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0. An overview of functional programming 

0.0 This Manuscript  Introduces The Functional Programming Style 
 
At one time almost all programming was sequential and imperative (or procedural or statement-oriented). This is what the von 
Neumann machine architecture dictates. So if you are programming to the underlying von Neumann architecture you program 
sequentially and imperatively. In recent years, mathematical models of programming have been gaining in importance at the 
expense of the traditional styles. In the 1980’s Computer Science departments placed a lot of emphasis on structured 
programming as in Pascal or a similar language. In the 1990’s structured programming is no longer enough; mathematical 
models are going to become increasingly important. Two such important models are Logic and Functional programming.  

Logic Programming and Functional Programming came via Artificial Intelligence. This should not be surprising, after all AI 
deals with problems that traditional approaches cannot handle. With the ever increasing need for mathematics to take its proper 
place in Computer Science, today’s graduate needs to master logic programming and functional programming as examples of 
programming using a mathematical rather than a machine model.  These two styles of programming are no longer restricted to 
Artificial Intelligence, however. They have now become truly general-purpose, and therefore their coverage is no longer a trip 
into specialist territory.  

This course will introduce all the important features of functional programming. These include the following: 

1. Functions: 
 
A function as a mapping from one set of values (type) called the domain to another set called the range. 

2. Mathematical variables: 
 
Variables in functional programs cannot be updated. They get their values (values are bound to them) from outside or by 
definition. 

3. Expressions: 
 
An expression is made up of function applications and is evaluated (reduced) in Applicative Order or in Normal  

Order. 
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4. Referential Transparency: 
 
The value of an expression is determined solely from the values of its sub-expressions. Two sub-expressions are equivalent if 
they have the same value. Equivalent sub-expressions may be interchanged. 

5. Typing: 
 
Most functions are data-specific i.e. they are defined for one type of object only. However, some functions are overloaded and 
others are polymorphic.  An overloaded function has several meanings while a polymorphic function is type-independent. 
Polymorphism is desirable in many applications e.g. in designing generic structures. 

6. Data Structures: 
 
Data structures enable us to construct large data objects from other data objects. 

7. Abstract Data Types: 
 
In abstract data types the concrete type is hidden from the user. Functions are abstract. 

8. Lists: 
 
The list is the basic data structure of functional programs. 

9. Lazy Evaluation: 
 
Lazy evaluation enables us to manipulate infinite lists like [1,2, 3, ...]. Without lazy evaluation it is difficult to give infinite lists 
computational meaning. 

10. Recursion: 
 
Recursion eliminates looping constructs. Recursion is easier to understand than iteration. 

11. Lambda binding: 
 
It is useful for anonymous functions. 

12. Higher Order Functions: 
 
Functions themselves are computational values and therefore can be manipulated in expressions. A higher order function is a 
function that operates on other functions. 

 

These concepts will be illustrated with several examples. We shall start by looking at imperative programming, since that is 
where we are coming from with our Pascal tradition. 
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1. A Quick Overview of Imperative Programming  

1.0 Imperative Programming Has Three Main Characteristics  
  
Imperative programming is sometimes called procedural programming or statement-oriented programming. In an imperative 
program the basic “unit of work” is the statement. The effect of a statement is to change the state of the machine on which the 
statement is executed. The imperative style of programming is therefore characterised by its use of  

1. variables to stand for storage cells,  
2. the assignment statement to change the contents of a cell and therefore the state of the machine,  
3. repetition (looping) to construct complicated applications.  
  
The following Pascal program illustrates the imperative programming style. It is taken from (Ghezzi, 1987) page 261.  Note the 
use of variables as storage cells, the assignment statement and repetition. The interdependence of the two loops makes it 
difficult to follow the program.  

(* print prime numbers in the range 2 .. n *) 

program primes (input, output); 

   const n = 50; 
   var  i : 2 .. n; 
      j : 2 .. 25; 
      i_is_prime : boolean; 
   begin 
      for i := 2 to n do 
         begin (* is i prime ?*) 

     j := 2; i_is_prime := true; 
     while i_is_prime and (j <= i div 2) do 
        if ((i mod j) <> 0) then  

           j := j + 1 

        else i_is_prime := false; 

      (* if so, print its value *) 
      if i_is_prime then write (i) 

           end 

   end. 

This Pascal program takes each number in the range and checks to see if the number has any divisors. If it does not then it is 
prime. 

1.1 There Are Problems With Imperative Programming  
1. Programming at the level of manipulating the memory store is uncomfortably low, especially if the application is 

complicated.  
2. von Neumann programs are therefore very difficult to reason about. That is, it is difficult to attempt to show (or prove) 

that such a program is correct.  
The execution of a von Neumann program defines a sequence of states of computation. A state of computation is 
defined by the contents of memory cells. This state changes every time an assignment statement is executed. A 
complicated application therefore requires several states of execution, actually too many to reason comfortably about. 
No wonder we still have the software crisis!  

It is interesting to note that these problems were ignored for 2 to 3 decades in favour of efficiency. In other words, 
faster execution of possibly incorrect programs was (and still is?) preferred to slower execution of correct programs! 

References 
1. Ghezzi, c., Jazareyi, M. (1987), ‘Programming Language Concepts’, 2/E : John Wiley, Chapter 7, Section 1, pp  

259 - 264 
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2. Functions Are At The Center Of Functional Programming  
 

2.0 Values Instead Of States Of Computation  
  
Functional programming is expression-oriented and an expression consists of function applications. A function application, and 
therefore an expression, has a value. We have seen that statement-oriented imperative programming has the effect of changing 
the state of computation of the underlying machine. Expression-oriented functional programming on the other hand produces 
values. These values are all want; we do not care about the state of the machine on which the expressions are evaluated. 

Let us begin by contrasting imperative functions and functional functions. We shall consider Euclid’s Algorithm for computing 
the Greatest Common Divisor (GCD) of two natural numbers.  

The algorithm states that  

gcd(0,n) = n 
gcd(m,n) = gcd(n mod m, m) for m > 0 

 
A typical imperative gcd function looks like this (taken from (Paulson, 1991)): 

function gcd (m,n : integer) : integer; 
var prevm : integer; 

        begin  
           while m <> 0 do  
              begin  

          prevm := m;  
          m := n mod m; 
          n := prevm  
       end; 

     gcd := n 

 end; 

 
If we use recursion it looks like this: 

function gcd (m, n : integer) : integer; 
begin 

           if m = 0 then 
              gcd := n 
            else 

gcd := gcd(n mod m, m) 
end; 

The recursive version is usually avoided because “recursion is inefficient.” In a functional style of programming Euclid’s GCD 
function is always coded as in the following Standard ML function 

fun gcd(m,n) = if m = 0 then n  else gcd (n mod m, m); 

Here correctness is more important than efficiency. This function is obviously a correct implementation of Euclid’s algorithm. 
It is not so easy to prove that the iterative implementation in Pascal is correct. If we test it on a carefully selected subset of the 
domain we may convince ourselves (and perhaps others too) that it is good enough. But is such testing enough? There is 
abundant evidence in the form of programs with bugs to suggest that testing is not enough! Testing has traditionally been used 
to show the presence of errors but not to show that they are absent. 
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2.1 A Function As A Mapping 
 
Functions in functional programs define a mapping from one set of values (a type) called the domain to another set of values 
called the range. 

A function definition defines the domain, the range and the mapping rule. Let us look at simple examples: 
 

- fun add1 x = x + 1;             (* we type in this definition *) 

- val add1 = fn : int → int      (* we get this response *) 

 
add1 is a function which maps integers to integers. The mapping rule adds 1 to the domain value. Applying add1, we have:  

add1 5 to give 5 + 1 which evaluates to 6. add1 5 = 5 + 1 = 6 

- fun positive x = if x > 0 then true else false; 
- val positive = fn : int → bool 

 
positive is a function which maps integers to booleans. The mapping rule maps integers greater than zero to true and all others 
to false. 

positive 6  gives true. 

- fun gcd (m, n) = if m = 0 then n else gcd (n mod m, m); 
- val gcd = fn : int * int → int 

 
gcd maps a pair (or 2-tuple) of integers to an integer. The mapping rule is a bit more involved than in 1 and 2. 

gcd(65, 39) = gcd (39, 65)  = gcd (26, 39) = gcd (13, 26)  = gcd (0, 13)  = 13 

 
The three examples are intended to show clearly that 

1. A function is indeed a mapping from one set of values (or type) to another. 
2. The mapping rule is given by an expression, sometimes aided by a structuring mechanism such as selection in the if 

expression. 
3. There is no idea of a computational state, only values. 
4. There are no assignments. 

 
Have you noticed that the von Neumann architecture has disappeared from the scene? Where is it? It is hidden behind the 
scenes, as it should be. In fact it can even be replaced. Our functions do not care what architecture they are evaluated on 
because they are based on a mathematical model and not on a particular machine architecture. If one machine architecture can 
implement the functions more efficiently than another, then we will probably choose the more efficient one but correctness will 
not be compromised. Advances in hardware technology (speed, reliability, etc) and software technology (language 
implementation techniques, etc) have reduced the efficiency gap between functional and imperative programs. Efficiency is 
therefore no longer a strong issue against functional programs. Imperative programs on the other hand are still difficult to 
reason about.  

Let us end with the factorial function. 

- fun fact n = if n = 0 then 1 else n * fact n-1; 
- val fact = fn : int → int 

 
Let us try to evaluate fact 3 

fact 3 = 3 * fact 2 

          = 3 * 2 * fact 1 
          = 3 * 2 * 1 * fact 0 
          = 3 * 2 * 1 * 1 

       =6   *1*1 
       =6   * 1 

         = 6 
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2.2 Exercises 
2.1 Define the following functions. In each case identify the domain, range and mapping rule. 

 
(i) The square of a number 
(ii) The maximum of two numbers 
(iii)  The maximum of three numbers 
(iv)  Is a given number prime (True/False)? 

 
2.2 What differences do you notice between imperative functions and functional functions? 

 
 

References 
1. Paulson, L.(2000), ‘ML for the Working Programmer’  2nd Edition: Cambridge University Press 
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3. Expressions 
 

3.0 Expressions Instead Of Statements 
 
Expressions are to functional programming what statements are to imperative programming. “Execution” in a functional 
program means evaluating an expression. An expression has a value. When an expression is evaluated it is reduced to its value. 
This is very easily done. Isolate reducible sub-expressions of the expression and reduce each such reducible sub-expression (or 
redex) to its value. Keep doing this until you get a non-reducible sub-expression. Simply said, replace equals by equals in the 
expression. 

On the other hand execution in an imperative program means executing statements. This means changing the computational 
state by assigning new values to variables, creating new (local) variables, destroying variables, etc. All this is very difficult to 
define and to follow. 

3.1 An Expression Contains Function Applications 
 
An imperative programming language gives us basic statements like the assignment statement and basic constructors like 
selection etc, which we then use to construct larger statements. In a functional program like Standard ML we start off with a set 
of basic functions which we can use to form simple expressions. In order to form more complicated expressions we structure 
these simpler expressions into a series of function applications using the structuring mechanisms provided. 

3.1.1 Standard ML’s Predefined Functions 
 
Here is a full list of predefined functions in Standard ML. They are categorised by type. 

Integers (ML type int) 

+  addition 
-  subtraction 
~  unary minus 

*  multiplication 
div division 
mod remainder 
real conversion to real 
abs absolute value 
<,>,<=,>=,=,<> relational operators 
 
Reals (ML type real) 

+ addition 
- subtraction 
~ unary minus 

* multiplication 

/  division 
sqrt  square root 
sin, cos, arctan    trigonometric functions 
exp exponentiation 
ln natural logarithm 
abs absolute value 
floor conversion to integer 
<,> relational operators 
 
Character strings (ML type string) 

^   concatenation 
size  number of characters in a string 
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ord, chr string - ASCII code conversion 
explode string to list conversion 
implode list to string conversion 
 
Booleans (ML type bool) 

not   negation 
orelse disjunction 
andalso conjunction 
=, <>  relational operators 
 
Tuples 

#i select component i (e.g. #1, #2, ...) 

Records 

#label field selection 

Lists (ML type ‘a list) 

nil, [] empty list 
:: constructor 
@ append 
rev reverse 
map apply a function to each element of a list 
 
Functions (ML type fn) 

   function application 

;  function composition 
 

3.1.2 A Function Application May Be Infix Or Postfix 
 
An infix function (otherwise called an infix operator) is written between its two arguments as in a1 f a2, where a1 and a2 are 
the arguments and f is the infix function. Familiar examples of infix syntax include the following: a + b; 5 * 4; a mod i. 

Normally, functions are applied using prefix notation, whereby the function precedes its arguments, as in f (a1, a2).  The 
brackets may be left out to give f a1 a2.  Standard ML allows us to define infix functions as in the following example definition 
of the xor function (exclusive or). 

  infix xor 
    fun p xor q = (p orelse q) andalso not (p andalso q); 
 
The function xor is now applied using infix syntax as follows: 

    true xor false; a xor b; 

Note that the value of the function or its mapping rule is the same whether the syntax of its application is infix or prefix. 

In prefix notation the xor function would be defined as follows: 

    fun xor p q = (p orelse q) andalso not (p andalso q); 

and it would be applied as follows: 

    xor true false; xor a b 
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3.1.3 There Are Several Ways Of Evaluating Expressions 
 
An expression stands for a value. The expression true xor false stands for the value true just as the expression 1 + 2 stands for 
the value 3. Expression evaluation involves rewriting the expression or reducing the expression to its “normal” form. Thus the 
expression true xor false is reduced to true and 1 + 2 is reduced to 3. A reducible expression or sub-expression is called a redex. 
Four reduction strategies are equivalent. They are 

outermost rightmost 
outermost leftmost 
innermost rightmost 
innermost leftmost 

 
Let us illustrate these four reduction strategies with an example. 

Define function square. 

fun square x = x * x; 

Now evaluate the expression square (2+2) using the four strategies mentioned above: 

(i) Outermost Rightmost Reduction 
 

Apply the outermost function first and proceed from right to left. 

     square (2+2) = (2+2) * (2+2)  - apply square  
                  = (2+2) * 4   - reduce rightmost redex 

= 4 * 4 
= 16 

 
(ii) Outermost Leftmost Reduction [Also called Normal Order Reduction] 
 

Apply the outermost function first and proceed from left to right. 

     square (2+2) = (2+2) * (2+2)  - apply square  
                  = 4 * (2+2)   - reduce leftmost redex 

= 4 * 4 
= 16 

 
(iii)Innermost Rightmost Reduction 

Apply the innermost function first and proceed from right to left. 

square (2+2) = square (4)  - apply +  

= 4 * 4 
= 16 

 
(iv) Innermost Leftmost Reduction [Also called Applicative Order Reduction] 
 

Apply the innermost function first and proceed from left to right. 

square (2+2) = square (4)   - apply + 

= 4  * 4 
= 16 

 
It can be proved that all the four reduction strategies are equivalent in that they all produce the same value for a given redex. 
The Applicative Order reduction strategy (in fact all innermost first strategies) implements call-by-value (or strict evaluation). 
Call-by-value means that we evaluate the innermost redex first. In other words evaluate the arguments of a function first and 
then call the function with the evaluated arguments. One problem with the innermost first strategy is that sometimes it performs 
redundant evaluations. 

Here is an example. 

fun zero x = 0; 
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Evaluating zero (4+6) using Applicative Order gives 

zero(4+6) = zero(10) 

   = 0 

It was unnecessary to evaluate the expression 4+6. Whatever argument it is applied to, function zero will always return (will 
reduce to) the value 0. It would be useful to have a reduction strategy that exploits this fact in this case.  Normal Order does 
just that. 

The Normal Order (or Outermost First) reduction strategy implements call-by-name (or call-by-need or lazy evaluation). Call 
by name here means that we evaluate the outermost redex first. In other words apply the function to its un-simplified 
arguments. The danger here is that we may duplicate computation. For example we duplicate the computation of (2+2) in (i) 
and (ii) above. 

If an expression has a value then Normal Order will get it but Applicative Order may fail. This happens with functions that 
violate rules of mathematics. Let us look at a simple example:  

What is the value of zero (1 div 0)?  What about zero (“You” + 5)? 

Since the arguments cannot be evaluated, Applicative Order will fail. Normal Order on the other hand will succeed since it 
does not need to evaluate the arguments in this case. 

ML uses Applicative Order because it is “more efficient”. More recent functional languages tend to use Normal Order because 
it is mathematically more sound. 

 

3.2 Conditional Expressions Give Us Choice 
 
The conditional expression in Standard ML has the form 

if E then E1 else E2 

E is a boolean expression. If E has the value true then the value of the conditional expression is the value of expression E1. If 
the value of E is false then the value of the conditional expression is that of expression E2. The un-chosen expression is not 
evaluated; this is very important for recursive functions. The conditional expression was used in the definition of the factorial 
function. That definition is repeated here. 

fun fact n = if n = 0 then 1 else n * fact(n-1) 

ML’s boolean operators andalso and orelse are equivalent to boolean expressions as follows: 

E1 andalso E2    is equivalent to       if E1 then E2 else false 
E1 orelse E2     is equivalent to       if E1 then true else E2 
 

3.3 Exercises 
 

3.1 Using the definition of square and zero given above evaluate the following in a) Applicative Order b)  
Normal Order. 

(i) square(square(square(2))) 
(ii) zero(square(square(2))) 

 
3.2 Evaluate fact(5), where fact is defined as 

fun fact n = if n = 0 then 1 else n * fact (n-1) 

3.3 Evaluate facti(5,1), where facti is given by 
 

fun facti (n, p) = if n = 0 then p else facti(n-1, n*p); 

3.4 Perform a reduction of the expressions powoftwo(8) and powoftwo(12) given the following definitions : 
 

fun even n     = (n mod 2 = 0); 

fun powoftwo n = (n=1) orelse (even(n) andalso powoftwo(n div 2)); 
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3.5 We are given the following definitions for cond and badf: 

 
fun cond(p, x, y) = if p then x else y; 
fun badf n = cond (n = 0, 1, n*badf(n-1); 

 
Try to reduce the expression badf(0). 

Why does the reduction fail ? 
Suggest a way or ways of overcoming the problem. 

 

References 
1. Paulson L. C. (1991), ‘ML for the Working Programmer’ : Cambridge University Press. Chapter 2 
2. Sethi, R (1989), ‘Programming Languages - Concepts and Constructs’ : Addison-Wesley. Chapter 2 
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4. Functional Variables are Mathematical Variables 
 

4.0 Functional Variables Cannot Be Updated 
 
Variables in imperative programs stand for storage cells in the von Neumann computer’s store. Such variables can be assigned 
different values at different stages of execution of an imperative program. This is how the state of computation changes in an 
imperative program.  

In functional programs we do not have the concept of a von Neumann store. Variables stand for values not storage cells.  A 
variable is simply a name for a value. A variable identifies a value. The concept of updating a functional variable is 
meaningless. 

In a function a variable is simply a placeholder used in defining the mapping rule, which associates a domain value with a 
range value. A value is bound to the variable before function application. If a variable were correctly used in a function 
application, it would be standing for a value that it got by definition, before function application. 

4.1 Standard ML Uses Static Binding Of Variables 
 
In Standard ML values are bound to variables in a val declaration. The syntax is as follows: 

val varname1   = subexp1 
[and varname2  = subexp2 

      ... 
      ... 

and varnamen  = subexpn]; 

The sub-expressions are all evaluated and their values bound to their respective variables in parallel. 

The val declaration  

val x = 5; 

may be interpreted to be saying that the value of variable x is 5. 

4.1.2 A Global Binding Remains in Force Until the Variable is Re-Bound 
 
A variable may be bound globally as in the following declarations: 

val pi = 3.14159; 
val r  = 2.0; 
val area = pi * r * r; 

Variables pi, r and area may be used in subsequent expressions to stand for the values they have been assigned above. These 
variables will keep their values until they are redeclared (or re-bound) in subsequent val declarations. 

 

4.1.3 A Local Binding Survives Only One Expression or Declaration 
 
Variables may be bound locally as in the following : 

let val x = 3 and y = 5 

in x * y - (x + y) end; 

or 
 

local val x = 70 div 3 
in val y = (x, x*3) end; 
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In each of these two examples x is bound outside the expression in which it is used and yet the binding remains local to the 
relevant expression or declaration. 

The syntax of local binding is 

let <declaration> in <expression> end; 
local <declaration> in <declaration> end; 

 

We use a local binding if we want a variable to have (be bound to) a particular value only for the duration of a particular 
expression (for let) or a particular declaration (for local). Outside the particular expression or declaration of interest the variable 
loses the value it got in the local binding. 

In the case of a global binding, a variable keeps its value until it is re-declared. In a local binding a variable keeps its value only 
during the local expression or declaration. The declarations used in the above examples are value declarations (using val). The 
syntax of value declarations in its simplest form was given earlier. There are twelve different declarations in Standard ML. See 
the language definition (e.g. Syntax Charts) for details. 

Static binding means that when we overwrite some value binding, the value of the identifier does not change, but instead a new 
identifier with the same name is created. 

An example may help illustrate the point. 

- val y = 12; 
- val y = 12 : int 
- fun addy x = x + y; 
- val addy = fn : int → int 
- addy 3; 
- 15 : int 

 
Now change y’s binding 

- val y = true; 
- val y = true : bool 
- addy 3; 
- 15 : int 

 
The value of y in addy is still 12. This value cannot be changed since variables cannot be updated. However, the original y has 
been hidden by the new one since they both have the same name.  Lisp does not use static binding. 

4.2 Exercises 
4.1 What is the value of each of the following expressions? 

 
(i) let val x = 2 in x * x end; 
(ii) let val z = 3 in z * z end; 

(iii)let val x = 2; 

let val x = 3 
and val y = x 
in x + y end; 

(iv) let val x = 3 in let val y = 4 in x * x + y + y end end; 
(v) let val x = 2 in let val x = x + 1 in x * x end end; 
(vi) let val x = 3 val y = 4 in x * x + y * y end; 

(vii)let val x = 3 and y = 5 in x * y - (x + y) end; 
(viii)local val x = 70 div 3 in val y = (x, x+3) end; 

(ix) let val x = 64.0 in sqrt x end; 
(x) (fn x => sqrt x + x) 64.0  
(xi) Does the following swap work? Explain. 

val one = “Bang”; 

val two = “Big”; 
val one = two and two = one; 
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4.2 What values are given by each of the following in the sequence? 

 
fun f1 x = x * 2; 
fun f2 x = f1 x; 
f2 2; 
fun f1 x = x - 3; 
f2 2; 

 
4.3 Reduce the following expression. 

 
let fun f1 x = x + 2 
in let fun f2 x = f1 x 
in let fun f1 x = x - 3 in f2 2 end end end; 

 
4.4 Rewrite the following function using local declarations : 

 
Reducing a fraction to least terms : 

fun fraction (n,d) = (n div gcd(n,d), d div gcd(n,d)); 

4.5 The following is taken from Paulson, 1991). Study it until it makes sense. 
 

To compute the square root of a positive number a using the Newton-Raphson method we proceed as follows : 

 
• choose any positive number, say 1, as the first approximation. 
• if x is the current approximation then the next approximation is (a/x + x) / 2 
• stop as soon as the difference becomes small enough. 

 
Here is an implementation. 

fun sqroot a = 
let val acc = 1.0E~10 

fun findroot x = 
let val nextx = (a/x + x) / 2.0 
in if abs(x - nextx) < acc * x 

then nextx  
else findroot nextx 

end 

in findroot 1.0  

end; 
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5. Referential Transparency Aids Correctness Proofs 
 

5.0 An Expression Always Has The Same Value 
 
Referential transparency means that an expression always has the same value. Whether you evaluate the expression on planet 
Earth or whether you evaluate it on Mars, you get the same value. This emphasises the point that the only important thing about 
an expression is its value. The environment within which it is evaluated or reduced is not important. If we take a sub-
expression of an expression and replace this sub-expression with another sub-expression that has the same value then the 
original expression has not changed. Another way of saying this is that “an expression does not change if we replace equals 
with equals.”  

In fact an entire expression may be replaced by its value. Let us look at an example. The commutative law of addition says that 
E1 + E2 can be replaced by E2 + E1. Generally, expressions can be transformed using mathematical laws. The sub-expressions 
can be evaluated in any order or even in parallel. 

(Ghezzi, 1987) has the following to say on referential transparency  (page 263): “A system is said to be referentially 
transparent if the meaning of the whole can be determined from the meaning of its parts.  Mathematical expressions - indeed, 
all mathematical concepts - are referentially transparent. For example, in the mathematical expression f(x)+g(x), we can 
substitute another function f’ for f if we know that it has the same value as f.  If the same expression is an expression in Pascal 
(or any other conventional imperative language), we are not assured of this property. Indeed, if f or g change the values of their 
... by-reference parameter or modify some global variables, we are not even assured that f(x) + g(x) = g(x) + f(x) or f(x) + f(x) 
= 2 * f(x), that is, the meaning of the expression depends on the history of computation of the sub-expressions. Lack of 
referential transparency makes programs hard to read, modify and prove correct.” It is interesting to note that the mechanisms 
that harm referential transparency are introduced into imperative languages to achieve execution efficiency on a von Neumann 
computer. These mechanisms include global variables, call-by-reference parameters and side effects in general. 

Because of referential transparency we are able to say, quite often with great authority, that a given functional function is 
correct. On the other hand, because of the absence of referential transparency we usually are unable to say, without doubt, 
whether a given imperative function is definitely correct. If we are concerned about program correctness we have to enforce, or 
at least encourage, referential transparency in our functions. 

 

Exercises 
 
 

6. Lists Are The Basic Data Structure Of Functional Programs 
 

6.0 Lists for arrays 
 
Programmers process collections of items using any one of several structuring methods: records if the items are few, related 
and (normally) of different types; arrays if the collection is too large to handle comfortably as a record and if the items are of 
the same type. 

Arrays have been and probably still are at the center of data structuring in imperative programming. Their main asset is their 
great efficiency. The major advantage of the array is that it takes the same length of time to access the first element of the array 
as it does to access the last or any other element of the array. As a result the array is called a random-access structure. Efficient 
access to individual array elements keeps the array ahead of its competitors. There are serious disadvantages too. The main 
problem seems to be subscripting. If we remove subscripting as in stacks, queues, etc programmers tend to be more 
comfortable with the resulting structures. Such structures do not suffer from the subscripting errors, which are a cause of many 
bugs in manipulations of arrays. Many bugs have resulted from using non-existent array subscripts. Functional programs 
process collections of items as lists. From a mathematical point of view lists are more elegant than arrays. 
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6.1 A List Is A Finite Sequence Of Elements 
 
Since a list is a sequence the order of elements is important. Here are a few lists. 

(i) []   the empty list. 
(ii) nil  the empty list again. 
(iii) [1]  a singleton list. 
(iv)  [1,4,5]   the sequence of elements 1,4,5 
(v) [”one”, “tea”, “book”]   a list of strings 
(vi)  [(1,”one”), (2, “two”), (3, “three”)]   a list of pairs or 2-tuples 
 
All the elements of a list must be of the same type.  

6.2 A List Is Built From Nil Using cons (::) 
 
The starting point for list construction is the empty list nil or [] and the constructor primitive::, called cons (for constructor or 
construct). A list has a head and a tail. The two are related by cons as follows: list = head :: tail. 

e.g. 
 

[1] = 1 :: [] 
[1] = 1 :: nil 
[1,4,5] = 1 :: [4,5] 
[5,1,4] = 5 :: [1,4] = 5 :: (1 :: (4 :: [])) 
[”one”, “tea”, “book”] = “one” :: [”tea”, “book”] = “one” :: (“tea” :: (“book” :: [])) 

 

6.3 Lists Have A Rich Toolkit 
 
The toolkit contains tools to do the following : 

• determine the length of a list 
• determine the last element of a list 
• reverse a list 
• append two lists to form a new list 
• apply a function to each element of a list 
• convert a list of lists into a flat list 

 
The functions hd (head), tl (tail), rev (reverse) and @ (append) are normally predefined. The rest of the list operators are added 
to the toolkit as user-defined functions. Let us write a function to determine the length of a list. 

fun len x = if x = [] then 0 

           else 1 + len(tl x); 

Let us now try to write the function hd. We soon discover that it is not easy to write it in the style of len. To greatly simplify 
the implementation of list functions we need to turn to the concept of pattern matching. 

6.3 Pattern Matching Simplifies List Functions 
 
Let us start by rewriting function len using pattern matching. 
 

fun len [] = 0 
| len (x :: xs) = 1 + len(xs); 
 

Since we do not use variable x in the expression, we should eliminate it from the function definition. 

 



Functional Programming Using Standard ML 

� Dr. E. K. Mugisa 2002 

17
fun len [] = 0 

| len (_ :: xs) = 1 + len(xs); 

The function has one clause for each argument pattern. The first pattern, which matches the empty list, is separated from the 
second by a vertical bar. The second pattern is invoked only if the first fails to match the actual argument. The patterns must 
therefore be mutually exclusive. They should also be exhaustive. This means that an actual argument should not fail to find a 
matching pattern. 

Let us now write the rest of the list toolkit, starting with hd. Some of these patterns are not exhaustive. We shall deal with this 
problem later. 
 
1. head  : the head of a list 
 

fun hd (x :: _) = x; 

2. tail  : the tail of a list (what is left after removing the head) 
 

fun tl (_ :: xs) = xs; 

3. append  : append two lists 
 

fun append ([], y) = y 

| append (x, []) = x 
| append (x :: xs, y) = x :: append (xs, y); 

 
This function could be defined as 

infix @; 
fun [] @ y = y 

| x @ [] = x 
| (x :: xs) @ y = x :: (xs @ y); 

 
 
4. rev  : reverse a list 
 

fun rev [] = [] 

| rev (x :: xs) = (rev xs) @ [x]; 

5. last  : the last element in the list 
 

fun last x :: nil = x 
| last x :: xs = last xs; 
OR 

fun last x = hd rev x; 
 

6. map  : apply a function to each element of a list 
 

fun map f [] = [] 

| map f (x :: xs) = f x :: map f xs; 

7. flat  : flatten a list of lists 
 

fun flat [] = [] 

| flat (x :: xs) = [x] @ flat xs; 

 
The list is a very powerful structure in functional programs. With lists we can do almost anything. The exercises that follow are 
supposed to illustrate the versatility of the list. 
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6.6 Exercises 
 

6.1 Write a function nth(l, n) to return the nth element of list l. The head is element 0. 
 

6.2 Write a function to transpose a matrix. For this function, the matrix can be seen as a list of lists. 
 

6.3 Write a simple version of Quicksort using lists. 
 

6.4 Implement set operations using lists. the operations are : 
 (i) convert a list to a set by removing duplicate elements 
 (ii) cardinality 
 (iii) membership 
 (iv) intersection 
 (v) union 
 (vi) difference 
 6.5  Implement a line editor. The line to be edited will be represented as a pair of lists. The first list of the pair will contain 

 the items to the left of the cursor. The second list will contain the items to the right of the cursor. Write functions to do 
 the following: 

(i) move the cursor to the left (left) 
(ii) move the cursor to the right (right) 
(iii) delete the element immediately to the left of the cursor (delete) 
(iv) insert an item to the immediate left of the cursor (insert) 
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7. Typing 
 

7.0 Values Are Partitioned Into Types 
 
In section 2.0 we stated that the value is at the center of functional programming. Expressions and function applications are 
important for the values they can be reduced to. The concept of typing partitions the universe of values into organised 
collections or sets, called types. In section 3.1.1, while looking at ML’s predefined functions we encountered eight types: 
integer, real, string, boolean, tuple, record, list, function. We may divide these types into basic types and derived types as 
follows: 

SML types 
   Basic types (the values are given as primitives) 
      integer, real, string, boolean 
   Derived types (constructed from other types) 

      tuple, record, list, function 

Let us start by looking at each of these types. The predefined functions for each of these types are given in section  

3.1.1 
 

Integer (int) 
Real (real) 
Boolean (bool) 
 

These types are similar to the corresponding types in other programming languages like Pascal and Modula-2. 
 

7.0.1 Character string (string) 
 
ML strings are enclosed in double quotes (“) as are Pascal and C strings. Modula-2 strings are enclosed in single quotes (‘) e.g. 
“a”, “UWI-Mona”. Apart from relational operators section 3.1.1 introduced six specialist string functions.  

Let us play around. 

concatenation (^) 

“comp” ^ “uter”;  (this is what you enter) 
“computer” : string (this is the response) 

 
size 

size “what is my size?” 
16 : nit 

 
ordinal value (or position) in ASCII character set (ord) 

ord “a”; 
97 : int 

 
chr  - the inverse of ord 

chr 97; 
“a” : string 
chr 53; 
“5” : string 

 
You will have noticed that there is no need for a character type. A character is simply a string of length 1. 

convert a string to a list of characters  (explode) 
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explode “E.K.Mugisa”; 

        > [”E”,”.”,”K”,”.”,”M”,”u”,”g”,”i”,”s”,”a”] : string list 

convert a list of strings to a string (implode) 

implode [”I”,”did”,”it”]; 
“Ididit” : string 

 
Let us now write a function to reverse a string. 

convert the string into a list (explode) 
reverse the list (rev) 
convert the list into a string (implode) 

 
- fun revstring s = implode(rev(explode s)); 
- revstring = fn : string → string 

 
Is a given string a palindrome? A palindrome reads the same from left to right as from right to left e.g. “madam”, “ABBA”. 

- fun palindrome s = s = revstring s; 
- palindrome = fn : string → bool 

 
Since we have the two functions explode and implode, we can use list functions to manipulate strings. This eliminates the need 
for several specialist string functions. 

7.0.2 Tuples 
 
A tuple is an ordered collection of values much like the Cartesian product of sets. The simplest tuple is the pair. The following 
are all tuples : (1, “a”); (5,12,13); (“uwi”, 1948, 3, 6). 

The tuple (1,”a”) is formed by selecting 1 from the set of integers (or the type int) and “a” from the type string. This may be 
represented by the Cartesian product of the two sets int X string. Indeed the type of the tuple (1,”a”) is int * string. 

A tuple may contain values of any type. This is a valid tuple : (2, (true, .6)), it has the type int * (bool * real). Let us look at 
some uses of tuples: 

A function to test if a number is odd  

fun odd x = if x mod 2 = 0  
then (x, “is even”) 
else (x, “is odd”); 

val odd = fn : int → int * string 
 
A function to do ordinary primary school “quotient-remainder” division: 

fun divide (x, y) = (x div y, x mod y); 
val divide = fn : int * int → int * int 

 
Note that if we leave out the brackets we get a different argument type: 

fun divide x y = (x div y, x mod y); 
val divide = fn : int → (int → int * int) 

 

What we see in this signature is called Currying and we shall say more about it later. We note from the signature (or type) of 
the function divide (x,y) that it has only one argument, not two. The single argument is a pair. Therefore the function 
application divide (11,3) has the vale (3,2), while the attempted application divide 11 3 will be rejected because of the wrong 
type of argument. 

Finally on tuples let us look at their selectors. #1 selects the first element. Thus #1(“a”, 1) is “a” and #2(2, (true, 5.6)) is (true, 
5.6). Generalising, selector #i will select the ith element of an n-tuple, n > i. 
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7.0.3 Records 
 
A record may be seen as a tuple whose components have labels. The components of a tuple are identified by position. The 
components of a record are identified by their labels. Let us look at a student record. 

val student1 = {name=”Jones”, idnum=901234, faculty=”Nat Sci”}; 
val student1 =  ... 

 
To select the id number we use #idnum student1 

#idnum student1; 
901234 : int 

 
#name {name=”Brown”, idnum=894321, faculty=”FAGS”} has the value “Brown”. 

Tuples are a special case of records. Here is why. 

a positive integer can be used as a label as in {1=x1, 2=x2, 3=x3} 
to select the second component we use #2{1=x1, 2=x2, 3=x3} 
as a tuple this would have been written as (x1,x2,x3) and the second component would have been selected  

as #2(x1,x2,x3). 
 
We shall encounter records again. 
 
 

7.0.4 Lists 
 

We saw these in chapter 6. 

7.0.5 Functions 
 
Functions are types as can be seen from the following examples: 

Function divide that we saw earlier 
 
fun divide x y = (x div y, x mod y); 
val divide = fn : int → (int → int * int) 

 
The signature states that divide is a function that takes a value of type int and returns a value of type (int → int * int). But the 
signature of the returned value is a function signature. This means that the returned value is of type function. The returned 
value is a function. 

Functional composition is a standard function defined as follows : 
infix o; 
fun (f o g) x = f(g x); 
val o = fn : (‘b → ‘c) * (‘a → ‘b) → (‘a → ‘c) 

 

Here ‘a, ‘b, ‘c are called type variables. They take on values at function application time. A concrete example may help 
demystify the signature of o. Take the function revstring that we defined earlier. 

- fun revstring s = implode (rev (explode s)); 
- val revstring = fn : string → string 

 
We could define revstring using functional composition. 

- fun revstring s = (implode o rev o explode) s; 
 
It should be possible to simply say 

- val revstring = implode o rev o explode; 
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The functions will be applied from right to left. If the rightmost function, explode, has signature ‘a → ‘b, then the next, rev, 
must have the signature ‘b → ‘c and the third, implode, ‘c → ‘d. The composite function has the signature   

‘a  → ‘d. 

 
Overloading 

A function is overloaded if it has different definitions under different types. Take the function +. + sometimes means integer 
addition and sometimes it means floating point addition. The two definitions are different. You the programmer cannot define 
overloaded functions. 

7.1 Polymorphism 
 
In a strongly typed language like ML the type of a function can be inferred from its expression alone. We do not have to 
include type declarations except when absolutely necessary as in the following function: 

fun add x y = x + y; 
 

which should be written 

fun add x y : int = x + y; or as 
fun add x y : real = x + y; 

 
Some function signatures do not contain specific types. Instead they use type variables which take on concrete types only when 
the functions are applied. Such functions are said to have polymorphic types, or the functions are said to be polymorphic. An 
object is polymorphic if it has many (or multiple) forms; in our case multiple types. Let us look at some examples: 

fun id x = x; 
val id = fn : ‘a → ‘a 

 
Here ‘a is a type variable and it can take on any type. ‘a is a polymorphic type and id is a polymorphic function. 

fun pairself x = (x,x); 
val pairself = fn : ‘a → ‘a * ‘a 
fun fst (x, y) = x; 
val fst = fn : ‘a * ‘b → ‘a 
fun swap (x, y) = (y, x); 
val swap = fn : ‘a * ‘b → ‘b * ‘a 

 
Polymorphism is good because it simplifies programming. We do not have to restrict functions unnecessarily. The concept of a 
“generic” function is made possible by polymorphism. 

7.2 User-defined types 
 
 
In addition to the types mentioned so far, an ML programmer is allowed to introduce her own types. The simplest user-defined 
type is a type abbreviation. 

type vec = real * real; 
type student = { name : string, 

                   idnum : int; 
                   faculty : string}; 
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A true type declaration defines a new type along with its constructors. This is done using a datatype declaration.  Here are some 
examples: 

       datatype DAY = Mon | Tue | Wed | Thu | Fri | Sat | Sun; 
       datatype DAY = Mon | Tue | Wed | Thu | Fri | Sat | Sun; 

con Mon = Mon : DAY 
con Tue = Tue : DAY 

  ... 
 
This is an enumeration type. 

Define a new data type money 

        datatype money = None | cash of int | cheque of string * int; 
        datatype money = cash of int | cheque of string * int | None 

con None = None : money 
con cash = fn : int → money 
con cheque = fn : (string * int) → money 

 
Define function amount. 

       fun amount None = 0 
     | amount (cash (mon)) = mon 
     | amount (cheque ( _, mon)) = mon; 

 
val amount = fn : money → int 

 

7.3 Abstract data types 
 
ML has a facility for defining abstract data types. These are data types or concrete types together with their own interface 
functions. A user of an abstract type can only use the interface provided. Let us implement a set as an abstract type in order to 
show how abstract types work. 

       abstype ‘a SET = set of ‘a list 
with 

val EmptySet = set ([]) 
fun addset el (set (l1)) = if mem l1 el then set l1 
else set (el :: l1) 

fun member (set l1) el = mem l1 el 
fun union (set l1) (set l2) =  
set (l1 @ filter (not o mem l1) l2) 

end; 

 
>type ’a  SET 
>val EmptySet = - : ‘a SET 
>val addset = fn : “a → “a SET → “a SET 
>val member = fn : “a SET → “a → bool 
>val union = fn : “a SET → “a SET → “a SET 

 
Assume that mem and filter are pre-defined functions. mem l el checks to see if element el is in list l. It may be defined as 
follows: 

fun mem nil a = false 

| mem (x :: xs) a = a = x orelse mem xs a; 

Function filter filters from a list those elements that satisfy the given predicate. It may be defined as follows: 

fun filter p nil = nil 
     | filter p (x :: xs) = if p x  then x :: filter p xs else filter p xs ; 
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We may use the abstract type ‘a SET as follows: 

val set1 = addset 4 (addset 5 ( addset 6 EmptySet)); 
val set1 = - : int SET 
val set2 = addset 9 (addset 3 ( addset 4 EmptySet)); 
val set2 = - : int SET 
union set1 set2; 
val it = - : int SET 
member (addset “David” (addset “Tom” (addset “Pat” EmptySet))) “Tom”; 
val it = true : bool 
member (addset “David” (addset “Tom” (addset “Pat” EmptySet))) “Tim”; 
val it = false : bool 
addset (“me”, None, 1991) (addset (“Him”, cash(1000), 1990) (addset (“Her”, cheque(“big”, 10000), 1988) 
EmptySet)); 
val it = - : (string * money * int) SET 

 

7.4 Exercises 
 
 

7.1 Write a function position that gives the position of a substring within another string. 
7.2 Write a function bintodec that converts a binary number into its decimal equivalent. 

 
7.3 Write a function dectobin that converts a decimal number into its binary equivalent. 

 
7.4 A date is represented by a 3-tuple or triple (day, month, ear) of integers. Define a function age, which takes two 

dates, the birthdate of some individual and the current data, and returns the age of the individual in years and 
months. 
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8. Searching 
 
The syllabus states that we should look at applications of functional programming in Artificial Intelligence. AI has traditionally 
been the most fertile area for functional programming. Nowadays, however, functional programming is beginning to claim its 
place alongside other programming paradigms. At any rate, logic programming (especially through Prolog) is a serious 
competitor especially in expert systems. It is true that the need for ML arose in theorem proving but it is no longer restricted to 
that application area.  

I propose to look at the following applications 

• search in game playing 
• problem solving 
• theorem proving 
• expert systems  

 
We start with search. 

In the early days of Artificial Intelligence it was thought that many problems could be solved by simply searching the solution 
(or problem) space until the desired solution was found e.g. playing chess. This approach has now been abandoned. However, 
interesting results have been left behind and these can be usefully applied to specific problem areas. 

Take the problem from [Winston, 1984] page 89. 

 
Starting from S we would like to find a path to some other node on the diagram. If the nodes represent towns or cities, then we 
may be looking for a route from town S to another town. The numbers along the arcs could represent the cost of taking a 
particular path or route if we are interested in the best path and not just any path. This diagram represents a search problem. 

Our first step is to convert the above diagram, which is a net, into a tree. The tree is more structured than the net and easier to 
work with. 

There are two basic search strategies: breadth first and depth first. If we are looking for a path from S to E breadth-first search 
visits the nodes S, A, D, B, D, A, E in that order to return the path S, D, E. Depth-first search on the other hand visits the nodes 
S, A, B, C, E in that order to return the path S, A, B, E. Breadth-first search visits all the nodes at one level of the tree before 
proceeding to the next level. It returns the path containing the least number of nodes (the shallowest path). Depth-first search 
on the other hand performs a pre-order traversal of the tree and returns the leftmost path. This could be the shallowest path if 
we are lucky or the deepest if we are unfortunate. 

Let us now look at these strategies more closely. 

Depth-First Search 
The subtrees below a node are visited from left to right. Each subtree is fully searched before its brother to the right. The tree 
will be represented as a list. Each node of the tree has two components: 

1. the node label 
2. the subtrees of the node - a finite list of trees. 
 
We shall allow our trees to have infinite depth. They will, however, have finite breadth. 

Since we cannot store infinite trees (and subtrees) explicitly we shall represent them as functions and generate them (or parts of 
them) whenever we require them. This technique is called lazy evaluation. It is useful for manipulating infinite structures. Lazy 
evaluation is based on the observation that infinite structures are never needed in their entirety. Rather, only finite parts of these 
infinite structures are needed from time to time. Lazy evaluation therefore uses a function to generate the required finite part of 
the infinite list. The node has type ‘a * (‘a → ‘a list) : ‘a is the label type and (‘a → ‘a list) is the type of the function that 
generates the list of subtrees. Let us use a stack to hold the nodes to be visited next. The top of the stack is the current node. 
Here is a function in Standard Ml from Paulson, page 179. 

fun depthfirst next pred x = 
let fun dfs [] = Nil 

| dfs(y::ys) = if pred y then Cons(y, fn()=> dfs(next y @ ys)) 
       else dfs(next y @ ys) 

in  dfs [x]  end; 
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This function returns the solution path as a sequence of node labels. A sequence here, since it can be infinite, is actually a lazy 
list. It has the user-defined type 

datatype ‘a seq = Nil | Cons of ‘a * (unit → ‘a seq); 

unit is a type with no values. Remember that a type is a collection of values. Type unit has no values. A function whose 
argument type is unit produces something from nothing. (Confused??) 

Breadth First Search 
The implementation of breadth-first search is similar to that of depth-first search except that a queue is used in order to insert 
new nodes at the rear instead of at the front as with the stack.  

 
fun breadthfirst next pred x = 

let fun bfs [] = Nil 
                        | bfs(y::ys) =  
                if pred y then Cons(y, fn()=> bfs(ys @ next y)) 

else bfs(ys @ next y) 
in  bfs [x]  end; 

 
Let us now use both search techniques to generate a sequence of palindromes over the alphabet {A, B, C} (See Paulson page 
180). 

The tree for this problem is as follows. 

  
 
 
 
 
The nodes emanating from the node labelled l in the tree can be generated by function nextlist : 

fun nextlist l = [”A” :: l, “B” :: l, “C” :: l]; 

A palindrome is a list that equals its reverse. 

fun ispalindrome l = l = rev l; 

Let us look more closely at the functions breadthfirst and depthfirst. 

Depthfirst takes three arguments 

1. The lazy function 
2. A predicate to test nodes to see if they satisfy the search condition 
3. The root node. 
 
This is what happens: 

1. The search is initiated with the stack containing the root node. 
2. If a node satisfies the predicate, it is appended to the initially empty solution sequence and the search continues with the 

subtrees of y. 
3. If y does not satisfy the predicate, it is replaced on the stack by its successor subtrees. 
 
If we execute 

depthfirst nextlist ispalindrome []; 
we get the sequence 

Cons([], fn) of type string list seq 
depthfirst nextlist ispalindrome [”B”]; gives Cons([”B”], fn) 

How can we generate the sequences now represented by Cons([], fn) and Cons([”B”], fn) ? 

Let us define a function to do the job. Paulson uses the name takeq for this function. You may, however, want to rename it to 
something like genseq for example. 

genseq n xq returns the first n elements of the (possibly infinite) sequence xq. 
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fun genseq 0 xq = [] 

| genseq n Nil = [] 
| genseq n (Cons(x,xf)) = x :: genseq (n-1) (xf()); 

 
The higher order function mapq applies a function to every element of a sequence. It has the same functionality as map has on 
lists. 

fun mapq f Nil  = Nil 

| mapq f (Cons(x,xf)) = Cons(f x, fn()=> mapq f (xf())); 

The following runs are instructive. Remember that implode concatenates several strings into one. 

1. 

depthfirst nextlist ispalindrome []; 
val it = Cons ([],fn) : string list seq 
genseq 10 (mapq implode it); 
val it = [””,”A”,”AA”,”AAA”,”AAAA”,”AAAAA”,”AAAAAA”,”AAAAAAA”,”AAAAAAAA”,”AAAAAAAAA”] 
: string list 

 
2. 

breadthfirst nextlist ispalindrome []; 
val it = Cons ([],fn) : string list seq 
genseq 15  (mapq implode it); 
val it = [””,”A”,”B”,”C”,”AA”,”BB”,”CC”,”AAA”,”ABA”,”ACA”,”BAB”,”BBB”,...] : string list 

 
3. 

breadthfirst nextlist ispalindrome [”B”]; 
val it = Cons ([”B”],fn) : string list seq 
genseq 15 (mapq implode it); 
val it = 
[”B”,”BB”,”BAB”,”BBB”,”BCB”,”BAAB”,”BBBB”,”BCCB”,”BAAAB”,”BABAB”,”BACAB”,”BBABB”,...] : 
string list 

 
4. 

depthfirst nextlist ispalindrome [”B”]; 
val it = Cons ([”B”],fn) : string list seq 

 
This one runs for ever. 

genseq 10 (mapq implode it); 
 

The Eight Queens Problem 

 
The problem requires that we arrange eight queens on a chessboard such that no queen may attack another. This means that the 
queens must be arranged in such a way that no two queens may share a row, column or diagonal. A board position will be 
represented as a list of row numbers. [r1, r2, r3, ..., r8] means that there is a queen in row r1 of column 1, row r2 of column 2, 
row r3 of column 3, ..., row r8 of column 8. Given this representation how can place a queen safely? We shall have to place it 
in a safe column, a safe row and a safe diagonal. If we place a queen in row newr of column 1 then a safe diagonal with respect 
to a queen already placed in row ri of column i is given by  |newr - ri| <> i.  Function safequeen tests whether a new queen at 
position newr in column 1 will be safe. 

fun safequeen oldqs newq = 
let fun nodiag (i, []) = true 

| nodiag (i, q::qs) = 
abs(newq-q)<>i andalso nodiag(i+1,qs) 

in  not (newq mem oldqs) andalso nodiag (1,oldqs)  
end; 
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Function nextqueen generates a list of safe positions with a new queen added. 

fun nextqueen n qs = 
map (secr op:: qs)  

(filter (safequeen qs) (upto 1 n)); 
Function upto generates integers in the closed range given by its arguments. Thus upto m n generates the closed range m .. n. 

fun upto m n =  

if m>n then []  else  m :: upto (m+1) n; 

Function secr enables function op:: to be mapped to a list containing its right arguments. Normally a function is mapped to the 
left. 

fun secr f y x = f x y; 

fun secl x f y = f x y; 

A board is full if it has the maximum number of queens allowed. 

fun isfull n qs = (length qs=n); 

Let us try to solve the n queens problem with progressively larger values of n. 

depthfirst (nextqueen 1) (isfull 1) []; 
val it = Cons ([1],fn) : int list seq 
genseq 10 it; 
val it = [[1]] : int list list 
depthfirst (nextqueen 2) (isfull 2) []; 
val it = Nil : int list seq 
depthfirst (nextqueen 3) (isfull 3) []; 
val it = Nil : int list seq 
depthfirst (nextqueen 4) (isfull 4) []; 
val it = Cons ([3,1,4,2],fn) : int list seq 
genseq 10 it; 

val it = [[3,1,4,2],[2,4,1,3]] : int list list 

-  
 

depthfirst (nextqueen 5) (isfull 5) []; 
val it = Cons ([4,2,5,3,1],fn) : int list seq 
genseq 10 it; 
val it = 
[[4,2,5,3,1],[3,5,2,4,1],[5,3,1,4,2],[4,1,3,5,2],[5,2,4,1,3],[1,4,2,5,3],[2,5,3,1,4],[1,3,5,2,4],[3,1,4,2,5],[2,4,1,3,5]] : int 
list list 
depthfirst (nextqueen 6) (isfull 6) []; 
val it = Cons ([5,3,1,6,4,2],fn) : int list seq 
genseq 10 it; 
val it = [[5,3,1,6,4,2],[4,1,5,2,6,3],[3,6,2,5,1,4],[2,4,6,1,3,5]] : int list list 

depthfirst (nextqueen 7) (isfull 7) []; 
val it = Cons ([6,4,2,7,5,3,1],fn) : int list seq 
genseq 100 it; 
val it = 
[[6,4,2,7,5,3,1],[5,2,6,3,7,4,1],[4,7,3,6,2,5,1],[3,5,7,2,4,6,1],[6,3,5,7,1,4,2],[7,5,3,1,6,4,2],[6,3,7,4,1,5,2],[6,4,7,1,3,5,2]
,[6,3,1,4,7,5,2],[5,1,4,7,3,6,2],[4,6,1,3,5,7,2],[4,7,5,2,6,1,3],...] : int list list 
depthfirst (nextqueen 8) (isfull 8) []; 
val it = Cons ([4,2,7,3,6,8,5,1],fn) : int list seq 
genseq 100 it; 
val it = 
[[4,2,7,3,6,8,5,1],[5,2,4,7,3,8,6,1],[3,5,2,8,6,4,7,1],[3,6,4,2,8,5,7,1],[5,7,1,3,8,6,4,2],[4,6,8,3,1,7,5,2],[3,6,8,1,4,7,5,2],[
5,3,8,4,7,1,6,2],[5,7,4,1,3,8,6,2],[4,1,5,8,6,3,7,2],[3,6,4,1,8,5,7,2],[4,7,5,3,1,6,8,2],...] : int list list 

-  
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Game trees, minimax and alpha-beta pruning 
 
The application area of interest here is the set of two-person games like chess. These games are played as follows: 

from a given initial position 
two players move alternately 
until no further moves are possible. 

 
Either one of the two players wins or the game is drawn. 

We need to define a position. A move generates possible new positions from a given position. Let us use a specific game to 
make the ideas more concrete. We shall use tic-tac-toe. A position may be represented by a list of three lists representing the 
three rows in the tic-tac-toe game. A 1 in a list position indicates that the square is occupied by player 1, a 2 indicates that 
player 2 occupies the square and a 0 indicates that the square is empty. Thus the position 

    
 
is represented as [[1,0,0], [2,2,1], [1,0,2]]. 

Function move generates a tree with the current position as the root. Starting from the above position move generates the 
following tree. 

   
 
To each of the four leaf positions there are several responses by player 1 and to each of these responses player 2 will have 
several responses and so on. In some cases the sequence of moves and counter moves can generate an infinite tree or a very 
large tree at least. Before going too far, let us make the tree more concrete. 

A tree is defined as having a root node and a list of subtrees, which are themselves, trees. The following type definition is 
suitable for the tree. 

datatype ‘a Tree = Node of ‘a  * (‘a Tree) list; 

Function gametree generates a tree from a given position p by applying the moves function to p. 

fun gametree p = reptree moves p; 
fun reptree f x  = Node (x, (map (reptree f) (f x))); 
 
 
It is customary to prune large trees to a manageable depth. 

fun prune 0 Node(x, ts) = Node(x, []) 

| prune (n+1) Node(x, ts) = Node(x, map (prune n) ts); 

Thus the expression prune n t; will cut off all nodes further than n from the root of t. 

Each position in the tree is evaluated (maybe using a rough estimate) to determine whether it is a winning position or a losing 
position with respect to the player whose turn it is to move next. A player will therefore choose a move, which leads to the best 
possible end position. The opposing player will probably do the same. Therefore, while one player is trying to maximise her 
chances of winning the other player is trying to minimise those chances. The tree nodes therefore have minimax values. I 
minimise my opponent’s chances of winning while I maximise mine. Take the following tree, which has been pruned, to depth 
2 by player 1: 

 
   
 
The leaf nodes represent the end positions with a depth 2 pruning. The best of the end positions for player 1 has a value of 60. 
However, if player 1 follows this move player 2 can force her into the worst position of -35. The best that player 1 can 
guarantee herself is a position with value 25.  25 is the minimax value of the tree and is therefore the value of the current 
position. Each node in the tree is labelled with its minimax value. If position p has successor positions with values v1, v2, v3, 
..., vn then the minimax value of p is given by max (-v1, -v2, -v3, ..., -vn) or equivalently by -min(v1, v2, v3, ..., vn). 

fun minimax Node(x, []) = x 

| minimax Node(x, ts) = -min (map minimax ts); 

Note that this function assumes that the tree is labelled with its minimax values. 
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9.3 Abstract data types : the queue 
 
Abstract data types provide an abstract interface to their users. This means that users of these objects do not need to know how 
the objects are implemented: i.e. what concrete types are used or how the operations are achieved or what algorithms are used. 
We shall use the queue to show how abstraction can be achieved in Standard ML. 

One of the more efficient implementations of queues uses two lists. The head of the first list is the front of the queue and the 
head of the second list is the rear of the queue. Thus the queue with elements q1, q2, q3, q4, q5 mat be represented by the two 
lists [q1, q2, q3] and [q5, q4]. Elements are added to the rear of the queue and removed from the front. With this 
implementation both actions will involve accessing the head of a list. This is done in constant time however long the lists are. 
There is a price though. We have to normalise the queue each time an element is added or removed. We shall soon see what all 
this means. 

First of all we define the signatures (types) of the queue operations. 

signature QUEUE = 

sig 

type ‘a T 
exception Empty 
val empty : ‘a T 
val enqueue : ‘a T → ‘a → ‘a T 
val isEmpty : ‘a T → bool 
val front : ‘a T → ‘a 
val dequeue : ‘a T → ‘a T 
end 

The general syntax of a signature is 

 
 

The signature serves to specify the abstract data type. Only the names specified in the signature will be exported (visible) to the 
rest of the world. 

Next we define a structure which will contain implementations of the operations specified in the signature. 

structure queue : QUEUE = 

struct 

datatype ‘a T = Queue of (‘a list * ‘a list) 
exception Empty 
val empty = Queue ([],[]) 
fun normalise (Queue ([], tails)) = Queue (rev tails, []) 

            | normalise q  = q 
fun enqueue (Queue (f, r)) x = normalise (Queue (f, x :: r)) 
fun isEmpty (Queue ([], [])) = true  
     | isEmpty _ = false 
fun front Queue (x :: _, _) = x 
| front (Queue ([], _)) = raise Empty 

fun dequeue (Queue (x :: heads, tails)) = normalise (Queue (heads, tails)) 

| dequeue (Queue ([], _)) = raise Empty 

end 

Let us now use the queue. 

val q = queue.Queue ([1,2,3], [5,4]); 
queue.null q;     Result : false. 
queue.enqueue q 6;  Result : Queue([1,2,3], [6,5,4]) 
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We note that each queue operator has to be prefixed by the structure name. If we open the structure we make all its items 
available through their simple names. The above becomes: 

open queue 
val q = Queue([1,2,3], [5,4]); 
empty q; 
enqueue q 6; 

 
Continuing, 
 

dequeue q; 
front q; 
dequeue q; dequeue it; dequeue it;  Result : Queue([4,5], []) 

 
Signatures and structures are the constructs that Standard ML uses to implement modules. Structures are themselves used by 
functors to produce new structures. We do not have the time to learn all about modules in Standard ML. I hope these few 
examples will make an impression. Let us now turn to trees. 

9.4 Another abstract data type : trees 
 
The binary tree is simpler, so we start with that. Afterwards we shall look at the general tree. We start with a signature 
specifying the tree. 

signature TREE = 
sig 

type ‘a T 
      val count : ‘a T → int   (* how many nodes in the tree *) 
      val depth : ‘a T → int   (* depth of the tree *) 
      val depthFirst : ‘a T → ‘a list  (* depth first traversal *) 
      val breadthFirst : ‘a T → ‘a list (* breadth first traversal *) 

end 

Next we implement the specified tree items: 

structure Tree = 

struct 

datatype ‘a T = Lf | Br of ‘a * ‘a T * ‘a T 
fun count Lf = 0 

            | count (Br(v, t1, t2)) = 1 + count t1 + count t2 
       fun depth Lf = 0 
           | depth (Br(v, t1, t2)) = 1 + max(depth t1, depth t2) 

fun depthFirst Lf = [] 

     | depthFirst (Br(v, t1, t2)) = v :: (depthFirst t1) @ (depthFirst t2) 

end 

 
The tree 

(PUT THE TREE HERE) 

is implemented as 

open Tree 

val t = Br(10,  
Br(30, 

Br(45, 
Br(15, Lf, Lf), 
Br(65, Lf, Lf) 

  ),  
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       Br(20, 
       Br(35, Lf, Lf), 
       Lf 
  )  
      ), 
       Br(25,  
       Br(40, Lf, Lf), 

Br(55, Lf, Lf) 

       ) 
   ); 
                   
count t; 
depth t; 
depthFirst t; 
 
Now let us try the general tree. Let us think about the signature. Isn’t it interesting to note that the signature for the general tree 
does not differ from the binary tree signature ? 

Assignment : 
1. Add a function to the abstract data type to perform a breadth first traversal of the binary tree. 
2. Implement an abstract data type for the general tree. 
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10. Reasoning About Functional Programs 
 
As part of the effort to deal with the software crisis efforts are being made to attempt to prove the correctness of a program. It 
is well known, as documented by Donald Knuth in one of his many publications, that testing a program only reveals the 
presence of errors. Testing a program does not tell us whether errors are absent. Obviously with current software technology it 
is much easier to test programs than to prove them correct. Some proponents of testing are even trying to convince the world 
that testing is enough. There is a simple fact though. Imperative programs are inherently difficult to reason about because the 
computations they perform have to be seen in terms of state transitions from one von Neumann machine state to another. It is 
simply tedious to describe a single state on the von Neumann machine. Functional programs give us more than a ray of hope. 
These programs involve no machine state. In fact one could say that functional programs are abstracted form the real machine. 
They are machine independent (or almost so.) They can be written as mathematical objects (by making some sacrifices) and 
therefore all the rigour, formality and precision of mathematical treatment can be meted out at them. This includes 
mathematical proof.  Proving a functional program correct is mainly an exercise in applying principles of mathematical proof.  
There are no von Neumann machine states to worry about. One such principle is structural induction. 

10.1 Mathematical induction is based on natural numbers. 
 
Let us first look at mathematical induction. Proof by mathematical induction goes like this. 

Prove that property P holds for all natural numbers. 

1. Prove the base case i.e. P(0) - property P holds for 0. 
2. Prove the induction step. Prove that if P(k) then P(k+1). 

  
(i) Assume that the property holds for an arbitrary natural number k i.e. P(k) 
(ii) Prove that property P holds for natural number k+1 i.e. prove that P(k+1) 

 
Mathematical induction is based on natural numbers. It uses the fact that the set of natural numbers is defined as follows: 

1. 0 is a natural number 
2. If k is a natural number then so is k+1 

10.2 Structural Induction generalises Mathematical Induction to data types 
 
Recall (from chapter 7) that data types in Standard ML are declared (or defined) in a way similar to the definition to the 
definition we saw for natural numbers. They are defined using constructors. For example the predefined data type list may have 
been defined as 

datatype ‘s list = nil | :: of ‘a * ‘a list 

This datatype has a constant nil (like 0 for natural numbers) and a constructor :: (like + for natural numbers). It appears 
therefore that we could extend the principle of mathematical induction to apply to lists as well. A similar argument will extend 
the principle of mathematical induction to other datatypes in Standard ML. Such a generalisation of mathematical induction to 
these data types is called structural induction. 

10.3 Structural Induction Over lists 
 
To prove that property P holds for all lists we need to prove the following : 

1. Base case 
 

Prove that P holds for nil i.e. P(nil) 

2. Induction step 
 

Prove that if P(l) then P(x :: l) for all x of the appropriate type. 

i. Assume that P(l) 
ii. Prove that P(x :: l) is true if P(l) is true 
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We shall use a simple function to show that we can use structural induction to prove things about functional programs. 

Given the following definition of append 

fun append x [] = x 

| append [] x = x 
| append (x :: xs, ys) = x :: append (xs, ys) 

 
Let us prove by structural induction that 

append(append(a,b), c) = append(a, append(b,c)) 

Written using @ this would be 

(a @ b) @ c = a @ (b @ c) 

i.e. append over lists is associative (i.e. both left associative and right associative) 

Proof by structural induction on a 

1. Base case : prove that it holds for a = [] 
 

append (append ([], b), c) = append([], append(b,c)) 

append(append([], b), c)   = append (b, c) definition of append - pattern 2 
     = append([], append(b, c))  -do- 
 
2. Inductive step on a 
 

Prove that if it holds for a = k, then it holds for a = (e :: k) 

(i) Assume that it holds for a = k 
append(append(k, b), c) = append(k, append(b, c)) 

(ii) Prove that it holds for e :: k 
 
 append(append(e :: k, b), c)  = append(e :: append(k, b), c) -definition - pattern 3 
     = e :: append(append(k, b), c) - definition : pattern 3 
     = e :: append(k, append(b, c)) - inductive hypothesis 
     = append(e :: k, append(b, c)) - definition : pattern 3 
 
Here is a collection of more proofs by induction in Standard ML: 

1. Theorem 8, 9, 10 pp 200 - 202 [Paulson] 
2. Recursion and induction over lists chapter 5 Bird & Waddler 
 
 


