CD4093BM/CD4093BC Quad 2-Input NAND Schmitt Trigger

General Description
The CD4093B consists of four Schmitt-trigger circuits. Each circuit functions as a 2-input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive and negative-going signals. The difference between the positive (V_{T^+}) and the negative voltage (V_{T^-}) is defined as hysteresis voltage (V_H).

All outputs have equal source and sink currents and conform to standard B-series output drive (see Static Electrical Characteristics).

Features
- Wide supply voltage range 3.0V to 15V
- Schmitt-trigger on each input with no external components
- Noise immunity greater than 50%

Applications
- Wave and pulse shapers
- High-noise-environment systems
- Monostable multivibrators
- Astable multivibrators
- NAND logic

Connection Diagram
Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>DC Supply Voltage (V<sub>DD</sub>)</th>
<th>–0.5 to +18 V<sub>DC</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage (V<sub>I</sub>)</td>
<td>–0.5 to V<sub>DD</sub> + 0.5 V<sub>DC</sub></td>
</tr>
<tr>
<td>Storage Temperature Range (T<sub>S</sub>)</td>
<td>–65°C to +150°C</td>
</tr>
<tr>
<td>Power Dissipation (P<sub>D</sub>)</td>
<td>Dual-Line 700 mW</td>
</tr>
<tr>
<td>Lead Temperature (T<sub>L</sub>) (Soldering, 10 seconds)</td>
<td>260°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics CD4093BM (Note 2)

Symbol | Parameter | Conditions | –55°C | +25°C | +125°C | Units |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>DD</sub></td>
<td>Quiescent Device Current</td>
<td>V<sub>DD</sub> = 5V</td>
<td>0.25</td>
<td>0.25</td>
<td>7.5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 10V</td>
<td>0.5</td>
<td>0.5</td>
<td>15.0</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 15V</td>
<td>1.0</td>
<td>1.0</td>
<td>30.0</td>
<td>μA</td>
</tr>
<tr>
<td>V<sub>OL</sub></td>
<td>Low Level Output Voltage</td>
<td>V<sub>I</sub></td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10V</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15V</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>OH</sub></td>
<td>High Level Output Voltage</td>
<td>V<sub>I</sub></td>
<td>4.95</td>
<td>4.95</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>4.95</td>
<td>4.95</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10V</td>
<td>9.95</td>
<td>9.95</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15V</td>
<td>14.95</td>
<td>14.95</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>T</sub>−</td>
<td>Negative-Going Threshold Voltage (Any Input)</td>
<td></td>
<td>1.3</td>
<td>1.5</td>
<td>2.25</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 5V, V<sub>DD</sub> = 4.5V</td>
<td>2.85</td>
<td>3.0</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 10V, V<sub>DD</sub> = 9V</td>
<td>4.35</td>
<td>4.5</td>
<td>6.75</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 15V, V<sub>DD</sub> = 13.5V</td>
<td>10</td>
<td>10.65</td>
<td>14.95</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>T</sub>+</sub></td>
<td>Positive-Going Threshold Voltage (Any Input)</td>
<td></td>
<td>2.75</td>
<td>3.25</td>
<td>3.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 5V, V<sub>DD</sub> = 0.5V</td>
<td>5.5</td>
<td>5.5</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 10V, V<sub>DD</sub> = 1V</td>
<td>8.25</td>
<td>9.0</td>
<td>10.5</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>H</sub></td>
<td>Hysteresis (V<sub>T</sub>− – V<sub>T</sub>+) (Any Input)</td>
<td>V<sub>DD</sub> = 5V</td>
<td>0.5</td>
<td>0.5</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 10V</td>
<td>1.0</td>
<td>1.0</td>
<td>2.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 15V</td>
<td>1.5</td>
<td>1.5</td>
<td>2.7</td>
<td>V</td>
</tr>
<tr>
<td>I<sub>OL</sub></td>
<td>Low Level Output Current (Note 3)</td>
<td>V<sub>I</sub></td>
<td>0.64</td>
<td>0.51</td>
<td>0.88</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4V</td>
<td>1.3</td>
<td>2.25</td>
<td>0.9</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5V</td>
<td>4.2</td>
<td>3.4</td>
<td>8.8</td>
<td>mA</td>
</tr>
<tr>
<td>I<sub>OH</sub></td>
<td>High Level Output Current (Note 3)</td>
<td>V<sub>I</sub></td>
<td>–0.64</td>
<td>–0.51</td>
<td>–0.88</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4V</td>
<td>–1.3</td>
<td>–2.25</td>
<td>–0.9</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5V</td>
<td>–4.2</td>
<td>–3.4</td>
<td>–8.8</td>
<td>mA</td>
</tr>
<tr>
<td>I<sub>IN</sub></td>
<td>Input Current</td>
<td>V<sub>DD</sub> = 15V, V<sub>IN</sub> = 0V</td>
<td>–0.1</td>
<td>–10<sup>−5</sup></td>
<td>–0.1</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DD</sub> = 15V, V<sub>IN</sub> = 15V</td>
<td>0.1</td>
<td>10<sup>−5</sup></td>
<td>0.1</td>
<td>μA</td>
</tr>
</tbody>
</table>

Note 1: “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at those limits. The table of “Recommended Operating Conditions” and “Electrical Characteristics” provides conditions for actual device operation.

Note 2: V_{SS} = 5V unless otherwise specified.

Note 3: I_{OH} and I_{OL} are tested one output at a time.
DC Electrical Characteristics

Symbol	**Parameter**	**Conditions**	**−40°C**	**25°C**	**85°C**	Units
			Min	Max	Min	Max

IDQ
Quiescent Device Current
- $V_{DD} = 5V$: 1.0
- $V_{DD} = 10V$: 2.0
- $V_{DD} = 15V$: 4.0

VOL
Low Level Output Voltage
- $V_{OL} = V_{DD}, I_{OL} < 1 \mu A$: 0.05
- $V_{OL} = 5V$: 4.95
- $V_{OL} = 10V$: 9.95
- $V_{OL} = 15V$: 14.95

VOL
High Level Output Voltage
- $V_{OH} = V_{SS}, I_{OH} < 1 \mu A$: 4.95
- $V_{OH} = 5V$: 9.95
- $V_{OH} = 10V$: 14.95

VT−
Negative-Going Threshold Voltage (Any Input)
- $|V_{THL}| < 1 \mu A$: 1.3
- $V_{DD} = 5V, V_O = 4.5V$: 3.6
- $V_{DD} = 10V, V_O = 9V$: 4.35
- $V_{DD} = 15V, V_O = 13.5V$: 6.75

VT+
Positive-Going Threshold Voltage (Any Input)
- $|V_{THL}| < 1 \mu A$: 2.75
- $V_{DD} = 5V, V_O = 0.5V$: 3.6
- $V_{DD} = 10V, V_O = 1V$: 5.5
- $V_{DD} = 15V, V_O = 1.5V$: 8.25

VH
Hysteresis ($V_{THL} + V_{TH}^−$) (Any Input)
- $V_{DD} = 5V$: 0.5
- $V_{DD} = 10V$: 1.0
- $V_{DD} = 15V$: 1.5

IOL
Low Level Output Current (Note 3)
- $V_{DD} = 5V, V_O = 0.4V$: 0.52
- $V_{DD} = 10V, V_O = 0.5V$: 1.3
- $V_{DD} = 15V, V_O = 1.5V$: 3.6

IOH
High Level Output Current (Note 3)
- $V_{DD} = 5V, V_O = 4.6V$: −0.52
- $V_{DD} = 10V, V_O = 9.5V$: −1.3
- $V_{DD} = 15V, V_O = 15V$: −3.6

AC Electrical Characteristics

Symbol	**Parameter**	**Conditions**	**Min**	**Typ**	**Max**	Units

IPHL, IPHL
Propagation Delay Time
- $V_{DD} = 5V$: 300
- $V_{DD} = 10V$: 120
- $V_{DD} = 15V$: 80

ITHL, ITLH
Transition Time
- $V_{DD} = 5V$: 90
- $V_{DD} = 10V$: 50
- $V_{DD} = 15V$: 40

CIN
Input Capacitance (Any Input)
- $V_{DD} = 15V, V_{IN} = 0V$: 0.3
- $V_{DD} = 15V, V_{IN} = 15V$: 0.3

CDD
Power Dissipation Capacitance (Per Gate)
- $V_{DD} = 5V$: 5.0
- $V_{DD} = 10V$: 5.0
- $V_{DD} = 15V$: 5.0

*AC Parameters are guaranteed by DC correlated testing.

Note 2: $V_{DD} = 0V$ unless otherwise specified.

Note 3: I_{OH} and I_{OL} are tested one output at a time.
Typical Applications

Assume $t_1 + t_2 > > t_{PHL} + t_{PLH}$ then:

$$t_0 = RC \times \frac{1}{V_{DD}/V_{T+}}$$

$$t_1 = RC \times \frac{1}{V_{DD} - V_T^-}$$

$$t_2 = RC \times \frac{1}{V_T^+ - V_{DD}}$$

$$t = \frac{t_1 + t_2}{R C \times \frac{1}{V_{T+}} \frac{V_{DD} - V_T^-}{V_T^- - V_{DD} - V_T^+}}$$

Gated Oscillator

Gated One-Shot

(a) Negative-Edge Triggered

(b) Positive-Edge Triggered
Typical Performance Characteristics

Guaranteed Trigger Threshold Voltage vs VDD

Guaranteed Hysteresis vs VDD

Input and Output Characteristics

Output Characteristic Input Characteristic

AC Test Circuits and Switching Time Waveforms
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.