A

 %
25                                             P

50                                {

7B

 &
26                                             Q

51                                |

7C

 ‘
27                                             R

52                                }

7D

 (
28                                             S

53                               ~

7E

 )
29                                             T

54                                DEL
7F         Delete rubout

 *
2A                                            U

55
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