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Abstract

These exercises have been done in the course of Quantum Optics that
is studied in the 4th course of Physics in the Universitat Autònoma de
Bellatera.
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1 CLASSICAL THEORY OF THE LIGHT-MATTER INTERACTION 1

1 Classical theory of the light-matter interac-
tion

1.1 Maxwell’s equations in vacuum

Exercise 1 Using the definitions of the vector potential ~A ( ~B = ~∇ × ~A) and
the scalar potential φ

(
~E + ∂ ~A

∂t = −~∇φ
)
, find the wave equation for the vector

potential ~A:

Solution 1 We need the Maxwell’s equations in vacuum:

∇ · ~B = 0 (1)

∇ · ~E = 0 (2)

∇× ~B = µ0ε0
∂ ~E

∂t
(3)

∇× ~E = −∂ ~B

∂t
(4)

We assume that the wave is moving in vacuum, so we can impose:

∇ · ~A = φ = 0 (5)

~E = −∂ ~A

∂t
(6)

Using the definition of the vector potential and substitute equation 6 into
equation 3, we obtain the equation

~∇×
(

~∇× ~A
)

= −µ0ε0
∂2 ~A

∂t2

Now we have to use the relation: ~∇×
(

~∇×
)

= −∇2 +∇(∇ ), and use
the equation 5 and we finally find:

−∇2 ~A = −µ0ε0
∂2 ~A

∂t2
→ ∇2 ~A +

1
c2

∂2 ~A

∂t2
= 0

We have defined the velocity of the light in vacuum, c, like: c =
√

1
µ0ε0

Exercise 2 Verify, by substitution, that ~E(~r, t) = ~E0f(~k~r−ωt) is a solution of
the wave equation ∇2 ~E − 1

c2
∂2 ~E0
∂t2

Solution 2 We know that ~E0 ∈ < and
∣∣∣~k∣∣∣ = ω

c . Substituting it into the wave
equation:

∇2 ~E = ∇
(

~E0 · ~kf(~k~r − ωt)
)

= ~E0 · |~k|2f(~k~r − ωt)

∂2 ~E0

∂t2
=

∂

∂t

(
~E0 · (−ω)f(~k~r − ωt)

)
= ~E0 · ω2f(~k~r − ωt)
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If we composite the two results, we find:

∇2 ~E − 1
c2

∂2 ~E0

∂t2
= 0

~E0 · |~k|2f(~k~r − ωt)− 1
c2

~E0 · ω2f(~k~r − ωt) = 0

k2 − ω2

c2
= 0 → k =

ω

c

Exercise 3 We have to verify that for ~E1(~r, t) = ~E01f1( ~k1~r−ω1t) and ~E2(~r, t) =
~E02f2( ~k2~r−ω2t) being solutions of Maxwell’s equations, then ~E3 = ~E1 + ~E2 will

be a solution too

Solution 3 We have to verify that if ~E1 and ~E2 are two solutions of the
Maxwell’s equations then ~E3 = ~E1 + ~E2 is a solution too.

We can define ~B1 and ~B2 as the magnetic fields associated with the electric
fields ~E1 and ~E2, respectively. Hence, the two solutions observe the Maxwell’s
equations:

~∇ · ~B1 = 0 ~∇ · ~B2 = 0
~∇ · ~E1 = 0 ~∇ · ~E2 = 0

~∇× ~E1 = −∂ ~B1
∂t

~∇× ~E2 = −∂ ~B2
∂t

~∇× ~B1 = µ0ε0
∂ ~E1
∂t

~∇× ~B2 = µ0ε0
∂ ~E2
∂t

Now, we want to confirm if ~E3 and ~B3 observes the Maxwell’s equations:

~∇ · ~E3 = ~∇ ·
(
α~E1 + β ~E2

)
= α

(
~∇ · ~E1

)
+ β

(
~∇ · ~E2

)
= 0 + 0 = 0

~∇ · ~B3 = ~∇ ·
(
α~B1 + β~b2

)
= α

(
~∇ · ~B1

)
+ β

(
~∇ · ~B2

)
= 0 + 0 = 0

~∇× ~E3 = ~∇×
(
α~E1 + β ~E2

)
= α

(
~∇× ~E1

)
+ β

(
~∇× ~E2

)
=

α

(
−∂ ~B1

∂t

)
+ β

(
−∂ ~B2

∂t

)
= − ∂

∂t

(
α~B1 + β ~B2

)
= −∂ ~B3

∂t

~∇× ~B3 = ~∇×
(
α~B1 + β ~B2

)
= α

(
~∇× ~B1

)
+ β

(
~∇× ~B2

)
=

αµ0ε0

(
−∂ ~B1

∂t

)
+ βµ0ε0

(
−∂ ~B2

∂t

)
= −µ0ε0

∂

∂t

(
α~B1 + β ~B2

)
= −µ0ε0

∂ ~B3

∂t

Exercise 4 Find

∂E0

∂z
+

1
c

∂E0

∂t
= 0

∂φ

∂z
+

1
c

∂φ

∂t
= 0
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form the wave equation, applying the SVAP approximation:∣∣∣∣∂E0

∂t

∣∣∣∣ << ωE0

∣∣∣∣∂ω

∂t

∣∣∣∣ << ω∣∣∣∣∂E0

∂z

∣∣∣∣ << kE0

∣∣∣∣∂ω

∂z

∣∣∣∣ << k

Solution 4 The one-dimensional wave equation is stated by: E′′− 1
c2 Ë = 0, we

suppose the solution E(x, t) = E0(x, t)ei(kx−ωt−φ(x,t)) and we use the relations:
E′ = ∂E

∂x ; E′′ = ∂2E
∂x2 ; Ė = ∂E

∂t ; Ë = ∂2E
∂t2 . Substituting the supposed solution in

the wave’s equation:

E′ = E′
0e

i( ) + E0e
i( ) (k − φ′)

⇓
E′′ = E′′

0 ei( ) + E′
0e

i( ) (k − φ′) + E′
0e

i( ) (k − φ′) +

E0e
i( ) (k − φ′)2 + E0e

i( ) (−φ′′)

If E′
0 << kE0 and φ′ << k then it follows that E′′

0 ≈ 0, φ′′ ≈ 0 and
E′

0φ
′ ≈ 0. Applying these approximations, we obtain:

E′′ = 2kE′
0e

i( ) + k2E0e
i( ) − 2kφ′E0e

i( )

Now we calculate the second term of the wave’s equation:

Ė = Ė0e
i( ) + E0e

i( )
(
−ω − φ̇

)
⇓

Ë = Ë0e
i( ) + Ė0e

i( )
(
−ω − φ̇

)
+ Ė0e

i( )
(
−ω − φ̇

)
+

E0e
i( )

(
−ω − φ̇

)2

+ E0e
i( )

(
−φ̈
)

From the SVAP approximation: Ė0 << ωE0 and φ̇ << ω, follows that
Ë0 ≈ 0, φ̈ ≈ 0 and Ė0φ̇ ≈ 0. Applying these approximations, we obtain:

Ë = −2ωĖ0e
i( ) + ω2E0e

i( ) + 2ωφ̇E0e
i( )

Substituting E′′ and Ë in the wave’s equation, we obtain:

2kE′
0e

i( ) + k2E0e
i( ) − 2kφ′E0e

i( )−
1
c2

(
−2ωĖ0e

i( ) + ω2E0e
i( ) + 2ωφ̇E0e

i( ) = 0
)

Using the relation between k, ω and c: k = ω
c , we can eliminate the second

term of E′′ and Ë; we can eliminate the term ei( ) too:

2kE′
0 − 2kφ′E0 −

1
c2

(
−2ωĖ0 + 2ωφ̇E0

)
= 0

2kE′
0 − 2kφ′E0 −

1
c62

(
−2 6 ckĖ0 + 2 6 ckφ̇E0

)
= 0

E′
0 +

1
c

(
Ė0

)
− E0

(
φ′ +

1
c

[
φ̇
)]

= 0
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E0(x, t) and φ(x, t) are two independent functions of x and t, so, finally we
find the equations:

E′
0 +

1
c

(
Ė0

)
= 0 φ′ +

1
c

(
φ̇
)

= 0

1.2 Maxwell’s equations in a material medium

Exercise 5 Deduce the wave’s equation for the electric field, when you use the
Maxwell’s equations for a material medium

Solution 5 The Maxwell’s equations for a material medium are:

~∇ · ~B = 0 (1)
~∇ · ~D = σfree (2)

~∇× ~E = −∂ ~B

∂t
(3)

~∇× ~H = ~Jfree +
∂ ~D

∂t
(4)

where ~D = ε ~E + ~P and ~H = ~B
µ − ~M

At first, we calculate the rotational of equation 3:

~∇×
(

~∇× ~E
)

= ~∇×

(
−∂ ~B

∂t

)

Now we can use the relation: ~∇×
(

~∇×
)

= ~∇
(

~∇·
)
−∇2 and the com-

mutation between the rotational operator and partial time derivative:
[
~∇×, ∂

∂t

]
= 0

~∇
(

~∇ · ~E
)
−∇2 ~E = − ∂

∂t

(
~∇× ~B

)
(5)

Now, we use the equations 4 and the definition of ~H: ~H = ~B
µ − ~M , to obtain

an expression of ~∇× ~B:

~∇× ~H = ~Jfree +
∂ ~D

∂t

~∇×

(
~B

µ
− ~M

)
= ~Jfree +

∂ ~D

∂t

~∇× ~B = µ ~M + µ~Jfree + µ
∂ ~D

∂t

~∇× ~B = µ ~M + µ~Jfree + µ
∂ ~P

∂t
+ µε

∂ ~E

∂t

Substituting in equation 5:

~∇
(

~∇ · ~E
)
−∇2 ~E = − ∂

∂t

(
µ ~M + µ~Jfree + µ

∂ ~P

∂t
+ µε

∂ ~E

∂t

)
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We can simplify this expression, assuming a non-magnetic material where
~M = 0, this circumstance implies µ

(
~∇× ~M

)
= 0. We can assume ~∇ · ~E = 0 if

we think that the vector ~E doesn’t change more in the direction of propagation
of the wave. Finally, we find wave’s equation for the electric field in a material
medium:

∇2 ~E − 1
v2

∂2 ~E

∂t2
= µ

(
∂ ~Jfree

∂t
+

∂2 ~P

∂t2

)
where v = 1√

εµ is the propagation velocity

Exercise 6 Find the equations:

E′
0 +

1
c
Ė0 =

−k

2ε
Im {P} =

k

2ε
N(z)dV (6)

E0

(
φ′ +

1
c
φ̇

)
=
−k

2ε
Re {P} =

−k

2ε
N(z)dU (7)

from the wave equation in a material medium and applying the SVAP approxi-
mation.

Solution 6 At first, we consider the absence of free current in the material, so
we can eliminate the term µ

∂ ~Jfree

∂t = 0 from the wave equation found in the last
exercise:

∇2 ~E − 1
v2

∂2 ~E

∂t2
= µ

(
∂2 ~P

∂t2

)
Now, we consider a solution of the wave’s equation:

~E(z, t) =
1
2
~exE0(z, t)ek·z−ωt−φ(z,t)

1.3 Lorentz’s classical model of the light-matter interac-
tion

Exercise 7 Prove that x(t) = x0e
−γ
2 ±

√
γ2
4 −ω2

0t = x0e
− γ

2±iω0t is a solution of
the differential equation ẍ + γẋ + ω2

0x = 0

Solution 7

Exercise 8 Verify that

x(t) =
e

m
E0

[
ω2

0 − ω2

(ω2
0 − ω2)2 + (γω)2

cos(ωt) +
γω

(ω2
0 − ω2)2 + (γω)2

sin(ωt)

]
is a solution of the equation: ẍ + γẋ + ω2

0x = e
mE0cos(ωt)

Solution 8

Exercise 9 Explain why sky is blue, using the equations of the diffusion. Help:
the colour of the sky is a phenomena of diffusion produced in the troposphere
(25-80 km) by the presence of the ozone molecule with resonance frequency in
the ultraviolate

Solution 9
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1.4 The susceptibility

Exercise 10 Check ...:

1. the FWHM (Full width at half medium) of Re {α} is γ

2. and the maximum value of the refraction index is produced a half height
ob the lorentzian curve

Solution 10

1.5 Propagation of non-monochromatic’s waves

1.6 Introduction to non-lineal optics

Exercise 11 Deduce the magnitude order of the non-linear susceptibility of sec-
ond order. Help: Take the model of the hydrogen atom and consider that the
non-linear terms have a similar value than the lineal contribution of the electric
field when it is similar than the atomic electric field

Solution 11

Exercise 12 In practice, the typical electric field of tie between electrons and
ions is E ≈ 1010V m−1. Which intensity do we need to observe non-linear
effects? Do these intense light source exist? Do we need the intense light source
to observe non-linear effects, for example, the second harmonic generation?

Solution 12

Exercise 13 Prove the expression n = n0 + n2I, determining the relation be-
tween n2 and χ(3)

Solution 13

1.7 Susceptibility non-lineal of a classical an harmonic os-
cillator

2 Semi classical theory of the light-matter in-
teraction

2.1 Termical radiation and Planck’s hypothesis

Exercise 14 Which thermodynamic arguments can we use to affirm that ρ(ν, T )
is a universal function? Help: Clausius formulate the second law of the thermo-
dynamics in the form: “The transformations which final result is to pass heat
from a body to other body more hot are impossible”

Solution 14 We can realize a mental experiment. We have to imagine two
separated cavities showed in the figure 1. These cavities are surrounded by a
thermal bath with a fixed temperature T, the two thermal bath have the same
temperature.
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Figure 1: Mental experiment

We suppose that the radiation density of each cavity are in equilibrium with
the cavity, so the number of absorption and emission are the assume. So we,
have a radiation density which is constant for each frequency.

Now, we make a little hole in each cavity, so the radiation can go out the
cavity.

Our experiment consist to place one cavity in front of the other cavity. With
a sofisticated optical process, we can bring the radiation which go out from ρi

and bring it to the cavity ρd. At the same time, we are bringing the radiation
which go out from ρd and bringing it to the cavity ρi.

Using the second law of the termodynamics (the Clausius formulation), we
can see that the two cavities are in thermal equilibrium because the two cavities
have the same temperature

Exercise 15 Prove that the wave’s equation for the electric field can be rewrit-
ten when we use ~E(x, y, z, t) = ~u(x, y, z)A(t)

Solution 15

Exercise 16 Prove that the expressions:

ux = dx coskxx sinkyy sinkzz

uy = dy sinkxx coskyy sinkzz

uz = dz sinkxx sinkyy coskzz

are the solutions of the Helmholtz’s equation: ∇2~u = −k2~u

Solution 16

Exercise 17 Find the condition: ~d · ~k = 0, where ~d = (dx, dy, dz), from the
equation: ~∇ · ~E = 0

Solution 17

Exercise 18 Demonstrate (using two lines): 〈E〉 = hν
exp[hν/kBT ]−1
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Solution 18 We have the operation for calculate 〈E〉

〈E〉 =
∑∞

n=0 nhνe−nhν/kBT∑∞
n=0 e−nhν/kBT

So we have to calculate two sums, one in the numerator and another in the
denominator. Beginning with the sum of the denominator:

∞∑
n=0

e−nhν/kBT = 1 + e−hν/kBT + e−2hν/kBT + ...

We can see that is a progressive geometric sum that it’s solved in a lot of
books 1, so:

∞∑
n=0

e−nhν/kBT =
1− e−nhν/kBT

1− e−hν/kBT
=

1
1− e−hν/kBT

The numerator of the last equation is equal to 1 because n →∞ and e−∞ = 0
For the sum of the numerator, we have to work more than before. We must

see that it isn’t a progressive geometric sum, so we have to transform the sum
in a progressive geometric sum. We can see the following relation:

∑
n

ne−nx =
∂

∂x

(∑
n

e−nx

)
=

∂

∂x

(
1

1− e−x

)
=

xe−x

(1− e−x)2

Identifing x = hν/kBT , we can solve the sum of the numerator, and find the
valor of 〈E〉:

〈E〉 = hν

∑∞
n=0 ne−nhν/kBT∑∞
n=0 e−nhν/kBT

= hν

e−hν/kBT

(1−e−hν/kBT )2

1
1−e−hν/kBT

= hν
e−hν/kBT(

1− e−hν/kBT
)

= hν
1(

ehν/kBT
)
− 1

Exercise 19 How many photons per way, for optics frequency and ambiental
temperature, is there?

Solution 19 If we want to find the number of photons per way, we must use
the expression of Bose-Einstein statistics, so the photons are bosons:

〈n〉 =
1

e
hν

kBT − 1
=

1

e
hc

λkBT − 1
1Spiegel, Liu, Abellanas - Frmulas y tablas de matemtica aplicada
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For ambiental temperature, we can suppose T = 300K and for optical frequency
we can use λ = 500nm. Substituting in the last expression, we find:

〈n〉 =
(

exp

[
6.62 · 10−34Js 3 · 108m/s

500 · 10−9m 1.38 · 10−23J/K 300K

]
− 1
)−1

〈n〉 = (exp [95]− 1)−1 ≈ e−95 << 1

Exercise 20 Demonstrate that B = cρ/4π where B is the brightness (B = I
π ),

and ρ is the energy density: ρ = 1
2εE2(t) + 1

2µH2(t)

Solution 20

Exercise 21 Deduce the Wien law (λmaxT = const) from the expression:

Bλdλ =
2hc2

λ5

1
ehc/λkBT − 1

dλ

Solution 21 Observing the plot of the brightness, we can see that the plot
has a maximum valor for one wavelength, to find this valor we must derive
the expression of the brightness about the wavelength and equal the derivated
expression to zero:

∂Bλ

∂λ
= 0

∂

∂λ

(
2 hc2

λ5

(
1

e
hc

λkBT − 1

))
= 0

−10hc2

λ6
(
e

hc
λkBT − 1

) +
2h2c3e

hc
λkBT

λ7
(
e

hc
λkBT − 1

)2

kBT
= 0

5− 5e
−hc

λkBT =
hc

λkBT

Now, we can solve this expression (using the Lambert W equations) for λT and
find the Wien’s law:

λT = const

2.2 Einstein’s theory of the light-matter interaction

Exercise 22 Using the relations between the Einstein’s coefficients,

g1B12 = g2B21 A21 = h
8πν3

c3
B21

, respond:

1. Can we invert an atomic two-level system?

2. Which is the principal difficult to obtain high frequency lasers, for example,
x-ray lasers?

Solution 22 1. A closed two-level system can’t be inverted.

2.

Exercise 23 Which is the validity limit of the Einstein’s theory of the light-
matter interaction?

Solution 23
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2.3 Rate equations for the populations

Exercise 24 Determine the conditions in order to an atomic two-level system
could amplificate an electric field with the resonance frequency (|1〉 ↔ |2〉), using
the rate equations for an open two-level system.

Solution 24 The rate equations for an open two-level system are:

dN1

dt
= −Bρ(ν)(N1 −N2) + A21N2 + r1 − a1N1

dN2

dt
= Bρ(ν)(N1 −N2)−A21N2 + r2 − a2N2

2.4 Calculation of the B Einstein’s coefficient

Exercise 25 Compare the magnitudes of the electric dipolar interaction and
the magnetic dipolar interaction

Solution 25

Exercise 26

Solution 26

2.5 Two levels system: Exact solution of the RWA

Exercise 27 Demonstrate that the expressions:

a1(t) = Ae−i(∆−Ω′)t/2 + Be−i(∆+Ω′)t/2

a2(t) = Ce+i(∆−Ω′)t/2 + De+i(∆+Ω′)t/2

are the solutions of:

ä1 + i∆ȧ1 +
(

Ω
2

)2

a1 = 0

ä2 − i∆ȧ2 +
(

Ω
2

)2

a1 = 0

Solution 27

Exercise 28 Find the figure of the AC-Stark split for a two-level system inter-
acting with electromagnetic wave which ∆ > 0

Solution 28

Exercise 29 Find explicitly the value of the Rabi frequency (in Hz units) for
the experiments showed in the figure 2:

Solution 29

Exercise 30 Suppose that you have a two-level atom fallen upon in a cavity with
length L that it has an electromagnetic field resonant with the atomic transition.
Atom go into the cavity with a velocity v and in the excited state. Which has to
be the velocity of the atom to be in the desexcited state when the atom go out
the cavity? and in a superposition state |a1| = |a2| = 1/2?

Determine the valour of the velocity in the case: L = 2.7 cm and Ω ∼= 40kHz
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Figure 2: Rabi’s oscillations of 40Ca+

Solution 30

Exercise 31 Which approximate appearance shows the fluorescent triplet (Mol-
low triplet) for Ω = 4Γ and ∆ = ω0 − ω = 3Γ?

Solution 31

Exercise 32 Draw the Autler-Townes doublet spectrum of a prove’s field in a
three-level system where a powerful field with Ω = 3Γ and ∆ = 4Γ is acting.
Consider the scheme corresponding to the V configuration.

Solution 32

Exercise 33

Solution 33

Exercise 34 Obtain the result Nest
2 = n

2Γ
Ω2

Ω′2+Γ2 , using the defined integral:∫∞
0

e−axcos(bx)dx = a/(a2 + b2)

Solution 34

2.6 Validity conditions of the Lorentz classical model

Exercise 35 Obtain the electric dipole µ(t) for a two-level system using the
Schrdinger equation for the populations a1 and a2

Solution 35

Exercise 36 Using the movement equations of the amplitude probability of a
two-level system, determine the Liouville’s operator that we need in the Schrdinger-
Von Neumann-Liouville equation.

Solution 36

Exercise 37 Prove that the decay of the coherence ρ12 in an open two-level
system (where the relaxation of the two levels falls down outside the two-level
system) is (Γ1 + Γ2)/2

Solution 37
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3 Quantum theory of the light-matter interac-
tion

3.1 Classical electrodynamics

Exercise 38 Prove that dH
dt = 0, where H is defined by: H =

∑
α

1
2mα~v2

α(t) +
ε0
2

∫ {
~E2(~r, t) + c2 ~B(~r, t)

}
d3r

Solution 38

Exercise 39 Demonstrate the Parseval’s identity:
∫

F ∗(~r)G(~r)d3r =
∫

F∗(~k)G(~k)d3k

Solution 39

Exercise 40 Demonstrate the property of the Fourier transform of the product
of two functions: F(~k)G~k ↔ 1

(2π)3/2

∫
F (~r′)G(~r − ~r′)d3r′

Solution 40

Exercise 41 Demonstrate the expression:

~B∗ · ~B =
N2

c2

(
~α∗ · ~α + ~α∗− · ~α∗− + ~α∗ · ~α∗− + ~α− · ~α

)
Solution 41

Exercise 42 Demonstrate

Solution 42

Exercise 43

Solution 43

Exercise 44

Solution 44

Exercise 45

Solution 45

3.2 Quantification of the electromagnetic field

Exercise 46 Find explicitly the commutation relation
[
â, â†

]
Solution 46

3.3 States of the free quantum field

Exercise 47 Demonstrate explicitly the result:
(
∆ ~E⊥

)2

= ~ω
2ε0L3

Solution 47

Exercise 48 Demonstrate the relation of closen between the coherent states:
1
π

∫
|α〉 〈α| d2α = 1̂

Solution 48
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3.4 Interaction between atoms and free fields

Exercise 49 Demonstrate that the elimination of the terms: âσ− and â†σ+

in the interaction hamiltonian is equivalent than the application of rotate wave
approximation. Help: Consider the operators of the field and the atom in the
Heisenberg’s picture

Solution 49

Exercise 50 Obtain the eigenvalues of the energy, diagonalizating the hamil-

tonian: Hn = ~
(
n + 1

2

)
ω

(
1 0
0 1

)
+ ~

2

(
∆ −2ig

√
n + 1

2ig
√

n + 1 −∆

)
Solution 50


