INSTITUTE OF COMPUTER SCIENCE

COURSE:

MSC 7117: COMPUTER ORGANIZATION AND ARCHITECTURE
LECTURER:
Joseph M. Ssemwogerere.

e-mail joseph@cit.mak.ac.ug

Tel:
077629118

LECTURE HOURS

Tuesdays
6.00 p.m. - 9.00 p.m.

Venue

Tech 143

Course Objectives.

1. To provide the basic knowledge necessary to understand the hardware operation of digital computers.

2. Learn of the control and management of the processes that are carried out by the computer.

Grading Policy:

40% course work which includes tests and assignments.

60% Final Examination.

Recommended Text Books

1. Computer Systems Architecture by M. Morris Mano
2. Structured Computer Organisation by Andrew S. Tanebaum

3. Microcomputers for Engineers and Scientists by Glenn A. Gibson and Yu-cheng Liu
4. Computer Systems - Concepts and Design by Glenn A. Gibson.

Important dates to note.

1. Test 1

11th October 2005

2. Test 2

8th – November 2005

N.B.
 Late homework decreases your overall score by 20% per day.

COURSE CONTENT:

1. Data Formats

1.1
Integer Formats

Binary, Octal & Hexadecimal Systems

 1.2

Integers & 2’s Complement

1.3.
Fixed Point Formats

1.4
Floating Point Formats

1.5
BCD Formats

1.6
Alphanumeric Codes.

2.
Computer Organisation and structures

2.1
The Processor (CPU)

2.2.
Memory

RAM, ROM
2.3.
I/O Devices and Interfaces

2.4.
System Bus

2.5
The Intel microprocessor

3
The Central Processing Unit

3.1
Register and Stack Organisation

 3.2
Instruction Formats and Addressing Modes

 3.5

Data Transfer Instructions

 3.6

Program Control Processes

 3.7

RISK Architectures

4.
Pipeline and Vector Processing

 4.1
Parallel Processing and Pipelining

 4.2
Instruction and RISK pipeline

 4.3
Vector Processing

 4.4
Array Processors

5.
I/O Organisation

 5.1
I/O Interfaces

 5.2
Asynchronous Data Transfer

 5.3
Modes of Data Transfer

 5.4
Priority Interrupt

 5.5
I/O Processor

6.
Memory Systems and Memory Management

6.1
Memory Hierarchy

6.2 Main Memory

6.3 Auxiliary Memory

6.4 Associative Memory

6.5 Cache Memory

6.6 Virtual Memory

6.7 Memory Management Hardware

DATA REPRESENTATIONS

· Several formats are used to store data.

· Because a computer uses binary numbers all these formats are patterns of 1’s and 0’s.

· These binary digits are called BITS.

· In Computer circuits, 0’s and 1’s are voltage levels where a 0 is low voltage / OFF and a 1 is high Voltage /ON

These formats fall in two main categories

1. Number Formats: They store only numbers; There are three number formats:

· Integer or Fixed point Formats.

· Floating Point Formats

· Binary Coded decimal (BCD)

2. Alphanumeric Codes: These store both numbers and characters including the alphabetic characters.

NUMBER FORMATS

Integer Formats

Human beings are trained to understand decimal system.

e.g. 5437 = 5000 + 400 + 30 + 7 = (5 * 103) + (4 * 102) + (3 * 101) + (7 * 100)

In Binary

11011 = (1 * 24) + (1 * 23) + (0 * 22) + (1 * 21)+ (1 * 20) = 16 + 8 + 0 + 2 + 1 = 2710
Horner’s Rule: Used to convert binary numbers to decimal.

e.g. 101101 = (1 * 25) + (0 * 24) + (1 * 23) + (1 * 22) + (0 * 21) + (1 * 20)

= 32 + 0 + 8 + 4 + 0 + 1 = 4510

Using Horner’s Rule: ((((1 * 2 + 0)2 +1)2 + 1)2 + 0)2 + 1 = 4510

· To convert from decimal to binary you perform successive divisions.

· e.g. 4510 = 1011012; 13710 = 10010012
Hexadecimal

It has 15 digits 0 – 15

	Decimal
	Hexadecimal
	Binary
	Octal

	0
	0
	0000
	0

	1
	1
	0001
	1

	2
	2
	0010
	2

	3
	3
	0011
	3

	4
	4
	0100
	4

	5
	5
	0101
	5

	6
	6
	0110
	6

	7
	7
	0111
	7

	8
	8
	1000
	10

	9
	9
	1001
	11

	10
	A
	1010
	12

	11
	B
	1011
	13

	12
	C
	1100
	14

	13
	D
	1101
	15

	14
	E
	1110
	16

	15
	F
	1111
	17

	16
	10
	10000
	100

It’s easier to represent numbers in hexadecimal than in binary.

e.g. To convert 1100110112 to Hexadecimal

(1 * 28)+ (1 * 27) + (1 * 24) + (1 * 23)+ (1 * 21)+ (1 * 20)

256 + 128 + 16 +8 + 2 + 1 = 41110
411 / 16 = 25 rem 11 B

25/16 = 1 rem 9 9 => 41110 = 19B16
· Each Hexadecimal digit can be represented by a unique combination of 4 binary bits

· = > 1 1001 1011 = 0001 1001 1011

 1 9 B

· To convert 1C2E16 to decimal you expand.

· To convert 1579710 to hexadecimal you perform successive divisions.

Octal System

Each octal digit can be represented by a unique combination of three bits.

e.g. to convert 1100110112 to base 8 first covert to decimal then perform successive divisions of 8 on the decimal number.

1100110112 = 41110

411/8 = 51 rem 3

51/8 = 6 rem 3 => 1100110112 = 41110 = 6338

1010110001102 = 101 011 000 110 = 53068
 = 1010 1100 0110 = AC616
15738 = 001 101 111 011

 = 0011 0111 1011 = 37B16

A74816 = 1010 011 0100 1000 =

 = 001 010 011 101 001 000 = 1235108

In decimal you can expand numbers with fractions. E.g.

631.25 = (6 * 102) + (3 * 101) + (1 * 100) +(2 * 10-1) +(5 * 10-2)

Similarly in binary;

101.11 = (1 * 22) + (0 * 21) + (1 * 20) + (1 * 2-1) + (1 * 2-2) = 4 + 0 + 1 + ½ + ¼ = 5.7510

· If a decimal number is given the binary equivalent of the integer portion is obtained as usual but the fraction part is obtained by successively multiplying by 2.

· e.g. 13.6875;

13 = 1101 1 0 1 1

 .6875 * 2 = 1.375

 .375 * 2 = 0.75

 .75 * 2 = 1.5

 .5 * 2 = 1.0

=> 13.6875 = 1101.1011

Similarly 150.312510 = 10010110.01012

· If a binary number contains digits to the right of the decimal point we convert them by starting at the binary point and move to the right.

e.g. 11.10100110112 = 011 101 001 101 100 = 3.51548

 = 0011 1010 0110 1100 = 3.A6C16

Similarly

5.1458 = 101 001 100 101 = 0101 0011 0010 1000 = 5.32816

· Just like in Base 10 the decimal point can be moved by multiplying by the appropriate power of the base.

e.g. 101.11 = 1011 * 2-2 = 0.1011 * 23

· Horner’s Rule can also be applied to numbers with fractions

e.g. 0.0101 = 0 + (0 * 2-1) + (1 * 2-2) +(0 * 2-3) +(1 * 2-4) = ¼ + 1/16 = 5/16 = 0.3125

Using Horner’s rule

0.5(0 + 0.5(1+0.5(0+0.5 * 1))) = 0.3125

REPRESENTATION OF NUMBERS IN COMPUTERS

Because the storage capacity of a computer’s memory and control circuitry is finite, it is necessary to group the bits it operates on into finite sequences. The size of bit groupings is an important factor in designing a computer.

Once a group of bits is decided upon there are only finite numbers of integers that can be represented by the group.

If there are n bits in a group the number of possible combinations of 0’s and 1’s is 2n.

If the bits are used to represent non–negative integers, integers 0 through 2n - 1 can be represented.

With 8 bits integers 0 – 255 can be represented.

We usually estimate high powers when the groups are large where n may be 24, 32, 64 etc.

210 = 1024 = 103

e.g. 236 = 26.230 = 26(210)3 = 26(103)3 = 64 * 109
If the result of any operation does not fit into the number of bits reserved for it an overflow is said to occur.

All the 4 arithmetic operations can cause an overflow.

360 + 720 – 300 = 360 + (720 – 300) and (360 + 720) – 300
SIGNED INTEGERS

Normally a negative number is written by writing its magnitude and then placing a negative sign to the left of the magnitude of the number.

· A computer element can take only a 0 or 1; so a minus sign must be represented by a 0 or a 1.

· If a number is to be stored in n bits, the magnitude is placed in the n – 1 right most bits and the MSB represents the sign.

· A negative number is represented by a 1 and a positive number by a 0.

· Such a format is called the Sign Magnitude Format.

In this format there is a difference between – 0 and + 0 but they both have the same magnitude.

· The range of integers that can be expressed in a group of 8 bits is from – (27 – 1) = -127 to (27 – 1) = +127

· In general a d bit binary sign magnitude representation in which the first bit represents the sign has a range of

– (2d-1 – 1) to + (2d-1 – 1).

In an 8 bit signed magnitude format, numbers

001010112 = + 4310 10101011 = -4310

011111112 = + 12710 11111111 = -12710
000000002 = + 0 10000000 = -0

To add two sign magnitude numbers, we follow the usual addition rules.

· If the sign differs we subtract the smaller number from the larger number and give the result the sign of the larger number.

· If the signs are the same we add them and we give the result the same sign.

· +5 + -7 = 10000111 -5 + -7 = 10000101

 - 00000101 - 10000111

 10000010 (-2) 10001100 (-12)
COMPLEMENTS

They are used to simplify subtraction & logical operations.

Consider numbers –1000 to 999 and let X be any number in that range.

The 4 digit 10’s complement of X is defined as 104 – X

If X = 0572, the 4 digit 10’s complement of X is 10000 – 0572 = 9428

Consider the addition 0557 + - 328 = 229

The 10’s complement of 328 = 104 – 328 = 9672

Add 0557 The 10’s complement is used to represent its negative value
 + 9672

 1 0229 Only 4 of the significant digits are saved.
 This one is lost
 0557 + - 725 => 104 – 725 = 9275 = > 0557 +9275 = 9832

(i) A 9 in the most significant Digit indicates that the sum is negative. If the magnitude is wanted the 10’s complement of the sum is taken.

i.e. 104 – 9832 = 0162
(ii) N.B. The most significant digit is reserved to represent the sign leaving 3 digits for the magnitude.

2’s Complement
The d digit 2’s complement of a d bit binary integer N is equal to

2d – N where the subtraction is done in binary.

=>
The eight bit 2’s complement of an 8 bit binary number 000000101 is 100000000 – 00000101 = 11111011

· Subtraction of 01101010 – 01011011 = 00001111
· Using 2’s complement, the complement of 01011011 = 100000000 – 01011011 = 10100101
· 01101010

 + 10100101
 1 00001111

1 is lost
The 2’s complement may also be computed by applying the following rules.

(1) Invert the bit values; the result is called one’s complement.

(2) Add 1

e.g. for N = 00000101 Invert 11111010 + 1 = 11111011

1710 = 00010001 Invert 11101110 + 1 = 11101111 = -17

11910 = 00010001 Invert 10001000 + 1 =10001001 = -119

N.B. Note the difference between the sign magnitude representation and the 2’s complement representation.

Rules to convert to decimal:

(i) If a number is positive (beginning with a 0), convert it to base 10 directly as usual.

(ii) If it is negative (begins with 1) get its 2’s complement and convert it to base 10.

e.g. to convert a 2’s complement number 11111001 to decimal:

· It is a 2’s complement number; it is negative because it begins with a 1

· Get its complement ; i.e. 11111001 Invert 00000110 + 1 = 00000111 = - 7

Addition of 2’s Complement Binary Integers:
Note that the left most bits are not treated separately as in signed magnitude numbers.

(a) 7
00000111
(b)
-7
11111001

 + 5
00000101

+5
00000101
 12
00001100

-2
11111110

(c)
-7
11111001
(d)
7
00000111

 +- 5
11111011
 + -5
11111011
 -12 1 11110101

2 1 00000010

 The carry is discarded

Overflow in 2’s complement:
An overflow in 2’s complement occurs when:

(i) The sign of the result differs from the sign of the common numbers being added OR

(ii) There is a carry into but not out of the MSB OR

(iii) There is a carry out of but not into the MSB.

e.g.
126 01111110 -126
 10000010

 + 5 + 00000101 + - 5 11111011
 131 10000011 -131 01111101

FLOATING POINT FORMATS

It is a format for storing numbers given in scientific notation inside the computer. This helps to handle very large and very small numbers. It also helps to reduce leading and trailing zeros. It is written in the form

Fraction * baseexponent
e.g in base 10
0.000000357 = 0.357 * 10-6 ,

625000000 = 0.625 * 109
The fraction part is sometimes called the significand and the exponent the characteristic.

A floating point format is designated by:

(i) The base

(ii) The number of bits reserved for the exponent

(iii) The number of bits reserved for the fraction

(iv) The method for storing the sign and magnitude of the exponent

(v) The method for storing the sign and magnitude of the fraction.

(vi) The order in which the two signs and the two magnitudes are to occur.

The combination of the above factors for a given computer depends upon the designer.

The Typical floating Point Format:

 (1 bit--((----N bits------------- >< 1 bit > (------------M bits--------(
· Although a base is chosen, it never appears in the format; once chosen it is fixed. Bases are always powers of 2, 8, and 16.

· 1 bit is needed for each sign

· The total number of bits therefore in the FPF is N + M + 2 where N = bits reserved for the magnitude of the exponent and M = bits reserved for the magnitude of the fraction.

Designers usually determine

i. The resolution (number of bits reserved for the magnitude of the fraction) that the system must be able to accommodate and

ii. The largest and smallest non-zero magnitude that the system must be able to handle.

If base 2 is assumed the largest number that can be stored using a

 N

floating point format is approximately 22-1 where N = number of bits reserved for the exponent.

If N = 7 the largest number is approximately

2127 = 27(210)12 = 128 * 1036 = 1038 and the smallest is 2-126 = 10-38
· If an operation results in a number that is so large that the maximum size of the exponent is exceeded an exponent overflow is said to occur.

· Similarly if the exponent is negative and the magnitude becomes too large, then an exponent underflow occurs.

· If N + 1 bits are reserved for the exponent and the sign, the offset or bias chosen = 2N and the format is called the excess 2N format

· If N = 7 the offset = 27 = 128 = 100000002 and the format is called the excess 128 format.

· When using the excess format the exponent is obtained from the quantity by subtracting the offset.

· In excess 128 format, the number 01111110 = 126 implies that the exponent = -2.

· In Excess 2N format a 1 in the MSB represents a positive exponent and a 0 in the MSB represents a negative exponent.

The Typical 32 bit floating Point Format:

 (------8 bits----((-1 bit->(---------------23 bits--------------------------(
 (------8 bits----------(< 1 bit >(----------------------23 bits---------------------------(
Consider a number –13.6875 = - 1101.10112 = - 0.11011011 * 24

· The Exponent in excess 128 = 128 + 4 = 132 = 100001002

· Sign of the fraction is negative => 1

10000100 1 1101101100000000……

 Exponent sign fraction = 84ED80000

· To reverse consider a number 7E5C0000

· => Exponent = 7E = 01111110 = 126 => 126 – 128 = -2
5C = 0 .101 1110
= > 0.101111 * 2-2 = 0.00101112 = 0.179687510
 Sign of fraction

Steps in Arithmetic

1. Pre-normalisation if the operands are not normalized.

2. Alignment

3. Post normalization of the result.

Examples

(1) 826013AC Alignment 826013AC

 +8040AB04 82102AC1
 82703E6D

(2) 83600000 No Alignment

 +83C00000

 83200000 normalisation 82400000

(3) 82600000 No Alignment

 x 85D00000

 87BC0000 normalisation 86F80000

The IEEE/INTEL 32 bit floating Point Format:

It has 2 forms; the single precision and the double precision format where N = 127 and 1023 respectively.

 (- 1 bit-> (--------8 bits----------((----------------------23 bits---------------------------(

 (-1 bit->(--------11 bits--------((--------------------52 bits------------------------------(
e.g. –5.375 = -101.011 = -1.01011 * 22

Exponent = 2 + 127 = 129 = 10000001

1 10000001 01011 ….. = C0AC0000
Conversely 3E600000 = 0011 1110 0110 0000 00000 …

=>Exponent = 01111100 = 124 – 127 = -3

=>Fraction = 0.11

Significant = 1.11 * 2-3 = 0.00112 = 0.2187510
Examples

(1) 40700000

(2)
40C00000 No Alignment

 +C0580000

 + C0800000

 40180000 3EC00000

40C00000 40000000
(3)
 41380000

(4)
 C0A80000

*3F400000

/ 40E00000

 410A0000

 BF400000
BINARY CODED DECIMAL (BCD)

In BCD each figure of the number to be coded is represented by its 4 bit binary equivalent e.g.

8159 = 1000 0001 0101 1001

There are two BCD formats.

1. Packed (Condensed) BCD: In this format each figure occupies half a byte; e.g. 341 = 0011 0100 0001

2. Extended (unpacked) BCD: Each decimal figure is represented by a byte. In this case the first 4 bits of a byte can be filled with zeros or ones depending on the manufacturer, e.g.

341 = 00000011 00000100 00000001

· Hardware designed for BCD is more complex than that for binary formats. E.g. 16 bits are used to write 8159 in BCD while only 13 bits (1111111011111) would be required in binary.

The advantage of BCD format is that it is closer to the alphanumeric codes used for I/Os.

Numbers in text data formats must be converted from text form to binary form. Conversion is usually done by converting text input data to BCD, converting BCD to binary, do calculations then convert the result to BCD, then BCD to text output.

To convert a BCD number to binary, multiply consecutively by 10 = 10102

e.g.
82510 = 1000 0010 0101

((1000 * 1010) + 0010)1010 +0101 = 1100111001.
The reverse conversion is done by successive divisions by 10 (10102) then using the 4 bit remainder as the BCD digit, e.g. Using the above example:

1100111001/1010 = 1010010 rem 0101;
1010010/1010 = 1000 rem 0010

· 1000 0010 0101

Because only 10 of the 16 bit combinations are needed to represent the decimal digits, any 2 of the remaining combinations can be used to represent positive and negative signs.

The four bit combinations representing the sign can appear either to the left or to the right of the combinations.

The signs often used are 1100 for positive and 1101 for negative.

e.g. –34 = 0011 0100 1101;
+159 = 0001 0101 1001 1100
BCD addition can be done by successively adding the binary representation of the digits and adjusting the results.

The adjustment rule is: If the sum of 2 digits is > 9, add 6 to the sum.

1748

0001 0111 0100 1000

+
2925

0010 1001 0010 0101

4673

0100 0000 0111 1101

0110 0110

0100 0110 0111 0011

ALPHANUMERIC CODES

It is the assignment of bit combinations to the letters of the alphabet, decimal digits 0 – 9, punctuation marks and several special characters.

The two most prominent Alphanumeric Codes are:

1. EBCDIC (Extended Binary Coded Decimal Interchange Code); this is mostly used by IBM.

2. ASCII: (American Standard Code for Information Interchange); used by other manufacturers.

ASCII represents each character with a 7 bit string

· The total number of characters that can be represented is 27 = 128

e.g. J O H N = 4A 6F 68 6E = 1001010 110111 1101000 1101110

Since most computers manipulate an 8 bit quantity, the extra bit when 7 bit ASCII is used depends on the designer. It can be set to a particular value or ignored.

ASCII CODE

 ASCII
HEX
Control

 ASCII
HEX
Control ASCII
HEX
Control

 Char
Code
Character Char
Code
Character Char
Code
Character

NUL
00
Null +

2B V

56

SOH
01
Start heading ,

2C W

57

STX
02
Start text -

2D X

58

ETX
03
End text .

2E Y

59

EOT
04
End transmission /

2F Z

5A

ENQ
05
Inquiry 0

30 [

5B

ACK
06
Acknowledgment 1

31 \

5C

BEL
07
Bell 2

32]

5D

BS
08
Backspace 3

33 ^

5E

HT
09
Horizontal tab 4

34 _

5F

LF
0A
Line feed 5

35 ‘

60

VT
0B
Vertical tab 6

36 a

61

 FF
0C
Form feed 7

37 b

62

 CR
0D
Carriage return 8

38 c

63

 SO
0E
Shift out 9

39 d

64

 SI
0F
Shift in :

3A e

65

 DLE
10
Data link escape ;

3B f

66

 DC1
11
Device control 1 <

3C g

67

 DC21
12
Device control 2 =

3D h

68

 DC3
13
Device control 3 >

3E i

69

 DC4
14
Device control 4 ?

3F j

6A

 NAK
15
Neg. acknowledge @

40 k

6B

 SYN
16
Synchronous/Idle A

41 l

6C

 ETB
17
End trans. Block B

42 m

6D

 CAN
18
Cancel data C

43 n

6E

 EM
19
End of medium D

44 o

6F

 SUB
1A
Start special seq. E

45 p

70

 ESC
1B
Escape F

46 q

71

 FS
1C
File separator G

47 r

72

 GS
1D
Group Separator H

48 s

73

 RS
1E
Record separator I

49 t

74

 US
1F
Unit separator J

4A u

75

 SP
20
Space K

4B v

76

 !
21 L

4C w

77
 “
22 M

4D x

78

 #
23 N

4E y

79

 $
24 0

4F z

7A

 %
25 P

50 {

7B

 &
26 Q

51 |

7C

 ‘
27 R

52 }

7D

 (
28 S

53 ~

7E

)
29 T

54 DEL
7F Delete rubout

 *
2A U

55

Sign of Magnitude of Exponent Sign of Magnitude of fraction

Exponent fraction

Base 2 Exponent Sign of Magnitude of fraction

In Excess 128 fraction

 Sign of Base 2 Exponent Magnitude of fraction

 fraction In Excess 127

 Sign of Base 2 Exponent Magnitude of fraction

 fraction In Excess 1023

