TCP sockets

Client must contact server

* server process must
first be running

 server must have
created socket (door)
that welcomes client’s
contact

Client contacts server by:

» creating client-local
TCP socket

« specifying IP address,
port number of server
process

« When client creates socket:

client TCP establishes
connection to server TCP

When contacted by client,
server TCP creates new
socket for server process
to communicate with client

— allows server to talk with
multiple clients

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
Incoming request:

wait for incoming create ?c;oket, | "
connection request connect to hostid, port=x

send request using
read request from '

write reply to

read reply from

close
close

UDP Sockets

UDP: no “connection”
between client and
server

 no handshaking
« sender explicitly

attaches IP address application viewpoint
and -~ rt of UDP provides unreliable transfer
destination of groups of bytes ("datagrams”)

e server must extract IP between client and server
address, port of
sender from received
datagram

UDP: transmitted data
may be received out
of order, or lost

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket,
port=x, for

Incoming request:
serverSocket

create socket,
cllentSocket
DatagramSocket()

DatagramSocket() *
l Create, address (hostid, port=x,

/ send datagram request
read request from using clientSocket

serverSocket

write reply to

5*'.'"\"5."[5:.1'":- el \ d | f
specifying client read reply from

cllentSocket
nost address, s
port umber close *

cllientSocket

TCP: Overview

socket
door — | | " : | ' 1 door

TCP segment structure

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab

Internet
checksum
(as in UDP)

.

wledgement number

ln-tuse PP RISF| rovr window size.

(variable length)

32 bits

dost port #

sequence number

application
data

(variable length)

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

TCP Seq. #s and ACKs (ll)

1 (ot ::‘i" '
i) Host A Host B I'=s
User Sor
types 92, ACK- 79, dag
C ot
host ACKs
_ receipt of
% wa= Y 'C, echoes
_19, PG = back ‘C’
ged™'
host ACKs
receipt S
of echoed 5943, ACk=g,

@

TCP: retransmission scenarios

92 timeout

100 timeout

Seq

I
o
O
Q
E
1

Seq=

lost ACK scenario premature timeout,
cumulative ACKs

TCP Connection Management - 4

@ client server@

=
o
0
£

Q.

