Network layer functions - 1

- transport packet from sending to receiving hosts
- network layer protocols in every host, router

Datagram networks: the Internet model - 2

Routing

Routing protocol

Goal: determine "good" path (sequence of routers) thru network from source to dest.

- Graph abstraction for routing algorithms:
- graph nodes are routers
- graph edges are physical links
 - link cost: delay, \$ cost, or congestion level

"good" path:
typically means
minimum cost path
other def's possible

Routing Algorithm classification - 1

Global or decentralized information?

Global:

- all routers have complete topology, link cost info
- "link state" algorithms

Decentralized:

- router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of partial info with neighbors
- "distance vector" algorithms

Routing Algorithm classification - 2

Static or dynamic?

Static:

routes change slowly over time

Dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

A Link-State Routing Algorithm - 1

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives routing table for that node
 - iterative: after k iterations, know least cost path to k dest.'s

A Link-State Routing Algorithm - 2

Notation:

- c(i,j): link cost from node i to j. cost infinite if not direct neighbors
- D(v): current value of cost of path from source to dest. V
- p(v): predecessor node (neighbor of v) along path from source to v
- N: set of nodes whose least cost path definitively known

Dijkstra's algorithm: example

Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
→ 0	Α	2,A	5,A	1,A	infinity	infinity
1	AD	2,A	4,D		2,D	infinity
<u>2</u>	ADE	2,A	3,E			4,E
→3	ADEB		3,E			4,E
4	ADEBC					4,E
5	ADERCE					

Dijsktra's Algorithm

```
Initialization:
   N = \{A\}
3
   for all nodes v
4
    if v adjacent to A
5
      then D(v) = c(A,v)
6
      else D(v) = infty
7
   Loop
    find w not in N such that D(w) is a minimum
10
   add w to N
    update D(v) for all v adjacent to w and not in N:
12
      D(v) = \min(D(v), D(w) + c(w,v))
13
    /* new cost to v is either old cost to v or known
14
     shortest path cost to w plus cost from w to v */
15 until all nodes in N
```

Distance Vector Routing Algorithm - 2

Distance Table data structure

- each node has its own
- row for each possible destination
- column for each directly-attached neighbor to node
- example: in node X, for dest. Y via neighbor Z:

Distance table: example

$$D(C,D) = c(E,D) + \min_{W} \{D^{D}(C,w)\}$$

$$= 2+2 = 4$$

$$D(A,D) = c(E,D) + \min_{W} \{D^{D}(A,w)\}$$

$$= 2+3 = 5_{|OOD|}$$

$$D(A,B) = c(E,B) + \min_{W} \{D^{B}(A,w)\}$$

$$= 8+6 = 14_{|OOD|}$$

Distance table gives routing table

Distance table ----

Routing table

Distance Vector Algorithm: example - 1

	v	cost via		
	D'	X Z	2 70	
d e	х	2 ∞		
s	z	œ (1	Ś	

	7	cost via		
	ρĺ	X Y		
d	\neg			
е	X	$(7) \infty$		
S		0		
t	Y	∞ \bigcirc		

$$D^{X}(Y,Z) = c(X,Z) + min_{W} \{D^{Z}(Y,w)\}$$

= 7+1 = 8

$$D^{X}(Z,Y) = c(X,Y) + min_{W} \{D^{Y}(Z,w)\}$$

= 2+1 = 3

Distance Vector: link cost changes - 1

Link cost changes:

node detects local link cost change updates distance table (line 15) if cost change in least cost path, notify neighbors (lines 23,24)

"good news travels fast"

Intra-AS Routing

- Also known as Interior Gateway Protocols (IGP)
- Most common IGPs:
 - -RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco propr.)

RIP (Routing Information Protocol) - 2

Destination Network	Next Router	Num. of hops to dest.
W	Α	2
y	В	2
Z	В	7
×		1

Routing table in D