Getting Started:
CSIM19 Simulation Engine

(C++ Version)

Mesquite Software, Inc.

8500 N. Mopac, #825

Austin, TX 78759

(512) 338-9153

Internet: info@mesquite.com

To navigate through this document, you
may either select from the list of bookmarks
to the left, or you may click on sections in
the Table of Contents page.

Table of Contents

Table of Contents
Introduction to CSIM19 for C++ Programmers
Introduction
Example
CSIM Objects
CSIM19 Tutorial (C++ Version)
Introduction
Processes
Facilities
Storages
Buffers
Events
Mailboxes
Tables and Qtables
Meters and Boxes
Confidence Intervals
Run Length Control
Process Classes
Random Numbers and Streams
Other Features

Summary

Introduction to CSIM19 for C++ Programmers

Introduction

Example

CSIM19 is a library of routines, for use with C or C++ programs,
which allows you to create process-oriented, discrete-event
simulation models. This guide leads you through a simple model
which uses the CSIM19 routines. It closes with a brief discussion of
the CSIM* objects used to implement more complex models.

The most basic simulation model is a single server and queue with
arriving customers. With certain restrictions, this is the well-known
M/M/1 queue. Inthe CSIM19 version of this model, there is a facility
consisting of a single server and a single queue. In addition, there

is a source of customers. As a customer arrives, it either seizes
(uses) the server if it is free (not in use) or it joins a queue of waiting
customers if the server is already busy (in use). When one

*+ Copyright by Microelectronics and Computer Technology Corporation, 1987 - 1994

customer leaves the server, the next customer in the queue begins
to use the server.

The key parameters in such a model are:

* The intervals of time between customer arrivals
* The intervals of server usage

The results of a study of such a model are:

* The average customer response time (time of arrival to time of
departure)

» The customer throughput rate (customers served per unit time)

» The server utilization (percentage of elapsed time that the
server is busy)

* The average queue length (humber of customers at the facility)

arriving departing
_ >
customer customer

queue

Figure 1: A Single Server Queue

A CSIM19 program (in C) to model this simple system is as follows:

/*this CSMprogramsinul ates an MM 1 service center*/

ncl ude <cpp. h>

facility *f;
extern “C void sinf)
{
create("sini);
f = newfacility("f");
vhi | e(sinting() < 5000.0) {
hol d(exponenti al (1.0));
cust oner () ;
}
report();
}

voi d cust oner ()

{

creat e("custoner");
f->use(exponential (0.5));

/*include the C3 MCH header file*/
/*the service center*/

/*si m process*/

/*nake this a process*/

/*create the service center - f*/
/*loop until end of sinulation*/
/*del ay between custoner arrival s*/

/*gener at e new cust oner */

/*produce statistics report*/

/*nake this a process*/
/*obtai n needed anount of servi ce*/

The CSIM output for this example is as follows:

CIMS mul ation Report (\ersion 19 for MBVCH)

Mn My 13 13:42: 39 1996

Endi ng simul ation tine: 10001. 909
H apsed si mul ation tine: 10001. 909
CPU tine used (seconds): 0.490

FAQ LI TY SUMARY

facility service service throgh- queve response conpl
nane d sc tine uil. put length tine court
f fcfs 100054 0512 050680 101983 20129 509

This example shows most of the important features of a CSIM
model:

1. In this example, there are two processes:

a. The base "sim" process which initializes the model and
generates the customer arrivals at varying interarrival
intervals, and

b. The "customer” process, which mimics the behavior of a
customer of the f facility. Notice that there can be several
customers (instances of the customer process) "active" at
the same time: one using the server and others arriving
and waiting in the queue.

2. A CSIM process is a C++ procedure which executes the
"create" statement. Executing a create statement does two
things:

a. Establishes the procedure which executes the statement
as an independent, ready-to-run process, and

b. Returns control to the calling process.

A facility is declared with the "FACILITY" statement and is
initialized by the "facility()" function.

The CSIM variable "clock" contains the current simulated time
(the value of the simulated clock). In CSIM, time is a double
precision, floating point value.

The "hold" statement causes time to pass for the process
executing the statement; in the example, the "hold(exponential
(1.0));" statement models the intervals of time between
customer arrivals.

In many simulation models, it is appropriate to specify
sequences of time intervals with probability distributions. In
the M/M/1 queue, the interarrival intervals and the service
intervals are "sampled” from negative exponential
distributions. In CSIM, the exponential() function gives such
samples.

Use of the facility is modeled by the "f->use(exponential (0.0))
statement (in this case, the facility being used is f).

To elaborate on an earlier point, there may be multiple
instances of the customer process active and competing for
use of the server at the same time. Modeling parallel
activities such as this is a major feature of process-oriented
models such as those implemented with CSIM.

The interactions among the processes in a model can be seen by
looking at an activity (debug) trace which is generated by CSIM
during the execution of a model (a trace is generated only upon
request). A segment of the activity trace for the sample model is
shown below:

tine process dd pioity staus

0.000 sim 1 1 create siml

0.000 sim 1 1 joinclass defau t

0.000 sim 1 1 facility f wth 1 server
0.000 sim 1 1 sched proc: t =0.000, id=2
0.000 sim 1 1 create custongr 2

0.000 Ccust oner 2 1 joinclass defau t

0.000 sim 1 1 hod 133

0.000 sim 1 1 schedproc: t =13, id=1
0.000 cust oner 2 1 uwse facility f, t =179
0.000 cust oner 2 1 reserve f

0.000 cust onar 2 1 ho d 1739

0.000 cust oner 2 1 sched proc: t =173, id=2
1332 sim 1 1 sched proc: t =0.000, id=3
132 sim 1 1 create custoner 3

1332 Ccust ongr 3 1 joinclass defad t

132 sim 1 1 hod 2 351

1332 sim 1 1 schedproc: t =235L, id=1
1332 cust oner 3 1 uwse facility f, t =0.626
1332 Cust ongr 3 1 dequere fecility f

1739 cust oner 2 1 ternmnate

1739 cust onar 3 1 hao d 0.626

1739 cust oner 3 1 sched proc: t =0.626, id=3
2366 cust oner 3 1 rel esse f

23656 cust oner 3 1 ternmnate

In this activity trace segment, we can see the following sequence of
simulated activities:

The base (first) process, sim, starts at time 0.000 by
initializing the facility (hamed f), starts the first customer
process and then does a hold of 1.332 time units (the interval
until the next customer arrival which is generated by using a
negative exponential distribution with a mean of 2.0). Since
this example doesn’t divide its processes into different
classes for reporting purposes, all processes are shown as
joining the default class. This example also does not assign
explicit priorities to processes, so they all default to priority 1.

Because sim has "suspended" execution, the first customer
process can begin execution, also at time 0.000 (the id of this
instance of customer is 2, so we will refer to it as customer.2).
Upon arrival, customer.2 executes a "use”, which reserves the
facility f. Since fis free, customer.2 gets it and then does a
hold, simulating its service interval of 1.739 time units
(generated by using a negative exponential distribution with a
mean of 1.0).

At time 1.332, the hold for sim expires, so sim resumes
execution and generates the arrival of the next customer,
customer.3. sim then does a hold of 2.351 units of time, the
interval until the next customer arrival.

Customer.3 begins execution at 1.332. It tries to use f, but f
is busy (it is being held by customer.2), so customer.3 must
wait until customer.2 completes its service interval.

At time 1.739, customer.2 finishes its service interval, so it
releases f. This frees f for use by the next customer in the
gueue of waiting customers. Since customer.2 is finished, it
terminates. Termination for a process is automatic when the
process (procedure) does a normal procedure exit.

Customer.3 is able to proceed (its reserve has succeeded),
so does a hold for its service interval (0.626 time units).

At time 2.365, customer.3 completes its service interval,
releases f and terminates.

Sim is still holding, simulating the interval until the arrival of the
next customer.

The model will continue this sequence of activities (customer
arrivals, requesting the facility, etc.) until the value of clock
exceeds 10000.0 (the length of the simulated experiment
specified by the define constant SIM_TIME). When the
experiment finishes, the CSIM report is printed (by the report()
procedure) and sim exits, causing the program to end.

The CSIM report in this example gives a statistical summary of the
usage of the f facility by the 5069 customer processes which
completed service during the 10001.909 simulated time units
covered by the experiment. In the report, we can see the following:

The mean service interval at the facility is 1.010 time units.
The fact that it is not 1.0 results from the use of the samples
from the negative exponential probability distribution with
mean 1.0.

The utilization of the facility is 0.512. This is the percentage
of the elapsed time during which the server at f was busy (in
use).

The throughput rate is 0.5 customers per unit time.

The mean queue length is 1.020. This is the average number
of customers at the facility, including both customers at the
server and in the queue of waiting customers.

The average response time experienced by customers at the
facility (resp) is 2.012 time units. The response time includes
both time in the queue and time at the server.

The number of completed customers at the facility is 5069.

CSIM Objects

CSIM provides a complete set of objects which can be used to
construct models of almost any kind of system, at any level of
complexity and detail. The objects supported by CSIM are:

. Process - used to model elements of the workload, clients and
servers, or any other active components of the system

. Facility - used to model resources which are seized (used) by
processes

. Storage - used to model resources which are are partially
allocated to processes

. Buffer— uses to model buffers with finite capacity

. Event - used to synchronize and control interactions between
processes

. Mailbox - used to exchange information between processes

. Tables, Qtables, Meters, and Boxes - used to collect explicit

statistics (note: statistics on usage of facilities and storage
blocks are collected automatically)

. Process class - used to segregate facility usage statistics

. Stream of random numbers - used to generate multiple
streams of samples from specified probability distributions

These objects can be created and used by the program to give
accurate and detailed insights into the structure, organization and
behavior of complex systems.

For more information on how to do this and how to derive many
benefits from building and using CSIM models, contact Mesquite
Software, Inc.

CSIM19 Tutorial (C++ Version)

Introduction

This section gives an overview of all of the important objects and
other features of the CSIM19 library. A CSIM* model is a C++ (or
C) program that uses the functions and procedures in the CSIM19
library to implement process-oriented, discrete-event simulation
models. Each model will mimic the behavior of the system being
modeled. Using a model helps the user analyze the behavior of a
system and can lead to improvements in the operation and
performance of that system.

It is assumed that the reader of this document has a working
knowledge of the C++ programming language and is familiar with the
concepts of discrete-event simulation models.

*+ Copyright by Microelectronics and Computer Technology Corporation, 1987 - 1994

Processes

A CSIM process is used to model the active elements of a system.
These could include elements of the workload, clients and servers
found in the system, and other components that are active parts of
the system model. In CSIM, a process is a C++ procedure that
executes the "create()" statement. Every time a "create" statement
is executed, a new instance of that process is created. Each
instance of a CSIM process has the following attributes:

* Its own internal state (local variables and registers)
* A unique process id
* A process priority
* One of the following external states:
- Executing
- Waiting-to-execute
- Holding (while some period of time elapses)
- Waiting (for some event to occur)

CSIM processes should not be confused with processes in the
platform operating system (such as UNIX) or operating system

supported threads (such as lightweight threads in SunOS). The
concepts are similar, but the implementations are separate.

It is very important to understand the flow of control that is used by
CSIM processes. When a newly called procedure executes a
create() statement, the following actions occur:

1. A process control block (pcb) for the new procedure (really the
new process) is created and put on the “next event list”, and

2. Control is returned immediately to the process which invoked
this new process.

So, after a new process is “called”, the old process is still executing
and the new process will execute only after the current (old) process
“gives up” (e,g., does a hold or a statement which results in a wait).

For example, after this CSIM code fragment has executed:

for(i =0; | <100; |++)
cust oner (i);
hol d(2000. 0) ;

100 instances of the process named “customer” will be created, but
none of them will start to execute until the calling process executes
the hold statement.

Facilities

Facilities are those objects which processes “use” or occupy. They
can be defined as:

» A single server facility (can only service one process at a time)

* A multi-server facility (can service n processes at once, where n
is the number of servers defined for the facility)

* An array of single server facilities

Each facility is given a name, which is used solely for output
(reports, status, and traces).

By default, a facility services processes in priority order. Where
multiple processes have the same priority, they will be served on a
first-come-first-served basis. A number of other service disciplines
can be specified.

The following examples show how a facility can be used from within
a process.

* To declare, initialize, and use a facility with a single queue and
a single server:

facility *sing e server; /* declare facility variad e

.si”r‘ge_server =rewfadility("snge srw"); /*initidizefacility nened sng e srvr*/
.si”rge_server—xse(service_tim); /* use facility for length of service tine*/
.si”r‘ge_server—xeserve(); /* reserve (use) facility */
.h;jl(Kservice_tire);

sing e server->rd ease(); /* rdesse the facility */

The "use()" statement and the sequence "reserve(), hold(),
release()" behave in similar ways; the only difference is when (in
simulated time) the service_time variable is evaluated. By
convention, the "use()" statement is used when the process will be
"using"” the facility, while the "reserve" statement is used when the
process will acquire exclusive use of the facility and then do
something other than a "hold" statement.

Processes are ranked in the queue of waiting processes in order of
their process priorities, with the highest priority at the head of the
list. Inthe case of equal priorities, the process doing the earliest
reserve is ahead of processes doing reserves at later points in time.
If all reserving processes have the same priorities, then the resulting
scheduling policy (discipline) is first-come, first-served (or FIFO -
first in, first out).

* To declare, initialize, and use a facility with a single queue and
three servers:

cost |ong NMRRS =3, /* set nunber of servers to 3 */
facility ns *nul ti_server; /* declare facility ns dgject pir */

nol ti_server = newfacility ns("nolti srwr”, NMRRY;/*initidize srw wth 3 srws*/

nol ti_server->use(service tine); /*use facility for length of service tine*/

* To declare, initialize, and use an array of ten single server

facilities:
cost | ong NMFACS = 16; /*set nuner of facilitiesinarray to 10 */
facility set *facs; /* declare facility array */

facs =rewfacility set("facs’, NMFACY; /*initidize st of 10 facilities */
i =randonf0, NMFACS 1); /*sd ect the facility to be used next*/
(*facs)[i]. use(service tineg); /*use facility[i] for lengh of service ting*/

» To reserve a facility only if it can be obtained within a given
length of time:

cost dode TINEQT =5.0; /*set lengh of tinetovat for facility*/

st =sing e server->tined reserve(TINEQT); /*reserve facility in 5tine unts*/

if(st '=TINDQ) { /*if facility ves, infact, reservedin tinet/
hd d(servi ce tine); /*simol at e servicing custoner for service ting*/
sing e server->rd ease(); /*rel ease facility since service i s nowconpl et €%/
} dse{ /*request tined out */

)

« To declare, initialize, and use a synchronous facility (a
synchronous facility is one in which reserves are granted only
at regular points in time (called clock ticks)):

cost doble HAE=0.5
cost dole FRM=10;
facidity *hus;

b.s =newfacility("bws");
bus->synchronos(AHSE, AR);

LJ.L.&>f°f>erve():

.bl..sr>re| ease();

/*set tine to onset of first dock cydeto0.5*/
/*set lengh of cdock cydeto1tine unit*/
/*dedl are facility variad e bus */

/*initidize facility ad rane it bus */
/*nake the facility synchronous */

/*reserve the facility */

/*rel ease facility since pracess no | onger needs it*/

* To define the preempt-resume service discipline for a facility:

FAQLTY cpy;

cpu =frewaci i ty("cpd');
cpu->set_servi cefunc(pre res)
priority =100,
Cpu->use(servi ce tine);

/*dedl are facility variad e cpu */
/*intidizefacility axd nene it cpu */
/*set service pracocd to preenmi-resunet/

/*nake process high priarity */
[*preenpt |over priarity process and wse facility*/

It is important to notice that when scheduling disciplines other than
first-come, first-served are in use at a facility, then the "use()"
method is the only way to make use of the facility. This means that
a process cannot reserve such a facility and then do something
other than use that facility.

Storages

A CSIM storage is a resource which can be partially allocated to a
requesting process. A storage consists of a counter (to indicate the
amount of available storage) and a queue for processes waiting to
receive their requested allocation. A storage set is an array of
these basic storages.

A storage can be designated to be synchronous. In a synchronous
storage, each allocate is delayed until the onset of the next clock
cycle.

Each storage must be given a name, which is used solely for output
(reports, status and traces).

The following examples show how storage can be used from within a
process.

» To declare, initialize, and use a storage:

cost | ong STGRE AV = 100 /*set anout of storage to 100 units */
storage *nem /*decl are starage vari ad e nem*/

nem= newstorage("neml, STEAV);/*intidize starage naned nemwth 100 units */

am =randongl, STGEAV); /*deci de hownoch storage to dlacate this tine */
nera>dl | oc(a); /*get anout of storage deci ded uport/

nera>ded | oc(am); /* release starage vhich is no | onger needed */

» To declare, initialize, and use an array of five storage blocks:

cost |ong NMSTOES = 5; /*set nuner of starage bl ocks in array*/
const | ong STGRE AV = 100, /*set anout of storage in each storage b ackt/
storage _set *nens; /*decl are storage bl ock array*/

nens = newstorage set ("neml, STGEAV, NMSTOES; /*intidize sta nemwth 100 units
per bl ock*/

am =randongl, STGEAV); /*deci de hownach storage to dlacate */

(*m)[3]-d|03(31h):_ /*get storage fromthe fourth storage b ockt/

(*nens)[3. dedl | oc(an); /*rel ease storage wich is no | onger neededt/

* To get storage only if it can be obtained within a given length of

time:
;silzmm>timad_dlcx:(a1h, 10); /*get starageif possidewthin1tine uit */
if(st '=TINDQT) { /*if storage ves gotten wthin the tine lint */
nera>ded | oc(am); /*rel ease starage viich is no | onger needed */
Lse{ /* dlocate tined ot */

» To declare, initialize, and use storage synchronously
(allocations will take place only at regular points in time (called
clock ticks)).

cost doude AHAE = 0.5 /*set tine to onset of first dock cyceto 0.5
cost doble FRM=10; /*set length of dock cydleto 1 tine unit*/
cost | ong STGRE AV = 100 /*set anout of storage in block to 100 unitsY/
storage *nem /*decl are starage vari ad e nem*/

nem= newstorage("nei, STEAVT);/*initidize storage naned nemvith 100 units*/
nera>syrchronos(FAHSE AR); /*nake storage d | ocati ons synchronous*/

nera>d | oc(5); /*get 5units of storage for this process */

nera>ded | oc(5); /*rel ease starage vhich is no | onger needed®/

Buffers

A CSIM buffer is a resource which can be partially allocated to a
requesting process. A buffer consists of a counter (to indicate the
number of slots, represented as tokens, in the buffer) and a two queues,
one for processes waiting to get tokens from the buffer, and one for
processes waiting for space to put (or return) tokens to the buffer.

Each buffer must be given a name, which is solely used for output
(reports, status and traces).

The following examples show how a buffer can be used from within a
process

 To declare, initialize and use a buffer

const | ong BIFFER AMI' = 100;
buf fer *buf;

buff = new buffer(“buff”, BUFFER AM);

am — randonfl, BUFFER AM);
buf f->get (an) ;

buf £ - >put (ant)

« To get space in a buffer only if it can be obtained with a given
length of time:

st = buff->tined get(ant, 1.0);
if(st '=TIMDQJ) {

buff->put (ant) ;}

else{ ...}

Events

Events are used to synchronize and control interactions between
different processes. A CSIM event has two states: occurred (OCC) and
not occurred (NOT_OCC). A process can either wait for an event to
occur or queue on the event.

If a process "waits" for an event:

If the event is in the not occurred state, the process is suspended
and placed in a queue of processes waiting for the event to happen
(occur). When some other process does a "set" operation on that
event, all of the waiting processes are re-activated (allowed to
proceed) and the event is reset to not occurred.

If the event is in the occurred state, the process continues to
execute and the event state is changed to not occurred.

If a process queues on an event:

If the event is in the not occurred state, the process, is suspended
and placed in a queue of processes queued for the event to happen
(occur). When some other process does a "set" operation on that
event, only the first queued process is re-activated (allowed to
proceed) and the event is reset to not occurred.

If the event is in the occurred state, and there are no other
processes queued on that event, the process continues to execute
and the event state is changed to not occurred.

Events can be defined as either an individual event or an array of
events.

Each event must be given a name, which is used solely for output
(status and traces).

The following examples show how events can be used from within a
process.

* To declare, initialize, and use an event:

evert *ev, /*decl are evert varidd e ev */

;alllzreNa/ert("a/'); /*intidize an evet nened ev */

;a./.—.>wit(); /*vait far evert to occur before proceed ng */

ev->guele(); /*vait for evert to occur, for processes to respond before proceed ngt/
ev->set(); /*ind cate that an evert has occurred */

« To monitor an event, to collect statistics on its use

ev->nonitor(); /* invoke statics collection for ev */

* To declare, initialize, and use an array of twenty-five events:

cost | ong NMBENTS = 25 /*set nuner of everts inarray */
evert_set *ev ar; /*decl are evert array */

ev ar =newevet_set("ev ar”, NMBANS; [*intidize aray of 25 everts*/
(*ev_arr)[5.vat(); /*vait far sixth evet to occur before proceed ng */

(*ev_arr)[5.set(); /*indcate that sixth evert has occurredt/

» To wait or queue for any event in an array of events to happen:

i —evar -.vat_aw(); /*i isindex of evert which occurred */
@®R
i =evar->qewe ay(); /*i isindex of evert which occurred */

* To wait for an event only if it occurs within a given length of time:

st =ev->tined vai t(50.0); /*vait for anaxinomd S0 tine units */
if(st ! =TINDQT) { /*dd nat tined ot */

Mailboxes

A mailbox allows for the synchronous exchange of data between
CSIM processes. Any process may send a message to any mailbox,
and any process may attempt to receive a message from any
mailbox.

A mailbox is comprised of two FIFO queues: a queue of unreceived
messages and a queue of waiting processes. At least one of the
gueues will be empty at any time. When a process sends a
message, the message is given to a waiting process (if one exists)
or it is placed in the message queue. When a process attempts to
receive a message, it is either given a message from the message
gueue (if one exists) or it is added to the queue of waiting
processes.

A message can be either a single integer or a pointer to some other
data object. If a process sends a pointer, it is the responsibility of
that process to maintain the integrity of the referenced data until it is
received and processed.

Each mailbox must be given a name, which is used solely for output
(status and traces).

The following examples show how mailboxes can be used from
within a process.

 To declare, initialize, and use a mailbox:
nai | box *ni; /*decl are nai | box variad e nb */

long nsg r, nsg s; /*nessage variad es */

nb = newnai | box("niy"); /*initidize anailbax naned nib */
ni>->r ecel ve(&8nsg 1); /*recei ve nessage (in nsg r) fromnail bax nb */

ni->send(nb, nsg s); /*send nessage in nsg s to nai | box nb */

A message is a single variable. It can be either an integer or a
pointer to a (message) structure.

 To monitor a mailbox, to collect statistics on its use

nfo- >noni tor () ;

» To wait for a message only if it comes in within a given length
of time:

st =ni->tined recel ve(&nsg r, 100.0); /*vat far anaxinomaf 100 tine units */
if(st ! =TINDQT) { /*if not tined ot */

}
» To declare, initialize and use an array of twenty-five mailboxes:

const | ong NLMMBOES = 25;
nai | box_set *nfox_arr;

nbox_arr = new nai | box_set (“nbox set”, N.MMBOES);

e To receive a message from any mailbox in an array of
mailboxes:

i = niox_arr->recei ve_any(&nsg);

 To send a message to a mailbox which is member of an array
of mailboxes

(*nfox_arr)[3] . send(nsg) ;

e To receive a message from any mailbox in an array of
mailboxes within a specified interval of time:

st = nbox_arr->ti ned recei ve_any(&sg, 1.0);
if(st '=TIMDQJ) {

/] process nessage
} else {

}

/] deal with tine out

* To send a message and wait until the message is received

nfo- >synchr onous_send(nsg) ;

« To send a message and wait until the message is received
within a specified interval of time

st = ni->ti ned_synchornous_send(nsg, 1.0);

if(st ='!=TIMD Q) {

/1 nessage recei ved (K
} else {

}

// nmessage not recei ved

Tables and Qtables

CSIM automatically collects some usage statistics. In order to allow
the user to collect other statistics describing different aspects of the
behavior of the system, CSIM supplies several objects:

. Table - collects floating point values and then gives a
statistical summary consisting of, as shown:

THEL tadle
nhn num 0.000016 nean 1 000040
naxi num 10. 336942 vari ance 0.999862
range 10. 336926 standard deviation 0. 999931
doservati ons 10000 coefficient of var 0.99980
. A histogram can be specified for a table in order to obtain

more detailed information about the recorded values. A
histogram has a user-defined number of intervals and minimum
and maximum values. The histogram will actually create two
more intervals than specified, one for values less than the
minimum and one for values greater than or equal to the
maximum. A histogram report consists of a line of output for
each interval, as shown:

cunal ati ve

| over innt frequency proportion proportion

Q m m O O kkkkkkkkkkkhkkkhkkkkkhk
1 00000 288 028300 0861000 xrrmkxx
2 00000 878 0087800 0Q.HM8300 ***
300000 > 0 0981000 *
4, 00000 12 001120 O
5. 00000 48 000800 0997000
6. 00000 2 O 0. 999200
7.00000 5 000050 0999700
800000 1 0000100 09980
9.00000 1 0000100 099900

>= 1000000 1 0000100 1000000

. Confidence intervals can also be specified for a table (see
page 36).

. Qtable - tracks state changes (for example the number of
processes in a queue). The gtable reports on the following
items:

QMEL gade

intid 0 nn nom 0 nean 0. 795029
fird 0 naxi nom 7 vari ance 0.8022710
etries 10000 range 7 standard deviation 0. 8956%

exits 10000 coeff of variaion 1126620

. A histogram can be specified for a gtable. It gives more detail
on the time spent in each state.

. Confidence intervals can be specified for a gtable (see page
36).

cunl ati ve
nnber tatd tine prgportion proportion

B3, 17812 0.35290 0.352201 *rkkkxkdkkkkk
5078. 27616 0.507790 0.860081 **Hkkxkdkkkkkdokkkkiok
1306. 88320 0.13067 0.990759 *x***
0. 75115 0. 009074 0. 999834
1 66151 0. 000166 1 000000

A WNEFO

Tables can be defined to be either permanent or non-permanent. A
permanent table is not affected by requests to reset statistics or
rerun the model, and can thus be used to gather data across multiple
runs of a model.

Each table must be given a name, which is used solely for output
(reports, status, and traces). The tables can be printed using
various report statements.

The following examples show how tables and gtables can be used:

* To declare, initialize, and use a non-permanent table with a

histogram:

tade *th; /*declare tadd e varidd e th */

th =newtad e("th"); /*intidize atad e naned thl */

th ->add hi stogan(10,0.0,20.0); /*add a histargramto a tad e nened thl */

t =dock [*get curert tine */

sing e server->reserve(); /*reserve asing e server facility */
x =dock - t; /*cdcuate tine spat on quewe (dday interva)*/
th->tabd ae(x); /*record dday inervd intade */

* To declare, initialize, and use a non-permanent gtable with a

histogram::
tad e *qh; /*decl are queve histogramand tabl e varidd e hst*/
bl =otabl e(“ctbl");
ot bl ->edd hi stograng20, 0, 20);
b ->nae entry(); /*record entry oo quewe for facility */
sing e server->reserve(); /*reserve asing e server facility */
b ->nae exit(); /* record exit fromaqueve far facility */

hol d(exporertid (2 5));

* To add confidence intervals to a table and to a gtable:

tabl e corfidence(thl); /* add corfidence interva */
ot ad e confi dence(qtll); /* add corfidence interva */

Meters and Boxes

Meters are used to gather statistics on the rate at which entities
flow past a point as well as the times between passages. Meters
can be used to measure arrival rates, completion rates, allocation
rates, and interpassage times.

* A meter report gives the following information:

METERL neter
count 10000 rae 0. 980

interpassage tine statistics

nn nam 0.000144 nean 0. 999140
naxi nam 9, 135145 vari ance 1 010617
range 9. 135002 standard deviation 1 00524
oservati ons 10000 coefficient of var 1 006159

. Histograms can be added to meters.

. Confidence intervals can also be used with meters.

A box conceptually encloses part or all of a model. This box gathers
statistics on the number of entities in the box and on how much time
they spend in the part of the model deliniated by the box. Boxes are
used to gather statistics on queue lengths, response times, and
populations.

* A box report gives the following information:
Statistics on elapsed times (see tables):
minimum, etc.
Statistics on population variation (see gtables):
initial, etc.

. Histograms can be added to boxes, (for both elapsed times
and population).

. Confidence intervals can also be used with boxes, (for both
elapsed time and population).

BX1 bax

statistics on € gosed tines

nhni nom 0. 000037 nean 0. 784577
naxi nom 6.498131 vari ance 0. 622643
range 6. 49804 standard deviation 0. 789077
doservati as 10000 coefficient of var 1 006736

statistics on popd aion

intia 0 nhni nom 0 nean 0. 776656
fird 0 naxi nom 6 vari ance 0. 775737
etries 10000 range 6 standard deviation 0.83079
exits 10000 coeff of variaion 1 134040

* The following example shows how to declare, initialize, and use
a meter:

neter *nir; /* declare neter variad e m*/

nr = newneter(“nor”); /* intidize aneter naned nr */

nir->nat e passage(); /* note pessage of process */

» The following example shows how to declare, initialize, and
then use a box

box *by /* declare box varidd e b */
b = newbax(“b") /* intidize abox nened b */
tinestanp = b->enter(); /* note eter box */

b->exi t(ti nestanp); /* e exit */

Confidence Intervals

A confidence interval for a statistic is a range of values in which the
true “answer” is believed to lie with a high probability. In a simulation
model, an output, e.g.. system response, can be an important
statistic and we would like to calculate a confidence interval for this
statistic so that we can assess it’s statistical accuracy. In CSIM19
we can add confidence interval calculations to tables, gtables,
meters, and boxes.

» The report for a data collection object with confidence intervals
is as shown:

cofidence intervds far the neen after 10000 doservati ons
levd corfidence interva rd. eror
90 % 1008900 +- 0.015530

9% % 1005900 +- 0.018559
9B % 1005900 +- 0.022116

[0.990870, 1021429 0015681
[0.987341, 1024458 0.0187%
[0.983784, 1028015 0.022480

The confidence intervals are calculated for the confidence levels
90%, 95%, and 99%.

Calculating confidence intervals is complicated by the fact that many
commonly collected statistics (e.g.., response times) are not
independent. The algorithim used to calculate confidence intervals in
CSIM19 groups the observations into batches, where the number of
batches depends on the correlation found in the statistic. If a report
is based on an insufficient number of batches, a message appears
(instead of the calculated confidence intervals).

Run Length Control

CSIM19 provides a mechanism for running a model until a desired
confidence level has been achieved for a specified statistic.
However, it is possible that the model may require an excessive
amount of computing time before the desired confidence level is
achieved, so a maximum CPU time parameter is used to limit the
execution time. The output report makes clear the terminating
condition of the model.

The automatic run length control can be used with tables, gtables,
meters, and boxes.

* To declare, initialize, and use a table with run length control:
nainrouine (sin:

comst dodl e GUTINE = 1 000.0;
cost doud e GOF LB = 0.0,
comst dod e AQRRECY = 0,01

tade *th;

exern “C vod sin{)

{
th =newtad e(“th");
th->run leng h(ACTRCY, N LBH, GUTIND;

;:.cr.wergﬁdvﬁt()

report();
}
Note: “Converged” is a built-in event that does not need to be
declared or initialized.

Process Classes

In some models, it is convenient to be able to segregate different
instances of a process (or processes) into classes for the purpose
of reporting facility usage data (and possibly other statistics).
Further information on this can be found in the CSIM Users' Guide.

Random Numbers and Streams

CSIM provides a set of functions that produce samples drawn from
different probability distributions. These are all derived from a
"random number generator”. In the standard case, there is one
random number generator function (one random number stream)
used by all of the probability distributions. In some cases, it is
convenient to have multiple streams of random numbers, so that
each stream operates in a repeatable manner, even when the
structure of the model is changed. The CSIM object "stream™ serves
this purpose.

The following example shows how random numbers and streams can
be used:

 To obtain a random number from the standard stream:

cost dode SRICETIME=10.0 ;/*decl are the nean service tine */
floa x; /*decl are vari adl es to cota n randomnunhers */

X = exponertid (FRIETND; /* use standard randomnuniter streamwth a negati ve
exponetia dstribution on anean of 10.0 */

 To declare, initialize, and use a stream:

const doubl e SERM CE_ TI ME = 10. 0;
stream*s
float x;

s = new streanf);

X = s->exponenti al (SBRMCE TIMB);

Successive streams are created with initial values (seeds) which
are 100,080 values apart.

The seed of a stream can be changed by using the reseed function.
The current value of the seed can be retrieved using the
stream_state function.

CSIM19 includes the following built-in random number distribution
functions:

uni fornfmn, nax)

triangul ar(mn, nax, node)
beta(nin, nax, shapel, shape?)
exponenti al (nean)

ganma(nean, st ddev)

erl ang(nean, var)

hyper x(nean, var)

vei bul | (shape, scal €)

nor nal (nean, stddev)

| ognor nal (nean, st ddev)

cauchy(al pha, beta)

hypoexponent i al (nean, var)

par et of a)

Zi pf(n)

randomint (nmn, nax)

ber noul | i (prob_success)

bi nomial (prob_success, numtrial s)
geonet ri ¢(prob-success)

negati ve_bi nonial (success_num prob_succes)

poi sson(nean)

There is also a capability for generating random samples from an
empirical distribution defined by a table.

* To initialize and use randomly derived values specified as

follows:
val ue f requency
1 .30
5 .60
9 .10

doubl e prob[3] ={0.30, 0.60, 0.10};
doubl e val ue[3] ={1.0, 5.0, 9.0};
doubl e cutof f[4];

long alias[4];

setup enpirical (3, prob, cutoff, alias);
x = enpirical (3, cutoff, alias, value);
Notice that the length of each of the auxiliary arrays, cutoff[] and

alias[], is one greater of than the length of each of the parameter
arrays, prob[] and value[].

Other Features

This tutorial has focused on the objects provided in the CSIM19
library. There are many other functions and procedures that help the
CSIM user implement a simulation model. These include:

Inspector functions that return the state of an object, the number
of customers or messages waiting at the object and other
important information about the object

Status procedures (for most object types) that print a report on
the status of all objects of that type. This can be useful in
debugging a model.

Report procedures which print summaries of statistics on the
usage of facilities and storage as well summaries based on
tables, histograms, gtables, and ghistograms

More inspector functions that retrieve a number of items,
including every item provided by CSIM reports, so that
customized reports can be produced

Routines to help with the management and execution of the
model itself:

* A procedure that resets all of the statistics being gathered,
except for permanent tables which are never reset.

* A'rerun” procedure that lets a model be destroyed and then
rebuilt, possibly with some different features

* A "debug" event trace can be "turned on", either by
executing the "trace_on()" procedure or by providing an input
argument when execution of the program is initiated

* Functions that allow the user to change the maximum
number of objects that can be active in a model (the
maximums are by object type)

* All of the files generated by the model (output, error and
trace) can be directed to files under program control

A CSIM19 model can be embedded in another application. The user
just has to provide a main routine that calls "sim".

All of the routines in the CSIM library have been optimized to support
efficient execution of the model. All data structures are dynamically
allocated, so there are no pre-determined limits to the sizes of
models. The library does not have to be recompiled to handle large
models.

Summary

CSIM19 has been designed to empower C++ programmers who
need to build and use simulation models of complex systems. The
programming approach to model building means that models of
arbitrary levels of complexity and detail can be readily constructed
and verified. CSIM19 does not embody any preconceived notions
of how simulation models should be constructed (other than using
the process-oriented paradigm).

Analysts and programmers interested in finding out more about
CSIM19 and how it can be obtained should contact Mesquite
Software, Inc.

	Getting Started: CSIM19 (C++ Version)
	Table of Contents
	Introduction to CSIM19 for C++ Programmers
	Introduction
	Example
	CSIM Objects

	CSIM19 Tutorial (C++ Version)
	Introduction
	Processes
	Facilities
	Storages
	Buffers
	Events
	Mailboxes
	Tables and Qtables
	Meters and Boxes
	Confidence Intervals
	Run Length Control
	Process Classes
	Random Numbers and Streams
	Other Features

	Summary

