
Computer Communication
Networks —

Lecture Notes

D.B. Hoang and K.J. Pye

1995 edition
(7.54 p.m. 31January, 1996)

School of Electronic Engineering, La Trobe University

Preface

These notes are very heavily based in parts on notes originally written by Dr D.B. Hoang. They
have since been modified and extended by Mr K.J. Pye. Consequently all mistakes are the
responsibility of Mr Pye who would be grateful to receive comments on how these notes might
be improved.

Contents

Chapter 1. Network Architecture 1

1.1. Introduction 1

1.2. The ISO and other models 1

1.2.1. Layer 1: the physical layer 1

1.2.2. Layer 2: the data link layer 1

1.2.3. Layer 3: the network layer 2

1.2.4. Layer 4: the transport layer 2

1.2.5. Layer 5: the session layer 3

1.2.6. Layer 6: the presentation layer 3

1.2.7. Layer 7: the application layer 4

1.3. Examples of Network Architectures 4

1.3.1. IBM’s System Network Architecture (SNA) 4

1.3.2. DECNET’s DNA (Digital Network Architecture) 5

Chapter 2. The Data Link Layer 8

2.1. Introduction 8

2.2. Simplified Model 8

2.3. Functions and requirements of the Data Link Protocols 8

2.4. Elementary Data Link Protocols 10

2.4.1. An unrestricted simplex protocol 10

2.4.2. A simplex stop-and-wait protocol 11

2.4.3. A simplex protocol for a noisy channel 12

2.5. Sliding Window Protocols 13

2.5.1. Piggybacking technique 13

2.5.2. Sliding window 14

2.5.3. A one bit sliding window protocol: protocol 4 14

2.5.4. Pipelining 16

2.5.5. Protocol 5: Pipelining, Multiple outstanding frames 17

2.5.6. Protocol 6 20

2.6. High-level Data Link Control Procedures: HDLC, SDLC 20

2.6.1. Introduction 20

2.6.2. Primary and secondary stations 21

2.6.3. Frame structure 21

2.6.4. Data link channel states 23

iii

2.6.5. Types of frames 24

2.6.6. Modes of operation 24

2.6.7. Commands and responses 25

2.6.8. Information Exchange 30

Chapter 3. The Network Layer 33

3.1. Routing Techniques in Computer Communication Networks 33

3.1.1. Introduction 33

3.1.2. The Routing Problem 33

3.1.3. Routing Algorithm Classification 35

3.1.4. Routing Table Representation 35

3.1.5. Functions of Routing Procedures 37

3.1.6. Solution Techniques 39

3.2. The Network Layer in X.25 43

3.2.1. General Description of the X.25 Protocol 43

3.2.2. X.25 End-to-end Virtual Circuit Service Characteristics 45

3.2.3. X.25 Packet Level Characteristics 48

3.2.4. Error recovery 51

3.2.5. A Common X.25 DTE 52

3.2.6. Relationship of X.25 to ISO and CCITT models 53

Chapter 4. Packet Protocols for Broadcast Satellites 55

4.1. Communication Satellites 55

4.2. Satellite Packet Broadcasting 56

4.3. Conventional Channel Allocation Protocols 56

4.3.1. Frequency-division multiplexing (FDM) 56

4.3.2. Fixed Assignment Time Division Multiple Access (TDMA) .. 56

4.4. Random-Access Protocols 57

4.4.1. Pure Aloha 57

4.4.2. Slotted Aloha 60

4.4.3. Reservation Aloha 61

4.5. Explicit Reservation Protocols 62

4.5.1. Roberts Reservation Scheme 62

4.5.2. Reservation-TDMA 63

Chapter 5. Local Area Networks 65

5.1. Ethernet 65

5.1.1. Brief Description 65

5.1.2. Mechanism 65

5.1.3. Carrier Detection 65

iv

5.1.4. Contention algorithm 65

5.1.5. Binary exponential backoff 67

5.2. Topology and Packet Formats 67

5.2.1. Topology 67

5.2.2. Packet format 67

5.3. Ring Networks 70

5.3.1. Token Ring 70

5.3.2. Contention Rings 74

5.3.3. Register Insertion Rings 75

5.4. Token Passing versus CSMA/CD 75

5.5. Broadband versus Baseband 77

Chapter 6. Flow Control 78

6.1. Introduction 78

6.2. Flow Control: problems and Approaches 78

6.2.1. Problems 78

6.3. Hop Level Flow Control 81

6.3.1. Channel Queue Limit Flow Control 82

6.3.2. Structured Buffer Pool (SBP) Flow Control 83

6.3.3. Virtual Circuit Hop Level Flow Control 84

6.4. Network Access Flow Control 86

6.4.1. The Isarithmic Scheme 86

6.4.2. Input Buffer Limit Scheme 86

6.4.3. Choke Packet Scheme 87

6.5. Entry-to-Exit Flow Control 88

6.5.1. Arpanet RFNM and Reassembly Scheme 88

6.5.2. SNA Virtual Route Pacing Scheme 90

Chapter 7. Introduction to Queueing Theory 91

7.1. Introduction 91

7.2. Aims and Characterisations 91

7.3. The structure for basic queueing systems 93

7.4. The arrival pattern 95

7.5. The service time distribution 98

Chapter 8. Simple Queues with Random Arrivals 100

8.1. Equilibrium solutions 100

8.2. M/M/1 queue: single-server queue with random arrivals and exponential
service times 103

8.3. Arrival rates and service times dependent on queue size 105

v

8.3.1. Queue with discouraged arrivals 105

8.3.2. M/M/∞: Queue with infinite number of servers 107

8.3.3. M/M/m: Queue with m servers 107

8.3.4. M/M/1/K: Queue with finite storage 109

8.3.5. M/M/m/m: m-server loss system 110

Chapter 9. The Single Server Queue 112

9.1. The single server queue - M/M/1queue 112

9.2. The M/G/1queues 114

9.3. Response time for a contention model 115

9.4. Networks of M/M/1queues 117

Chapter 10. Capacity Assignment in Distributed Networks 120

10.1. Introduction 120

10.2. Square root channel capacity assignment 120

10.3. A special case 122

10.4. Some other capacity assignments 123

10.5. An example 125

Chapter 11. Dynamic Buffering and Block Storage 131

11.1. Modelling storage usage 131

11.2. Average buffer storage 133

11.3. Buffer size for a specific probability of overflow 136

11.4. Concentration: Finite buffers 138

11.4.1. Finite buffer size model 138

11.4.2. Probability of buffer overflow 139

11.4.3. Example 142

Chapter 12. Reliability of Networks 144

12.1. Deterministic measures 144

12.1.1. Flow in networks 144

12.1.2. Cuts 144

12.1.3. The max-flow min-cut theorem [Ford & Fulkerson] 146

12.2. Cohesion or link connectivity 147

12.2.1. Finding the Cohesion of a Directed Graph 147

12.2.2. Finding the Cohesion in an Undirected Graph 147

12.3. Node connectivity 148

12.3.1. Finding the node connectivity of a undirected graph 149

12.3.2. Kleitman’s Algorithm: 149

12.3.3. Even’s algorithm 151

12.4. Probabilistic link and node failures 151

vi

Chapter 13. The Arpanet 155

13.1. Introduction 155

13.2. Topology, Concept and Functional Descriptions 155

13.3. Hardware Implementation of Switching Nodes 156

13.4. Host-to-Host or Transport Protocol 157

13.5. Imp-to-Imp or Network Layer Protocol 158

13.6. Data Link Protocol 160

Chapter 14. The Internet Protocol (IP) 162

14.1. Introduction 162

14.2. IP Header 162

14.3. IP addresses 164

14.3.1. Class A addresses 164

14.3.2. Class B addresses 164

14.3.3. Class C addresses 164

14.3.4. Multicast addresses 165

14.3.5. Subnetting 165

14.4. Routing IP 165

14.5. ARP 166

14.6. RARP 166

14.7. ICMP 167

Chapter 15. TCP and UDP 169

15.1. Introduction 169

15.2. TCP 169

15.3. UDP 171

Chapter 16. Who’s Who (the Domain Name System) 173

16.1. Introduction 173

16.2. Host tables 173

16.3. Named 174

Chapter 17. SMTP and Mail 175

17.1. Introduction 175

17.2. Mail format 175

17.3. Headers 176

17.4. The protocol 177

Chapter 18. NNTP and News 179

18.1. Introduction 179

18.2. Article format 179

vii

18.3. The reading protocol 180

18.4. The transfer protocol 180

Chapter 19. The Network Time Protocol 182

19.1. Introduction 182

19.2. The Network Time Protocol 182

Chapter 20. Security 183

20.1. Introduction 183

20.2. Authentication 183

20.3. Data Integrity 184

Appendix A. A TCP/IP Tutorial 185

A.1. Introduction 185

A.2. TCP/IP Overview 185

A.3. Ethernet 190

A.4. ARP 191

A.5. Internet Protocol 194

A.6. User Datagram Protocol 202

A.7. Transmission Control Protocol 203

A.8. Network Applications 204

A.9. Other Information 205

A.10. References 206

A.11. Relation to other RFCs 206

A.12. Security Considerations 206

A.13. Authors’Addresses 206

Index .. 208

viii

Chapter 1. Network Architecture

1.1. Introduction

Computer networks are designed in a highly structured way to reduce their design complexity.
Most networks are organised as a series oflayersor levels. The number of layers, the name
of each layer, and the function of each layer differs from network to network. However, in
all networks, each layer clearly defines various data communication functions and logical
operations. Each level is functionally independent of the others, but builds on its predecessor. In
order to function, higher levels depend on correct operation of the lower levels.

Figure 1.1 illustrates a 7-layer network architecture. Layer (level)n on one computer carries
on communication with layern on another computer. The set of rules and conventions that
encompasses electrical, mechanical and functional characteristics of a data link, as well as the
control procedures for such communication is called thelayer n protocol.

The communication between two layers at the same level (layern, n −−/ 1) of two different
computers is calledvirtual communication. Here, each layer passes data and control information
to the layer immediately below it, until the lowest layer (layer 1). At layer 1, information from
one computer is physically transferred to layer 1 of the other(physical communication).

The interfacebetween each pair of adjacent layers defines which operations and services the
lower layer offers to the upper one.

Thenetwork architecturethus can be defined as the set of layers and protocols.

1.2. The ISO and other models

Figure 1.2 shows the reference model of the Open Systems Interconnection (OSI), which has
been developed by the International Standards Organisation (ISO). We will briefly define the
functions and operation of each layer of this architecture in turn.

1.2.1. Layer 1: the physical layer

This layer is concerned with transmitting an electrical signal representation of data over a
communication link. Typical conventions would be: voltage levels used to represent a “1” and
a “0”, duration of each bit, transmission rate, mode of transmission, and functions of pins in a
connector. An example of a physical layer protocol is the RS-232 standard.

1.2.2. Layer 2: the data link layer

This layer is concerned with error-free transmission of data units.The data unit is an abbreviation
of the official name ofdata-link-service-data-units;it is sometimes called thedata frame. The
function of the data link layer is to break the input data stream into data frames, transmit the

1

2 Chapter 1. Network Architecture

Host A Host B

Layer 7 Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 7 protocol

Layer 1 protocol

Layer 1/2 interface

Layer 6/7 interface

Figure 1.1. Layers, protocols and interfaces

frames sequentially, and process theacknowledgement framesent back by the receiver. Data
frames from this level when transferred to layer 3 are assumed to be error free.

1.2.3. Layer 3: the network layer

This layer is thenetwork controllayer, and is sometimes called thecommunication subnet layer.
It is concerned with intra-network operation such as addressing and routing within the subnet.

Basically, messages from the source host are converted topackets. The packets are then routed
to their proper destinations.

1.2.4. Layer 4: the transport layer

This layer is atransport end-to-end control layer(i.e. source-to-destination). A program on
the source computer communicates with a similar program on the destination computer using
the message headers and control messages, whereas all the lower layers are only concerned with

1.2. The ISO and other models 3

exchanged
Name of unit

Network

Data link

PhysicalPhysical

Data link

NetworkNetwork

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Transport

Session

Presentation

Application

Host A Host BIMP IMP

Layer

7

6

5

4

3

2

1

Message

Message

Message

Message

Packet

Frame

Bit

Application protocol

Presentation protocol

Session protocol

Transport protocol

Communication subnet boundary

interface

interface

Figure 1.2. The OSI model

communication between a computer and its immediate neighbours, not the ultimate source and
destination computers.

The transport layer is often implemented as part of the operating system. The data link and
physical layers are normally implemented in hardware.

1.2.5. Layer 5: the session layer

The session layer is the user’s interface into the network.This layer supports the dialogue through
session control, if services can be allocated. A connection between users is usually called a
session. A session might be used to allow a user to log into a system or to transfer files between
two computers. A session can only be established if the user provides the remote addresses to
be connected. The difference between session addresses and transport addresses is that session
addresses are intended for users and their programs, whereas transport addresses are intended for
transport stations.

1.2.6. Layer 6: the presentation layer

This layer is concerned with transformation of transferred information. The controls include
message compression, encryption, peripheral device coding and formatting.

4 Chapter 1. Network Architecture

1.2.7. Layer 7: the application layer

This layer is concerned with the application and system activities.The content of the application
layer is up to the individual user.

1.3. Examples of Network Architectures

1.3.1. IBM’s System Network Architecture (SNA)

IBM’s System network architecture is a method for unifying network operations.SNA describes
the division of network functions into discrete layers and defines protocols and formats for
communication between equivalent layers. SNA describes a network in terms of a physical
network and a logical network. The physical network consists of a collection ofnodes: host
node, front end communication node, concentration node and terminal node. The host node is
the central processor; the front end communication node is concerned with data transmission
functions; the concentration node supervises the behaviour of terminalsand other peripherals; the
terminal node is concerned with the input and output of information through terminal devices.
Figure 1.3 depicts a simple SNA network.

The SNA logical network consists of three layers:

(i) transmission management;

(ii) function management; and

(iii) application.

Each node in the SNA physical network may contain any or all of these three layers.
Communication between layers is as shown in Figure 1.4 below.

The application layer consists of the user’s application programs and is concerned only with the
processing of information.

The functional management layers controls the presentation format of information sent from
and received by the application layer, i.e. it converts th data into a form convenient to the user.

The transmission management layer controls movement of user data through the network. It
involves routing, scheduling and transmission functions. This layer exists in every intermediate
node through which the data units flow and may utilise a variety of physical connections and
protocols between the nodes of an SNA network.

Each node contains one or moreNetwork Addressable Units(NAU). There are three types of
NAU. A Logical Unit (LU) is a NAU which users use to address their process. APhysical Unit
(PU) is a NAU which the network uses to address a physical device, without reference to which
processes are using it. The third type of NAU is theSystem Services Control Point(SSCP) which
has control over all front ends, remote concentrators and terminals attached to the host.

The three types of NAU communicate with each other by invoking the services of the
transmission management layer as shown in Figure 1.5.

Thephysical link controlprotocol takes care of electrical transmission of data bits from one node

1.3. Examples of Network Architectures 5

Terminal

Concentrator

Front End

HostHost

T T TT

T

T

T

T

TT

T

T

T T

T T

C
C

C
C

C

FE FE

Figure 1.3.

to another. Thedata link controlprotocol constructs frames from the data stream, detecting and
recovering from transmission errors. This level 2 protocol is called SDLC (Synchronous Data
Link Control) which we will look at later. Thepath controlprotocol performs the path-selection
and congestion control functions within the subnet. Thetransmission controlprotocol initiates,
recovers and terminates transport connections (called sessions) in SNA. It also controls the flow
of data to and from other NAUs.

The SNA and ISO models do not correspond closely. However, a rough comparison of the
architecture control levels is shown in Figure 1.6.

1.3.2. DECNET’s DNA (Digital Network Architecture)

A DECNET is just a collection of computers (nodes) whose functions include running user
programs, performing packet switching or both. The architecture of DECNET is called Digital
Network Architecture (DNA).

DNA has five layers. The physical layer, data link control layer, transport layer and network
services layer correspond to the lowest four OSI layers.DNA does not have a session layer (layer

6 Chapter 1. Network Architecture

Application

Functional

Transmission

Application

Functional

Transmission

B

B

A A A

B

B

B: Adjacent layer communication

A: Peer layer communication

Figure 1.4.

Transmission

Path

Data Link

Physical Link

Control

Control

Control

ControlControl

Control

Control

Control

Physical Link

Data Link

Path

Transmission Req./Response header

Transmission header

Data link control header and trailer

Data bit stream

Figure 1.5.

5) and its application layer corresponds to a mixture of the presentation and application layers
in OSI; see Figure 1.6. Notice that DNA’s level 3 is called the transport layer, not level 4 as in the

1.3. Examples of Network Architectures 7

Layer OSI SNA DECNET

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Transport

Data Link Data Link

Physical Physical

End User

NAU services

Data Flow Control

Transmission Control

Path Control

(none)

Network Service

Figure 1.6. Comparison of architecture control levels

OSI model.

Chapter 2. The Data Link Layer

2.1. Introduction

In this section we will study the design of layer 2, the data link layer (also known as the physical
link control layer).

The purpose of the data link layer is to transfer blocks of data without error between two
adjacent devices. Adjacent devicesarephysicallyconnected bya communicationchannelsuch as
telephone lines,coaxial cables,optical fibres,or satellites. The implication of such a physical link
is that the data bits are delivered in exactly the same order in which they are sent. The physical
link has no inherent storage capacity, therefore the delay involved is the propagation delay over
the link.

Transmission of data over the link would be very simple indeed if no error ever occurred.
Unfortunately, this is not so in a real physical link for a number of reasons:

• Natural phenomena such as noises and interference are introduced into the link causing
errors in detecting the data.

• There is a propagation delay in the link.

• There is a finite data processing time required by the transmitting and receiving stations.

A data link protocol thus has to be designed to ensure an error-free transmission and also to
achieve an efficiency of the data transfer as high as possible.

2.2. Simplified Model

At layer 2, user’s messages are already broken up into segments. Control information (headers
and trailers) is added to each segment to make up a frame. We are concerned only with the
transmission of frames between two adjacent IMPs. For this reason the simplified model of
Figure 2.2 will be sufficient for our study.

2.3. Functions and requirements of the Data Link Protocols

The basic function of the layer is to transmit frames over a physical communication link.
Transmission may behalf duplexor full duplex.To ensure that frames are delivered free of errors
to the destination station (IMP) a number of requirementsare placed on a data link protocol. The
protocol (control mechanism) should be capable of performing:

1. The identification of a frame (i.e. recognise the first and last bits of a frame).

8

2.3. Functions and requirements of the Data Link Protocols 9

Layer 4 protocol

To Layer 5From Layer 5

Host B

Host IMP line
makes errors

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

IMP BIMP A

Intermediate

IMP

Host A

Figure 2.1. Layer 2, 3, and 4 protocols in the general case

IMP B
Layer 2 - IMPs exchange frames

IMP A
is perfect

Host IMP line

Host B
Layer 4 - Hosts exchange messages

Host A

Figure 2.2. Simplified model used in this section

2. The transmission of frames of any length up to a given maximum. Any bit pattern is
permitted in a frame.

3. The detection of transmission errors.

4. The retransmission of frames which were damaged by errors.

5. The assurance that no frames were lost.

6. In a multidrop configuration

10 Chapter 2. The Data Link Layer

(i) Some addressing mechanism must be used to direct the frames.

(ii) Some mechanism must be used for preventing conflicts caused by simultaneous
transmission by many stations.

7. The detection of failure or abnormal situations for control and monitoring purposes.

It should be noted that as far as layer 2 is concerned a host message is pure data, every single bit
of which is to be delivered to the other host. The frame header pertains to layer 2 and is never
given to the host.

We will first look at three elementary data link protocols of increasing complexity.

2.4. Elementary Data Link Protocols

2.4.1. An unrestricted simplex protocol

In order to appreciate the step by step development of efficient and complex protocols such as
SDLC, HDLC etc., we will begin with a simple but unrealistic protocol. In this protocol:

• Data are transmitted in one direction only

• The transmitting (Tx) and receiving (Rx) hosts are always ready

• Processing time can be ignored

• Infinite buffer space is available

• No errors occur; i.e. no damaged frames and no lost frames.

The protocol consists of two procedures, a sender and receiver as depicted below:

/* protocol 1 */

Sender()
{

forever
{

from_host(buffer);
S.info = buffer;
sendf(S);

}
}

Receiver()
{

forever

2.4. Elementary Data Link Protocols 11

{
wait(event);
getf(R);
to_host(R.info);

}
}

2.4.2. A simplex stop-and-wait protocol

In this protocol we assume that

• Data are transmitted in one direction only

• No errors occur

• The receiver can only process the received information at a finite rate

These assumptions imply that the transmitter cannot send frames at a rate faster than the receiver
can process them.

The problem here is how to prevent the sender from flooding the receiver.

A general solution to this problem is to have the receiver provide some sort of feedback to the
sender. The process could be as follows: The receiver send an acknowledge frame back to the
sender telling the sender that the last received frame has been processed and passed to the host;
permission to send the next frame is granted. The sender, after having sent a frame,must wait for
the acknowledge frame from the receiver before sending another frame. This protocol is known
asstop-and-wait.

The protocol is as follows:

/* protocol 2 */

Sender()
{

forever
{

from_host(buffer);
S.info = buffer;
sendf(S);
wait(event);

}
}

Receiver()
{

forever
{

wait(event);

12 Chapter 2. The Data Link Layer

getf(R);
to_host(R.info);
sendf(S);

}
}

2.4.3. A simplex protocol for a noisy channel

In this protocol the unreal “error free”assumption in protocol 2 is dropped. Frames may be either
damaged or lost completely. We assume that transmission errors in the frame are detected by the
hardware checksum.

One suggestion is that the sender would send a frame, the receiver would send an ACK frame
only if the frame is received correctly. If the frame is in error the receiver simply ignores it; the
transmitter would time out and would retransmit it.

One fatal flaw with the above scheme is that if the ACK frame is lost or damaged, duplicate
frames are accepted at the receiver without the receiver knowing it.

Imagine a situation where the receiver has just sent an ACK frame back to the sender saying that
it correctly received and already passed a frame to its host. However, the ACK frame gets lost
completely, the sender timesout and retransmits the frame. There is no way for the receiver to tell
whether this frame is a retransmitted frame or a new frame, so the receiver accepts this duplicate
happily and transfers it to the host. The protocol thus fails in this aspect.

To overcome this problem it is required that the receiver be able to distinguish a frame that it is
seeing for the first time from a retransmission. One way to achieve this is to have the sender put
a sequence number in the header of each frame it sends.The receiver then can check the sequence
number of each arriving frame to see if it is a new frame or a duplicate to be discarded.

The receiver needs to distinguish only 2 possibilities: a new frame or a duplicate;a 1-bit sequence
number is sufficient.At any instant the receiver expectsa particular sequence number.Any wrong
sequence numbered framearrivingat the receiver is rejected asa duplicate. A correctlynumbered
frame arriving at the receiver is accepted, passed to the host, and the expected sequence number
is incremented by 1 (modulo 2).

The protocol is depicted below:

/* protocol 3 */

Sender()
{

NFTS = 0; /* NFTS = Next Frame To Send */
from_host(buffer);
forever
{

S.seq = NFTS;
S.info = buffer;
sendf(S);
start_timer(S.seq);
wait(event);

2.4. Elementary Data Link Protocols 13

if(event == frame_arrival)
{

from_host(buffer);
++NFTS;

}
}

}

Receiver()
{

FE = 0; /* FE = Frame Expected */
forever
{

wait(event);
if(event == frame_arrival)
{

getf(R);
if(R.seq == FE)
{

to_host(R.info);
++FE;

}
sendf(S); /* ACK */

}
}

}

This protocol can handle lost frames by timing out. The timeout interval has to be long enough
to prevent premature timeouts which could cause a “deadlock” situation.

2.5. Sliding Window Protocols

2.5.1. Piggybacking technique

In most practical situations there is a need for transmitting data in both directions (i.e. between
2 computers). A full duplex circuit is required for the operation.

If protocol 2 or 3 is used in these situations the data frames and ACK (control) frames in the
reverse direction have to be interleaved. This method is acceptable but not efficient. An efficient
method is to absorb the ACK frame into the header of the data frame going in the same direction.
This technique is known aspiggybacking.

When a data frame arrives at an IMP (receiver or station), instead of immediately sending a
separate ACK frame, the IMP restrains itself and waits until the host passes it the next message.
The acknowledgement is then attached to the outgoing data frame using the ACK field in the
frame header. In effect, the acknowledgement gets a free ride in the next outgoing data frame.

This technique makes better use of the channel bandwidth. The ACK field costs only a few bits,

14 Chapter 2. The Data Link Layer

whereas a separate frame would need a header, the acknowledgement, and a checksum.

An issue arising here is the time period that the IMP waits for a message onto which to piggyback
the ACK. Obviously the IMP cannot wait forever and there is no way to tell exactly when the
next message is available. For these reasons the waiting period is usually a fixed period. If a
new host packet arrives quickly the acknowledgement is piggybacked onto it; otherwise, the
IMP just sends a separate ACK frame.

2.5.2. Sliding window

When one host sends traffic to another it is desirable that the traffic should arrive in the same
sequenceas that in which it is dispatched. It is also desirable that a data link should deliver
frames in the order sent.

A flexible concept of sequencing is referred to as thesliding windowconcept and the next three
protocols are all sliding window protocols.

In all sliding window protocols, each outgoing frame contains a sequence numberNS ranging
from 0 to n2 − 1 (wheren is the number of bits reserved for the sequence number field).

At any instant of time the sender maintainsa list of consecutive sequence numberscorresponding
to framesit ispermitted tosend.These framesare said to fallwithin thesendingwindow.Similarly,
the receiver maintains areceiving windowcorresponding to frames it is permitted to accept.

Figure 2.3 illustrates the window concept.

The size of the window relates to the available buffers of a receiving or sending node at which
frames may be arranged into sequence.

At the receiving node, any frame falling outside the window is discarded. Frames falling within
the receiving window are accepted and arranged into sequence. Once sequenced, the frames at
the left of the window are delivered to the host and an acknowledgement of the delivered frames
is transmitted to their sender. The window is then rotated to the position where the left edge
corresponds to the next expected frame,Nr.

Whenever a new frame arrives from the host, it is given the next highest sequence number, and
the upper edge of the sending window is advanced by one. The sequence numbers within the
sender’s window represent frames sent but as yet not acknowledged.When an acknowledgement
comes in, it gives the position of the receiving left window edge which indicates what frame the
receiver expects to receive next. The sender then rotates its window to this position, thus making
buffers available for continuous transmission.

Figure 2.4 shows an example with a maximum window size of 1.

2.5.3. A one bit sliding window protocol: protocol 4

The sliding window protocol with a maximum window size 1uses stop-and-wait since the sender
transmits a frame and waits for its acknowledgement before sending the next one.

/* protocol 4 */

Send_and_receive()
{

2.5. Sliding Window Protocols 15

There are 128 window positions, numbered 0-127

left window edge

window size

127 0 1 2 3

Figure 2.3. 128-position counter with a window size of 5

NFTS = 0;
FE = 0;
from_host(buffer);
S.info = buffer;
S.seq = NFTS;
S.ack = 1-FE;
sendf(S);
start_timer(S.seq);
forever
{

wait(event);
if(event == frame_arrival)
{

getf(R);
if(R.seq == FE)
{

to_host(R.info);
++FE;

}
if(R.ack == NFTS)
{

from_host(buffer);
++NFTS;

}

16 Chapter 2. The Data Link Layer

(a) Initial

0

1

2

34

5

6

7 7

6

5

4 3

2

1

0

7

6

5

4 3

2

1

07

6

5

4 3

2

1

0

0

1

2

34

5

6

7 7

6

5

4 3

2

1

0

6

5

4 3

2

1 1

2

34

5

6

7 0 07

has been sent

has been received

After the first frame(b)

has been received
After the first frame(c)

(d) After the first acknowledgement

SENDER RECEIVER

Figure 2.4. A sliding window of size 1, with a 3-bit sequence number

}
S.info = buffer;
S.seq = NFTS;
S.ack = 1-FE;
sendf(S);
start_timer(S.seq);

}
}

2.5.4. Pipelining

In many situations the long round-trip time can have important implications for the efficiency of
the bandwidth utilisation.

As an example, consider a satellite channel with a 500ms round-trip propagation delay. At
time t −− 0 the sender starts sending the first frame. Not until at leastt ≥ 500 ms has the
acknowledgement arrived back at the sender. This means that the sender was blocked most of
the time causing a reduction in efficiency.

2.5. Sliding Window Protocols 17

As another example, if the link is operated in a two-way alternating mode (half-duplex), the line
might have to be “turned around” for each frame in order to receive an acknowledgement. This
acknowledgement delay could severely impact the effective data transfer rate.

The effects of these problems can be overcome by allowing the sender to transmit multiple
contiguous frames (say up tow frames) before it receives an acknowledgement. This technique
is known aspipelining.

In the satellite example, with a channel capacity of 50kbps and 1000-bit frames, by the time
the sender has finished sending 26 frames,t −− 520 ms, the acknowledgement for frame 0
will have just arrived, allowing the sender to continue sending frames. At all times, 25 or 26
unacknowledged frames will be outstanding, and the sender’s window size needs to be at least
26.

Pipelining frames over an unreliable communication channel raises some serious issues. What
happens if a frame in the middle of a long stream is damaged or lost? What should the receiver
do with all the correct frames following the bad one?

The are two basicAutomatic Request for Repeat (ARQ)methods for dealing with errors in the
presence of pipelining.

One method, the normal mode of ARQ is calledGo-back-N. If the receiver detects any error
in frame N, it signals the sender and then discards any subsequent frame (Figure 2.5). The
sender, which may currently be sending frameN + X when the error signal is detected, initiates
retransmission of frameN and all subsequent frames (Figure 2.6).

The other method is calledselective reject. In this method the receiver storesall the correct frames
following the bad one. When the sender finally notices what was wrong, it just retransmits the
one bad frame, not all its successors. This case is shown in Figure 2.7.

2.5.5. Protocol 5: Pipelining, Multiple outstanding frames

In this protocol, the sender may transmit up toMaxSeqframes without waiting for an
acknowledgement. In addition, unlike the previous protocols, the host is not assumed to have a
new message all the time. Instead, the host causeshost readyevents when there is a message to
send.

This protocol employs the Go-back-N technique. In the example below, the window size of the
receiver is equal to 1, and a maximum ofMaxSeqframes may be outstanding at any instant.

/* protocol 5 */

send_data(frame_number)
{

S.info = buffer[frame_number];
S.seq = frame_number;
S.ack = (FE+MaxSeq) % (MaxSeq+1);
sendf(S);
start_timer(frame_number);

}
send_receive()
{

18 Chapter 2. The Data Link Layer

Selective reject N(b)Next to receive = N(a)

(b) selective reject N

(a) go-back-N or

Detect error in N; action:

Receive N-1 ok, pass to user

N+X

N+2

N+1

N

N-1

RECEIVERSENDER

request for transmission either

Figure 2.5. Transmit sequence

N+X

N+2

N+1

N

subsequent frames

Await N and all

Discard all frames >= N

Next to receive = N

RECEIVERSENDER

Figure 2.6. Go-back-N

to host

frames in hold queue

Pass N then subsequent

Await N

frames in hold queue

Place all subsequent correct

N

Next to receive = N

RECEIVERSENDER

Figure 2.7. Selective reject N

enable_host();
NFTS = 0;

2.5. Sliding Window Protocols 19

Ack_expected = 0;
Frame_expected = 0;
nbuffered = 0;
forever
{

wait(event);
switch(event)
{
case host_ready:

from_host(buffer[NFTS]);
++nbuffered;
send_data(NFTS);
++NFTS;
break;

case frame_arrival:
getf(R);
if(R.seq == Frame_expected)
{

to_host(R.info);
++Frame_expected;

}
if((Ack_expected <= R.ack && R.ack < NFTS)
||(NFTS < Ack_expected && Ack_expected <= R.ack)
||(R.ack < NFTS &&NFTS < Ack_expected))

{
–nbuffered;
stop_timer(Ack_expected);
++Ack_expected;

}
break;

case checksum_error:
/* just ignore the bad frame */
break;

case timeout:
NFTS = Ack_expected;
i = 0;
do
{

send_data(NFTS);
++NFTS;
++i;

} while(i<=nbuffered);
break;

}
if(nbuffered < MaxSeq)

enable_host();

20 Chapter 2. The Data Link Layer

else
disable_host();

}
}

2.5.6. Protocol 6

This protocol employs the selective reject technique. The protocol does not discard good frames
because an earlier frame was damaged or lost provided that these good frames fall within the
receiving window.

Associated with each outstanding frame is a timer. When the timer goes off, (or when the
transmitter is notified of any error), only that one frame is retransmitted, not all the outstanding
frames, as in protocol 5.

In this protocol, the receiver’s window size is fixed, the maximum of which is

(
MaxSeq+ 1

92
).

The maximum number is thus chosen to ensure that there will not be an overlapping between
the new window and the previous window. The overlapping of windows means that the receiver
would not be able to differentiate between a new frame and a retransmitted frame.

The receiver has a buffer reserved for each sequence number within its window. Whenever a
frame arrives, its sequence number is checked to see if it falls within the receiver’s window. If so,
and if it has not already been received, it is accepted and stored regardless of whether or not it
is the next frame expected by the host. Frames passed to the host must always be in order.

Protocol 6 is more efficient than protocol 5 in that:

• Protocol 6 employs an auxiliary timer to prevent delay in piggybacking. If no reverse traffic
has presented itself before the timer goes off, a separate acknowledgement is sent.

• Whenever the receiver has reason to suspect that an error has occurred it sends a negative
acknowledgement (NAK) frame back to the sender. Such a frame is a request for
retransmission of the frame specified in the NAK.

2.6. High-level Data Link Control Procedures: HDLC, SDLC

2.6.1. Introduction

In this subsection we describe the International Standards Organisation data link protocol HDLC
(High-level Data Link Control). CCITT Recommendation X.25 level 2 is one of the permissible
options of HDLC. All these bit-oriented protocols grew out from the original IBM SDLC
(Synchronous Data Link Control). All these protocols are based on the same protocols. They
differ only in minor ways (see the appropriate protocol definition).

HDLC is a discipline for the management of information transfer over a data communication
channel.

2.6. High-level Data Link Control Procedures: HDLC,SDLC 21

HDLC has a basic structure that governs the function and the use of control procedures.The basic
structure includes:

• The definitions of primary and secondary station responsibilities.

• The design of information grouping for control and checking.

• The design of the format for transfer of information and control data.

2.6.2. Primary and secondary stations

A data link involves two or more participating stations. For control purposes one station on the
link is designated aprimary station, the others aresecondarystations. The primary station is
responsible for the organisation of data flow and for the link level error recovery procedures.

A frame sent from a primarystation is referred to asacommandframe. A frame from a secondary
to a primary is referred to as aresponseframe. Normally when a command is sent, a response or
a string of responses is expected in reply (see Figure 2.8).

On a point-to-point link either station could be the primary.On multidrop links and where polling
is employed, the station which polls the other is the primary. A station may have several links
connected to it. In some configurations it may be assigned as a primary for some links and a
secondary for others (Figure 2.9). The station assignments are normally made when a system is
designed.

2.6.3. Frame structure

In HDLC the input data string to be transmitted over the link is broken up intodata frames
which are then transmitted sequentially. The input data string could be command, response or
information. Each frame conforms to the format of Figure 2.10.

All frames start and end with the flag byte01111110. There is a 3-byte header at the start of the
frame and a 3-byte trailer at the end. Between the header and the trailer any number of bits can
be carried (bit-oriented).

The header

byte 1 - Flag (01111110):

A frame is identified by this beginning flag F and contains only non-F bit patterns.
HDLC uses bit-stuffing to achieve data transparency. Whenever the transmitting hardware
encounters five consecutive ones in the data, it automatically stuffs a zero bit into the
outgoing bit stream. When the receiver sees five consecutive incoming one bits followed
by a zero bit, it automatically deletes the zero bit. If the user data contained the flag pattern
01111110, it would be transmitted as011111010 but stored in the receiver’s memory as
01111110. Thus the pattern F can never occur by chance.

byte 2 - Address:

In command frames, the address identifies the station(s) for which the command is intended.

22 Chapter 2. The Data Link Layer

(b)

(sink)(source)

Secondary

(a)

ACK

Select/Information
Primary

Primary
Poll/ACK

Information

Secondary
(sink) (source)

Figure 2.8.

Primary

A

Secondary

B

Primary

Secondary

C

Figure 2.9.

In response frames, the address identifies the station from which the response originated.
However, the address could also be abroadcastaddress so that a single frame is received
by all stations on the link, or it could be the address of a group of stations.

byte 3 - Control:

The control field contains information for controlling the link, which we will examine
later.

The trailer

bytes 1 and 2 - Frame Check Sequence:

2.6. High-level Data Link Control Procedures: HDLC,SDLC 23

ze
ro

 in
se

rt
io

n
Sp

an
 o

f
C

R
C

 a
nd

Flag

FCS

Information

Control

Address

Flag01111110

Fr
am

e

Figure 2.10. The HDLC frame format

The FCS field contains a 16-bit Cyclic Redundancy Check (CRC) error detecting code.

byte 3 - Flag:

This flag indicates the end of the frame. When this flag is detected the receiver examines the
preceding two bytes and executes its error detection algorithm.

A flag may be followed by a frame, by another flag, or by an idle condition.

2.6.4. Data link channel states

Active channel state:

A channel is in an ACTIVE state when the primaryor a secondary isactively transmittinga frame,
a single abort sequence or interframe time fill. In this state the right to continue transmission is
reserved.

Abort:

A station can abort a frame by transmitting at least seven contiguous ones. The receiving station
will ignore the frame.

Interframe time fill:

In this state continuous flag bytes are sent between frames. (See figure 2.11).

Idle channel state:

A channel is defined to be in an IDLE state when the transmission of 15 or more contiguous one
bits is detected. In this state a primary must repoll a secondary before transmitting an I-frame to
it.

24 Chapter 2. The Data Link Layer

0111111001111110011111100111111000001010

end of frame address byte
of a new frame

Figure 2.11. Interframe time fill

2.6.5. Types of frames

There are three kinds of frames:

I-frame: Information frame: This type of frame carries user’s data.

S-frame: Supervisory frame: This is used for supervisory control functions such as
acknowledgements, requesting transmission and requesting a temporary suspension of
transmission.

U-frame: Unnumbered frame or Unsequenced frame: This is used to provide additional link
control functions.

The contents of the control field for these three types are shown in Figure 2.12.

Before discussing in detail the functional aspects of these frames we will look at the modes of
operation.

2.6.6. Modes of operation

For a secondary station two operational modes are defined: Normal response mode and
Asynchronous response mode.

Normal response mode

In this mode a secondary station can transmit only in response to a command frame from the
primary station. The response transmission may consist of one or more frames, the last of which
must be explicitly indicated (using the Poll/Final bit). The secondary then cannot transmit again
until it receives another command to do so.

Asynchronous response mode

In this mode the secondary station may initiate transmission of a frame or group of frames
without receiving explicit permission from the primary. The frames may contain data or control
information. The secondary station is responsible for time-out and retransmission if necessary.

ARM is necessary for the control of loops of stations or multi-drop lines with hub polling. In
these configurations a secondary may receive a “go-ahead” message from another secondary and
transmit in response to it.

Unfortunately, the above two modes areunbalancedmodes in which one end of the link is the
master and the other end is the slave. To make the protocol more suitable when the two stations
are equals (e.g. the nodes of mesh structured computer networks),HDLC has an additional mode:
Asynchronous Balanced Mode (ABM).

2.6. High-level Data Link Control Procedures: HDLC,SDLC 25

N(R) P/F N(S) 0

Transmitted first

I-frame

N(R) P/F * 0 1 S-frame

** P/F ** 1 1 U-frame

Figure 2.12. Control field of I, S and U frames

Asynchronous balanced mode (or simply Balanced mode)

In this mode the stations have identical protocols.They both can initiate transmission at any time.
They can send both commands and responses.

The three modes of operation are illustrated in Figures 2.13, 2.14 and 2.15.

2.6.7. Commands and responses

In this section we will describe the various information, supervisory and unnumbered frames.
These types of frame are distinguished by their 8-bit control fields. Within each type, the frames
are differentiated by the ways the bits in the C-field are configured. We will look closely at
the C-field configurations, their associated functions and frames. When one of the frames is
received by a secondary station, it is a command; when it is received by a primary station, it is a
response.

I-frames

The format of an I-frame is shown in Figure 2.16.

The I-frames are identified by the first bit sent of the control field. This bit is a 0.

The next three bits provide counts for numbering the frame being sent. It is called thesend
sequence number(N(S)).

The next bit is the Poll/Final bit. It is the send/receive control. A P bit is sent to a secondary
station to authorise transmission. An F bit is sent by a secondary station in response to the P bit.
Normally, only one P bit is outstanding on the data link.

The next three bits provide counts for numbering the frame expected to be received next. It is a
piggybacked acknowledgement, and is called thereceive sequence number(N(R)).

S-frames

26 Chapter 2. The Data Link Layer

Select/Inf Command

Acknowledgement

Poll command

inf

ACK

Figure 2.13. Normal response mode

Response

Command

Figure 2.14. Asynchronous response mode

Command

Response

Command

Response

Figure 2.15. Asynchronous balanced mode

The format of an S-frame is shown in Figure 2.17.

The S-frames are identified by the first two bits sent of the control field. These are 10.

The next two bits are used for coding the commands and responses (see Figure 2.17).

The Poll/final bit is as in the I-frame.

2.6. High-level Data Link Control Procedures: HDLC,SDLC 27

01111110

0

0 1 1 1 1 1 1 0

Flag

Address

Control

Information

FCS

Flag

N(R) P/F N(S)

Figure 2.16. The HDLC I-frame format

1 0

Flag

FCS

01111110

111110 Flag

Address

ControlN(R) P/F 10S

S = 00: RR Receive Ready (command or response)
S = 01: REJ Reject (command or response)
S = 10: RNR Receive not ready (command or response)
S = 11: SREJ Selective reject (command or response)

Figure 2.17. The HDLC S-frame format

The next three bits form N(R),which indicates that all I-framesnumbered up to N(R)-1have been
correctly received and the receiver is expecting the I-frame numbered N(R).

The S-frame does not contain an information field. Consequently it does not have N(S) and it is
normally a six byte frame.

The four types of S-frame are described below:

(i) Receive Ready (RR)

28 Chapter 2. The Data Link Layer

An RR frame confirms receipt of frames numbered up to N(R)-1 and indicates that it is
ready to receive frame number N(R). An RR frame with the poll bit set to 1may be used by
a primary station to poll a secondary station.

(ii) Reject (REJ)

An REJ frame is used by the primary or secondary station to request retransmission of
information frame number N(R) and those that follow it. It implies that I-frames numbered
N(R)-1and below have been correctly received.

Only one reject condition may be established at any given time for a given direction of
transmission over the link. The REJ condition is cleared by receipt of an I-frame with an
N(S) equal to the N(R) of the REJ command/response frame.

(iii) Receive Not Ready (RNR)

An RNR frame indicates a temporary busy condition. The station which sends the RNR
frame acknowledges I frames up to N(R)-1, expects I-frame number N(R), and indicates
that it cannot accept any more I-frames. This busy condition is cleared upon the receipt of
any other S-frame and of certain types of U-frame.

(iv) Selective Reject (SREJ)

An SREJ frame is used by the primary or secondary to request retransmission of thesingle
I-frame numbered N(R). All frames up to N(R)-1have been received correctly but N(R) has
not. Once SREJ has been transmitted, the only I-frames accepted are the frame N(R) and
those that follow it.

Figure 2.18 shows an example of retransmissions following a timeout after a packet was received
incorrectly.

U-frames

The U-frames are identified by the first two bits sent of the control field. These bits are 11. The
P/F bit is used as before. The other five modifier bits are available to encode up to 32 types of
U-frame. However, not all 32 combinations are used yet. A U-frame has no sequence numbers.
U-frames are used to provide additional link control functions such as

• commands which can initialise a station, change transmission modes, and disconnect a
station;

• provide a mechanism for rejecting invalid commands or dealing with some special error
conditions.

The control field of the U-frame is shown in Figure 2.19.

The SNRM command allows a station that has just come back on line to announce its presence.
The secondary station confirms acceptance of SNRM by transmitting a single UA response
frame with the F bit set to one.The secondary station forces all the sequence numbers to zero.The
SNRM contains no information field. The SARM and SABM commands function similarly.

The DISC command terminates an operational mode previously set by a command and places

2.6. High-level Data Link Control Procedures: HDLC,SDLC 29

Error

DDDDE 109287654310

121110965432876543210

A
ck

 8

A
ck

 1

Buffered by IMP

A
ck

 0

Time

Timeout interval

Timeout interval

Timeout interval

Messages 2-8 passed to host

Figure 2.18.

Set normal response mode
SARM Set asynchronous response mode
DISC Disconnect
SABM Set asynchronous balanced mode

Some typical responses:

UA
CMDR Command reject

Unnumbered acknowledge

Some typical commands:

11MMP/FMMM

SNRM

Figure 2.19. U-frame

the receiving secondary station effectively off line. The expected response is a UA frame. DISC
contains no information field.

The Unnumbered Acknowledge (UA) frame is used by the secondary station to acknowledge
the receipt and acceptance of U-frame commands from the primary. The UA frame contains no
information field.

The CMDR response isused by a secondarystation when it receivesa non-valid frame.A received
frame may be non-valid for several reasons:

(i) the command is not implemented at the receiving station;

(ii) the I-field is too long to fit into the receiving station’s buffers; or

(iii) The N(R) received is incongruous with the N(S) that was sent to it.

30 Chapter 2. The Data Link Layer

The Command Reject frame has an information field that contains details of why the command
was rejected.

2.6.8. Information Exchange

In this section we will describe how information exchange between stations takes place using
HDLC protocols. We will also describe methods employed for error recovery in some typical
abnormal error conditions (not all possible situations).

Set-up

If a secondary station is off-line, the primary station must first send a command (e.g. SNRM)
to the secondary station to set it up in some operational mode (e.g. NRM). The secondary station
confirms the acceptance of the command by setting its N(R) and N(S) to zero and returns an
unnumbered acknowledge (UA)frame to the primary.Both stationsare then ready for information
exchange. This procedure is indicated diagrammatically in Figure 2.20.

Polling

Havingagreed upon the operationalmode,both stationscan now exchange information.However,
if the mode is normal response mode then

• the primary can send data or command frames to the secondary station at any time, but

• the secondary station can only transmit if it is permitted to do so, i.e. if it receives a frame
with the poll bit set to one.

An example is given in Figure 2.21.

Normal Response

When a station receivesenough data to build up a frame together with the addressof the receiving
station it will first compute the Frame Check Sequence (FCS). It will then start transmission by
generating a flag, serialise the address bits, the control bits and data bits, followed by the FCS
and the final flag.

The receiving station constantly monitors the line and searches for a flag. When a flag is detected
the receiver knows that a frame is on its way, and checks the address byte received to see whether
the frame is destined for it or not. If it is, the receiver then continues to receive all the bits of
the frame until another flag is seen. The receiver then computes the FCS and compares it with
that received. If the frame is correctly and properly received, the receiving station will send an
acknowledgement (ACK) message to the sender at the earliest opportunity. The ACK message
could be a separate message or it could be piggybacked on an I-frame travelling to the original
sender.

Error control

Error control is achieved at this level by the following procedures:

(i) FCS: Data, address and control bits in the frame are CRC coded so that transmission errors
can be detected effectively.

2.6. High-level Data Link Control Procedures: HDLC,SDLC 31

SNRM, P

UA, F

Primary transmit:

Secondary transmit:

Figure 2.20.

SNRM,P

UA,F

SNRM,P

RR2,F

I1,PI0,0 I2,0

(a)

UA,F

RR0,P

I0,0 I1,0 I2,0

RR3,0

(b)

Primary transmits:

Secondary transmits:

Primary transmits:

Secondary transmits:

Figure 2.21.

(ii) N(S) and N(R) are also used for error control. If the received frame whose send sequence
number N(S) does not match the expected frame number N(R) the receiver knows that an
error has occurred, i.e. some frame is missing or the received frame is a duplicate.

(iii) The transmitter can time out and retransmit an unacknowledged frame or the receiver can
request the retransmission of a frame or group of frames.

(iv) The Poll and Final bits could also be used for error control purposes.

Flow control

Flow control is achieved in various ways:

(i) HDLC is a pipelining protocol. The transmitter is allowed to transmit a number of frames
up toNmaxbefore an ACK is received. This is different from the stop-and-wait procedure in
which every frame must be acknowledged before the next frame isallowed to be transmitted.
The pipelining protocol thus

32 Chapter 2. The Data Link Layer

• speeds up the flow of information; i.e. it is more efficient; and

• prevents the receiver from being flooded.

(ii) Go-back-N and selective reject requests by the receiver also improve the flow.

(iii) The supervisory frames Receive Ready and Receive Not Ready are used to regulate the
flow.

Chapter 3. The Network Layer

3.1. Routing Techniques in Computer Communication Networks

3.1.1. Introduction

A computer network consists of computers and communications resources and users. The
resources are there to be shared, and therefore coordination is required among the users for
their efficient and fair use. This coordination is obtained via network protocols, which govern
the access to resources, the establishment of connections and the exchange of data through the
network.

Information data (often in the forms of packets) to be transferred from a source (an entry point
to the network) to a destination (an exit point of the network) generally pass through many
intermediate nodes in the subnet. How the packets are routed within the subnet is the topic of
this section.

The goal of the routing protocol is to provide the best collection of paths between source and
destination,given the traffic requirementsand the network configuration.Best pathusually means
path of minimum average delay through the network, although many other performance criteria
could be considered equally valid.

The routing procedure is part of the layer 3 protocol, which is the layer just above the data
link control layer (which ensures correct transmission and reception of packets between any
neighbouring nodesin a network).

Routing techniques have received a great deal of attention in recent years. They have been
variously classified as deterministic or stochastic, fixed or adaptive, centralised or distributed.
We will look at the classification later.

Regardless of how the routes are chosen for packets, a routing procedure should have
certain desirable properties such as: correctness, simplicity, robustness, stability, fairness and
optionality.

3.1.2. The Routing Problem

We assume that a traffic patternr(i, j) (packets per second) from sourcei to destinationj, i −− 1,
… ,N; j −− 1, …N, whereN is the number of switching nodes, is presented to the network. The
objective of the routing procedure is to transport packets on minimum-delay paths from source
to destination. Under appropriate assumptions, the average delayT of a packet travelling from
source to destination (the average is over time and over all pairs of nodes) is given by

T−− 1
9γ

b∑
i−−1

f i

9Ci− f i

33

34 Chapter 3. The Network Layer

where

N−− number of nodes

b−− number of directed links

r ij
−− average packet rate from source i to destination j (packets/s)

γ −−
N∑

i−−1

N∑
j−−1

r ij
−− total packet arrival rate from external sources

f i
−− total flow on channel i (bits/s)

Ci
−− capacity of channel i (bits/s)

The routing problem can be defined as the problem of finding the best routing policy which
minimises the average delayT. We may formulate the problem as follows:

Given:

Topology

Channel capacitiesCi

Requirement matrixR

Minimise:

T−− 1
9γ

b∑
i−−1

f i

9Ci− f i

Subject to:

(a) f is a multicommodity flow satisfying the requirement matrixR

(b) f ≤ C.

The static (or fixed) versus adaptive classification is vague since all networks provide some
type of adaptivity to accommodate topological changes and to changes in the user traffic

3.1. Routing Techniques in Computer Communication Networks 35

requirement.

If network topology is not subject to changes, and traffic inputs are stationary then the optimal
routing solution to the problem stated above is astatic solutionconsisting of a set of fixed paths
between all node pairs.

In dynamic (or adaptive) routing, ideally every time there is a change in topology and/or traffic
input requirement anoptimum static solutionis computed.However, this process involves a lot of
overhead and is thus time consuming, especially if the changes occur too fast. Often a “recursive
solution” subject to some additional requirements is adopted:

1. At steady state, the adaptive routing must converge to the optimal static routing
corresponding to the existing traffic pattern.

2. In time-varying traffic conditions, the policy must adjust to load fluctuations so as to yield
minimum delay.

3. After failures, the policy must minimise the time to recover to a stable condition.

We will present a number of solution techniques in a later section. In the next section we will
try to classify various routing procedures in such a way that the relative position of a routing
procedure we can pin-point its main characteristics.

3.1.3. Routing Algorithm Classification

Instead of labelling routing algorithms with a string of various terms, we classify them by
associating each routing algorithm with a point in 3-dimensional space as in Figure 3.1.

The x direction shows the place where routing decisions are made, either at the nodes in
distributed (D) fashion or centrally (C).

They direction describes the kind of strategy to be used in the routing algorithm, either invariant
(I, or fixed or static) or adaptive (A). This axis measures the speed with which the algorithm can
change or adapt.

The third dimension describes the kind of information to be used in making routing decisions,
either local (L), i.e. use of only the information locally available at the nodes or global (G)
information.

We will see in various realisable algorithms that where the routing decisions are made is most
important; the strategy and the information available will then very much depend on traffic
patterns, topological changes and the amount of overhead involved.

We will define routing tableand functions of routing proceduresin the next sections before
presenting solution techniques.

3.1.4. Routing Table Representation

A fixed routing procedure is represented by a set of routing tables, one for each node, indicating
how the packets arriving at that node must be routed on the outgoing links, depending on its final
destination.

36 Chapter 3. The Network Layer

by packet

nrc

node

(d)(c)

(b)(a)

Stra
teg

y

Decisions

In
fo

rm
at

io
n

I

A D

G
L

C

I

A D

G
L

C

C

L
G

DA

I

C

L
G

DA

I

by session

ARPA

Figure 3.1.

In adaptive routing procedures the routing tables are updated according to the changes in the
network.

The most general routing table for nodei is anN×Ai matrix (i)p (· , ·), whereN = number of
nodes in the network andAi = number of neighbours of nodei. (i)P (k, j) is the fraction of traffic
directed tok which, upon arrival at nodei, is routed through neighbourj (Figure 3.2).

For adaptive routing procedures, the entries(i)P (k, j) in the table will vary with time.

In general a routing procedure tries to minimise the average delay from source to destination. A
delay table similar to the routing table is made up and the formation of a simple routing table is
as follows (Figure 3.3).

For any given destinationk the minimum entry in the delay table provides the appropriate
outgoing link over which to route messages destined fork. These are shown circled. The
corresponding output lines appear in the routing table of Figure 3.3(c).

3.1. Routing Techniques in Computer Communication Networks 37

...(i)k

iA21

P (k,1) (k,2)P(i) P(i) (k,A i)

P
(i) (k,1)

P
(i)

(k,2)

P (i)
(k,3)

i

1

2

3

k

Figure 3.2. Routing Table (i)P at nodei

3.1.5. Functions of Routing Procedures

If all the parameters of the network are known and not changing then the routing procedure is
quite simple:a routing strategy which optimises the network performance is determined once and
for all; optimised fixed paths between any source and destination are stored at each intermediate
node and packets are forwarded accordingly.

In real networks changes such as line failure and variation in the traffic distribution do occur
and this necessitates some degree of adaptivity. Any adaptive routing procedure must perform a
number of basic functions:

• measurement of network parameters,

• reporting of network parameters,

• route computation and

38 Chapter 3. The Network Layer

12

9

13

9

8

17

7

7

8

4

N

k

3

2

1

12

11

17

10

9

14

15

24

9

9

19

9

13

13

12

16

11

18

17

8

N

k

3

2

1

17874
node

Neighbour

Destination N
ex

t n
od

e

D
es

tin
at

io
n

(c)(b)

(a)

8

17

n

7

4

E
st

. d
el

ay

Figure 3.3. Formation of the routing table

• route implementation.

Measurement of network parameters

The network parameters pertinent to the routing strategy are the network topology, the traffic
pattern, and the delay. Typical parameters consist of states of communication lines, estimated
traffic, link delaysand available resources.In various routing procedures the network information
is distinguished into local, global and partial information. Local information measured by a
node consists of queue lengths, flow on outgoing links and external traffic to the local node.
Global information consists of the full network status collected from all nodes in the network.
Partial information is the status information of the networkas seen by the node; it involves some
exchange information between neighbouring nodes.

Reporting of the network parameters

Network parameter measurements are forwarded to the Network Routing Centre (NRC) in a
centralised system and to various nodes in a distributed system for processing. In the distributed

3.1. Routing Techniques in Computer Communication Networks 39

case two alternatives are possible:

• The local measurements are combined with the information received from neighbours to
update the partial status of the network.

• Global network information is distributed to all nodes.

Route computation

Based on the measured information, routes with minimum cost are assigned to each possible
source-destination pair. Insingle pathrouting policy all traffic for a given source-destination
pair follows the same path. In multipath (or bifurcated) routing policy traffic for a given
source-destination pair might be distributed over several paths.

Route implementation

At each node a routing table is stored. Packet forwarding is done at each node by inspecting
the packet header of each incoming packet, consulting the routing table and placing the packet
on the proper output queue. Virtual circuit and datagram are two forwarding mechanisms often
employed in a real network.

3.1.6. Solution Techniques

Centralised Solution

Consider a network withN nodes andb links. The problem is to minimise the average delayT
of equation (1). We first define the following notation:

f (m)
i
−− the average flow in linki caused by commoditym, i.e. caused by the source-destination

(S-D) pairm.

f i
−−

M∑
m−−1

f (m)
i ,if there areM S-D pairs.

and at each nodel we define

f ij
kl
−−

the flow from nodek into nodel caused by S-D pair (i, j).

ijf lq
−−

the flow out of nodel to nodeq caused by S-D pair (i, j).

Consider a typical nodel. “Message flow conservation”states that the total average flow into node
l due to commoditymmust be equal to the total average flow out of nodel due to commoditym,
i.e. for each commoditym (say S-D pair (i, j))

40 Chapter 3. The Network Layer

N∑
k−−1

f ij
kl−

N∑
q−−1

f ij
lq
−− { − r ij

r ij

0

if l −− i

if l −− j

otherwise

ForM commodities there areM×N such operations.For a full duplex, fully distributed network,
M −− N(N− 1); there are 2N (N− 1) such equations. The object of the routing strategy is to find
eachf ij

kl in the network, subject to the constraints stated in section 1.2.

Various optimal techniques for solving this multicommodity (MC) flow problem are found in the
literature; however, their direct application to the routing problem proves to be cumbersome and
computationally inefficient.

One iterative technique that has been found very useful is theFlow Deviation (FD) method.

Flow Deviation Method

For a given MC flowf
−
, let us define link length as a function of link flow of the form

li −−
∂T
9∂f i

, i −− 1,2…b.

The FD algorithm is as follows:

Algorithm:

(1) Let nf
−
−− (f 1, f 2,…f b) represent the current (thn iteration)set of link flow, compute the shortest

route flow vector nv− associated with link lengths (l1, l2,…lN) satisfying the MC constraints.

(2) Set

n+1f
−
−− (1−λ) nv− + λ nf ;0 < λ < 1

and find an optimumλ such that (n+1)T(f) is minimised.

(3) If n+1|T(f)− nT(f)|< ε, stop. Otherwise, letn−− n + 1 and go to step (1).

The FD technique provides thetotal flow f i in any link i. To determine the individual commodity
flows in each link, as required for routing assignment, additional bookkeeping must be carried
out.

The individual commodityflow in linki by commoditym, f (m)
i isa by-product of the FDalgorithm.

From thesef (m)
i the routing tables are derived as follows:

(i)P (m, j)−−
f (m)

i,j

9
Ai∑

l−−1
f (m)

i,l

3.1. Routing Techniques in Computer Communication Networks 41

l

f ij

ijf

f ijijf
1l

Source i

Destination j

node 1
node 3

node 5

node k node q

f ij
5l

l3

kl

lq

Figure 3.4.

where (i, j) indicates the directed link fromi to j andAi is the number of neighbours of nodei.

The FD algorithm has been applied to various examples of ARPA-type network. However, other
algorithms have been suggested as well.

Distributed Solution

In this section we show that the optimal solution can also be obtained via a distributed process,
where each node in the network participates in the routing computation. We begin with a simple
shortest path routing problem before considering the minimum-delay routing problem.

Shortest path routing problem

For an arbitrary, connected topology,l(i, j) is defined to be the length of link (i, j). We wish to find
the shortest paths from each node to all destinations.

We assume that at each nodei(i −− 1,…N)

(a) there is anN×Ai matrix (i)DT , called adistance table,whose entry (i)DT (k,n) is the estimated
minimal distance from nodei to destinationk if n is chosen to be the next node in the route
to k;

(b) an N-dimensional minimum distance vector (i)MDV , which represents the minimum
estimated distance fromi to k, is derived as follows:

(i)MDV (k)−−min
n∈Ai

(i)DT (k,n)

42 Chapter 3. The Network Layer

In the distributed shortest path procedure each node periodically updates its distance table by
using the knowledge of the length of its outgoing links and the information received from its
neighbours. During every intervalδ, each node exchanges the vectorMDV with its neighbours.
When nodei receives the vector (n)MDV from its neighbourn, it updates (i)DT as follows:

{ (i)DT (k,n)−− l(i,n) + (n)MDV (k)
(i)DT (k,n)−− 0

;k−−/ i

;k−− i

with

(i)DT (k,n)−−∞ initially; for all k,n

This procedure, repeated for a finite number of steps, leads to a final set of tables(i)DT (k,n),where
all the entries are< inf. The vector (i)MDV (k) calculated from the final tableDT is the shortest
distance fromi to k and the neighbourn ∗ such that

(i)DT (k,n ∗) ≤ (i)DT (k,n)for all n∈ Ai

is the next node on the shortest path fromi to k.

If l(i,j)−− 1 for all the links in the network, the algorithm becomes the well-known minimum-hop
routing algorithm. .uh The minimum delay routing algorithm

The minimum delay routing distributed algorithm is due to Gallager. The link length is defined
to be

l(i, j)−− ∂T
9∂f ij

−−
1

9 2(Cij− f ij)

l(i, j) approximates the incremental delay due to a unit increment of flow on link (i, j). At each
nodei(i −− 1,2,…,N) we assume

(a) There is a matrix (i)IDT (k,n) similar to (i)DT (k,n), called the incremental delay table.

(b) The routing table (i)P (k,n).

(c) The incremental delay vector (i)IDV (k), which represents the incremental delay produced by
injecting a unitary increment ofk-traffic into nodei, is computed as follows:

(i)IDV (k)−−
∑
n∈Ai

(i)P (k,n) (i)IDT (k,n)

3.1. Routing Techniques in Computer Communication Networks 43

Each node periodically exchangesIDVs with its neighbours and the (i)IDT tables are updated as
follows:

(i)IDT (k,n)−− l(i,n) + (n)IDV (k)

The routing tables (i)P are also updated. Lettingn ∗ be the minimiser of (i)IDT (k,n) for n∈ Ai,

(i)P (k,n ∗)−−
(i)P (k,n ∗) + δ′

(i)P (k,n)−−
(i)P (k,n)− δ”forn −−/ n ∗

whereδ′ andδ” are small positive quantities properly selected so as to satisfy the constraint∑
n∈Ai

(i)P (k,n)−− 1

and

(i)P (k,n) > 0

In order to prevent looping during the update process, the updating must start from the destination
node and propagate back to the origins. This procedure is shown to converge to the optimal
solution found by the FD method.

3.2. The Network Layer in X.25

It is believed that packet switching is an appropriate technology for public data networks (PDNs).
It is also recognised that the commercial viability of these networks depends largely on the
development and adoption of standard access protocols. These standards would facilitate the
connection of varying types of data terminal equipment (DTEs) to the various public networks,
as well as facilitate international internetworking.

One of the most important standards for the computer industry is CCITT Recommendation
X.25. X.25 defines the relationship between a user machine (DTE) and the public data network’s
equipment, called Data Circuit terminating Equipment (DCE) as shown in Figure 3.6.

3.2.1. General Description of the X.25 Protocol

The X.25user/network interface consistsof three distinct layersof control procedures,consistent
with the bottom three layers of the OSI model:

Layer 1 The physical layer specifies the plug and wires for establishing a physical

44 Chapter 3. The Network Layer

DTE

DTE

DTE

Computer mainframe

small business

computer

Terminal controller
DCE DCE

DCE
Switching node

X.25

X.25

X.25

Figure 3.5.

circuit for sending data bits between the user machine (DTE) and the
network (DCE). Its functions are to pass data, synchronisation and control
signals between the DTE and the DCE and to handle failure detection and
isolation procedures. The recommended form of this interface to digital
circuits is described in CCITT Recommendation X.21.

Layer 2 The frame layer is essentially the HDLC layer of the control protocol
described previously. In X.25 the control procedures for point-to-point
balanced systems are referred to as balanced link access procedures (LAPB).
This layer defines control procedures and the frame envelope, which is used
to carry a frame of data over the physical link, and ensure that the frame is
not lost or garbled.

Layer 3 The packet layer is the network layer or logical link control layer. This
layer specifies the manner in which control information and user data are
structured into packets. It describes the formats of packets that are used
for setting up and clearing a virtual call, sending data over virtual circuits,
controlling message flow, sequencing, interrupts and recovering from the
various problems that might occur. It also allows a single physical circuit to
support communications to numerous other DTEs concurrently.

Virtual circuit and Datagram service

The X.25 recommendation provides access to the following services that might be provided on
public data networks:

• switched virtual circuits (SVCs) or virtual calls

3.2. The Network Layer in X.25 45

• permanent virtual circuits (PVCs) and

• datagrams.

A virtual circuit (VC) isa bidirectional, transparent,flow-controlledpath between a pair of logical
or physical parts. A switched virtual circuit is a temporary association between two DTEs. Like
a telephone call there are three phases to a virtual call:

(i) call set-up,

(ii) data exchange and

(iii) call clearing.

A permanent virtual circuit is a permanent association existing between two DTEs, which is
analogous to a point-to-point private line. It requires no call set-up or call clearing action by the
DTE.

A datagram is a self-contained entity of data containing sufficient information to be routed to the
destination DTE without the need for a call to be set up (Figure 3.6).

The PAD Interface

Many terminals transmit characters rather than data packets.An interface machine is thus needed
to assemble the terminal’s data into packets and disassemble them for X.25 operation. Most
common carriers provide such an interface machine. A standard for this interface has been
proposed as an extension to the CCITT Recommendation X.25 and is called the PAD (Packet
Assembly/Disassembly) interface. CCITT Recommendations X.3, X.28 and X.29 define the
CCITT PAD interface.X.3defines the PAD parameters;X.28 defines the terminal-PAD interface;
and X.29 defines the PAD-host computer (DTE) interface.

User machines access to the network might assume one of the set-ups in Figure 3.7.

3.2.2. X.25 End-to-end Virtual Circuit Service Characteristics

Establishment and clearing of a virtual circuit

A switched virtual circuit is established when the call request issued by the calling DTE is
accepted by the called DTE. The call request identifies the called and calling addresses and
facilities requested for the call, and may include user data.

If the call is refused by the called DTE, this DTE can signal the reason for call clearing to the
calling DTE in a diagnostic code. If the call attempt fails for some reason, a call progress signal
is transmitted across the network indicating one of the causes specified in X.25.

Once the call hasentered the data transfer phase,either DTE can clear the call using the diagnostic
code to signal to the remote DTE the reason for clearing. If the call is cleared, data may be
discarded by the network since the clear is not sequenced with respect to user data.

Data transfer

In the data transfer phase, user data which are conveyed in DATA and INTERRUPT packets are

46 Chapter 3. The Network Layer

D

D

D

The pointy part is the address.

(c) Datagram conception.

(b) A virtual circuit conception

(a) The communication subnet

C

B

A

A

B

C

C

B

A

Figure 3.6.

passed transparently through the network. Virtual circuit flow control is applied to ensure that
the transmitting DTE does not generate data at a rate that is faster than that which the receiving
DTE can accept.

A considerable debate has taken place on whether the DTE or the network should determine the
maximum number of data packets which may be in the network on a virtual circuit. It has been
agreed that DTE-to-DTE acknowledgment of delivery be available as a standard characteristic

3.2. The Network Layer in X.25 47

X.25

X.25

DTE

DTE

DTE

PAD interface

Figure 3.7.

of X.25 virtual circuits. If a DTE wishes to receive end-to-end acknowledgment for data it is
transmitting across the X.25 interface, it uses an indicator called the delivery confirmation, or D
bit, contained in the header of DATA packets. Later sections will discuss this point further.

There are thus independent mechanisms for transferring user control information between a pair
of DTEs outside the normal flow of data or a virtual circuit. The first mechanism transfers user
control information within the normal flow control and sequencing procedures in a virtual circuit
except that theQ bit in the DATA packet header is set. The second mechanism bypasses the
the normal DATA packet transmission sequence. This mechanism uses an INTERRUPT packet
which may contain one byte of user data. This packet is transmitted as quickly as possible to its

48 Chapter 3. The Network Layer

destination, jumping the queues of normal DATA packets.

Packet Format

X.25 describes the formats of packets that will be passed between a user machine and the DCE
in order to set up and use virtual circuits. The packets have the general format shown in Figure
3.8.

The first four bits of a packet are a general format identifier. A virtual circuit is identified by the
12-bit GroupandChannelnumber. When a user machine initiates a virtual call it selects a free
logical channel from those available to it. This number is passed to the local DCE which then
attempts to set up a virtual call using that logical channel.

There are two types of packets: DATA and CONTROL packets. TheControlbit is set to 1 in all
control packets and to 0 in all data packets.

Figure 3.9 illustrates a CALL REQUEST format,a DATA packet format and various CONTROL
packet formats.

3.2.3. X.25 Packet Level Characteristics

This section discusses the X.25 packet level procedures used by DTEs in establishing,
maintaining and clearing virtual circuits.

Establishing and clearing a virtual circuit

When a DTE attached to an X.25 network wants to initiate a virtual call, it selects a free logical
channel and sends a CALL REQUEST packet to its local DCE.The packet contains the addresses
of the destination and originating devices. The addresses may be followed by a facility field of
variable length.This field is present only when the DTE wishes to request an optional user facility
which must be communicated to the destination DTE. For efficiency, the CALL REQUEST
packet may carry up to 16 bytes of user data. The X.25 protocol is unconcerned with the contents
of the data field.

The calling DTE will receive a CALL CONNECTED packet (same as CALL ACCEPTED) as
a response indicating that the called DTE has accepted the call. The communications between
DTEs is illustrated in Figure 3.10.

If the attempt to set up a call is unsuccessful, the DCE responds to the calling DTE by sending a
CLEAR INDICATION packet which gives the reason why the call request was not successful.

A DTE may decide to disconnect a virtual call at any time. To do this it sends a CLEAR
REQUEST packet to its DCE. The DCE responds when it is ready to clear the channel with
a CLEAR CONFIRMATION packet. Figure 3.11 shows the formats of the packets used for
clearing.

Data transfer

Once a virtual circuit has been set up, DATA packets can be transferred across the logical
channel.

The data field of a DATA packet may be any length up to a maximum of 128 bytes.When a user’s
data is longer than the maximum packet size, the user divides it up into several packets, which
the network delivers in sequence. The third byte of the header contains themore databit (bit M)
which, if set, indicates that more of the same data record follows in a subsequent packet. TheM
bit can only be set on a maximum length packet.

3.2. The Network Layer in X.25 49

user data

and/or

Additional Packet Header

GFI Logical

Channel Number

Control Data C/D

Common

Packet
Header

Packet Format

Frame Format

HDLC flag

HDLC address

HDLC control

HDLC information field

HDLC check sequence

HDLC flag

GFI - General Format Identifier

C/D - 0 for user DATA packet

- 1 for control packet

Figure 3.8.

The data packets contain sequential message numbers for flow control.P(S) is the packet
send sequence number of the packet, usually modulo 8. The maximum number of sequentially
numbered packets that a sender is allowed to send is called the window sizeW. Each data packet
also carries a packet receive sequence number,P(R), which is composed by the receiver when it
is ready to receive another packet; thisnumber is the number of the next packet which the receiver
expects to receive. The sender can send messages numbered up to but not includingP(R) + W.
This window mechanism for regulating the flow of data is the same as the mechanism used by
the HDLC protocol in the data link layer.

If the DTEs are exchanging data, the flow control signals containing the recieve sequence number
can be piggybacked on the returningDATA packets. If not, they must be sent by a separate control
message. A RECEIVE READY packet is used to indicate willingness to receiveW data packets
starting withP(R). On the other hand, a RECEIVE NOT READY packet is returned if the DTE
is not ready to receive further DATA packets.

50 Chapter 3. The Network Layer

Data

additional information
11110001

11111111

11111011

00011111

00011011

PPP01001

PPP00101

PPP00001

00100111

00100011

00010111

00010011

00001111

00001011

Diagnostic

Restart confirmation

Reset confirmation

Restart request

Reset request

Reject

Receive not ready

Receive ready

Interrupt confirmation

Interrupt

Clear confirmation

Clear request

Call accepted

Call request

0SequenceMorePiggyback

GroupModuloDQ

Channel

8 bits

User data

Group

Channel

User data

Facilities

Facilities length00

Called address

Calling address

called address
Length of

calling address
Length of

1Type (00001011)

Channel

Group1000

8 bits

Type 1

0 0 0 1

Type Third byte

PPPMSSS0

(a) Call request format

(b) Control packet format

(c) Data packet format

(d) Type field

(P = piggyback, S = sequence, M = more)

Figure 3.9. X.25 packet formats

The meaning of the piggyback field is determined by the setting of theD bit. If D−− 0, theP(R)
numbered packet has been received by the local DCE, not by the remote DTE. IfD −− 1, the
correspondingP(R) is used to convey an end-to-end delivery confirmation, i.e. that packet has
been successfully received by the remote DTE.

An INTERRUPT packet is employed for user control information rather than data. It may be
transmitted across the DTE/DCE interface even when DATA packets are being flow controlled.
The INTERRUPT packet thus does not contain any sequence number and is confirmed by
an INTERRUPT CONFIRMATION packet. Only one unconfirmed INTERRUPT may be

3.2. The Network Layer in X.25 51

DCE DTE

Clear confirmation

Clear indication

Data

Data

Call accepted

Incoming call

Clear confirmation

Clear request

Data

Data

Call established

Call request

DCEDTE

Figure 3.10. Communication between DTEs in X.25

(b) CLEAR CONFIRMATION packets

XXXXXXXX

XXXXXXXX

(a) CLEAR REQUEST and CLEAR INDICATION packets

(b) 000101110001 XXXX

(a)

cause of clearingtypeVC numberGFI

0001 XXXX 00010011 XXXXXXXX

Figure 3.11.

outstanding at any given time.The protocol used for INTERRUPT packets is thus a stop-and-wait
protocol, although DATA packets may still be transmitted while waiting for the INTERRUPT
CONFIRMATION packet.

3.2.4. Error recovery

Reset

The reset procedure is used to reinitialise the flow control procedure on a given logical channel
when certain types of problem occur on the virtual circuit. Any DATA or INTERRUPT packets
in transit at the time of the reset are discarded. A reset can be initiated either by a user DTE or
by a network DCE.RESET REQUEST and CONFIRMATION packets, illustrated in Figure 3.12,
are used in the reset procedure.

52 Chapter 3. The Network Layer

(b) RESET CONFIRMATION packets

(a) RESET REQUEST and RESET INDICATION packets

XXXXXXXXXXXX0001

GFI VC number type

(a)

XXXX0001(b)

XXXXXXXX

XXXXXXXX

Resetting cause

00011011

00011111

Diagnostic code

XXXXXXXX

Figure 3.12.

Restart

A restart is equivalent to clearing all the virtual calls that a DTE has connected, and resetting
the permanent virtual circuits. The DTE may then attempt to reconnect its calls. The restarting
procedure will bring the user/network interface to the state it was in when service was initiated.

Error Handling

The following principles were established in X.25 to handle packet level errors:

(i) procedural errors during establishment and clearing are reported to the DTE by clearing the
call;

(ii) procedural errors during the data transfer phase are reported to the DCE by resetting the
virtual circuit;

(iii) a diagnostic field is included in the reset packet to provide additional information to the
DTE.

(iv) timers are essential in resolving some deadlock conditions;

(v) error tables define the action of the DCE on receiving various packet types in every state of
the interface;

(vi) A DIAGNOSTIC control packet is provided to allow the network to inform the user of
problems.

3.2.5. A Common X.25 DTE

From a DTE implementation point of view, a common X.25 protocol can be defined, which
consists of the following features:

3.2. The Network Layer in X.25 53

1. an ISO-compatible frame level procedure (i.e. LAPB);

2. use of logical channel number one as the starting point for logical channel assignments;

3. modulo 8 packet level numbering;

4. dynamicP(R) significance by use of the delivery confirmation bit;

5. a standard procedure for selecting packet and window sizes, with defaults of 128 and 2
respectively;

6. two mechanisms for user control of data transfer: qualified DATA and INTERRUPT
packets.

3.2.6. Relationship of X.25 to ISO and CCITT models

The set of commonly agreed standards is collectively known as the Open Systems Architecture
(OSA).

It has been generally agreed within ISO and CCITT that the basic structuring technique in OSA
is layering. Both ISO and CCITT agree on a seven layer architecture as illustrated in Figure 3.13.
A major difference is in the interpretation of the services provided by the network and transport
layers and their relationship to X.25 virtual circuits.

54 Chapter 3. The Network Layer

X
.2

5

X
.25

Figure 3.13.

Chapter 4. Packet Protocols for Broadcast
Satellites

4.1. Communication Satellites

A communication satellite can be thought of as a big repeater in the sky. It contains one or more
transponders, each of which covers some portion of the frequency spectrum. The incoming
signals (uplink transmissions) from ground stations are amplified and then rebroadcast on the
downlink to these same stations (at another frequency to avoid interference with the upward
transmission).

The first satellites had a single spatial beam that covered all ground stations. These stations
share the common satellite channel by adopting conventional time division multiplexing (TDM).
Synchronization of ground-based transmitters was done by terrestrial cables. Each station
received the entire downward transmission, selecting out only those messages destined for it.

Modern satellites are much more sophisticated. Each modern satellite is equipped with
multiple antennas and multiple transponders. Each downward beam can be focussed on a small
geographical area as small as a few hundred kilometresacross,so multiple upward and downward
transmissions can take place simultaneously.

To prevent chaos in the sky the frequency bands from 3.7 to 4.2 GHz and 5.925 to 6.425 GHz
have been internationallydesignated for downward and upward transmissionsrespectively.Other
frequency bands suitable are 12/14 GHz and 20/30 GHz, but the equipment needed to use them
is more expensive.

Example: SPADE system used on Comsat’s Intelsat satellites

Each SPADE transponder is divided into 794 PCM channels, each operating at 64 kbps, plus a
single 128 kbps common signalling channel. The channels are multiplexed using Frequency
Division Multiplexing (FDM).

The common signalling channel is divided into 50 msec time frames, with each frame containing
50 slots of 1msec (128 bits). Each slot is permanently allocated to one of the (not more than) 50
ground stations.

When a ground station has data to send, it picks a currently unused channel at random and writes
the number of the channel in its reserved 128-bit slot. By the time this request arrives back
at the earth and if the selected channel is still unused the requesting station is then allocated
the channel. When the station finishes its transmission it sends a deallocation message on the
common signalling channel. If two or more stations independently request the same channel, the
first request is honoured and the losing stations must try again.

55

56 Chapter 4. Packet Protocols for Broadcast Satellites

4.2. Satellite Packet Broadcasting

There are two ways of using communication satellites in a data network. They can be used as
point-to-point channelsor asbroadcast channels.For point-to-point communication the satellites
are used in exactly the same way terrestrial cables are used. The satellite is just a big cable in
the sky connecting one centre to another. The main advantage of a satellite channel is that it is
cheaper for longdistancesand a high bandwidth can be used,although the use of fibre opticcables
has overcome both of these advantages. The main disadvantages are the 540 msec round-trip
propagation delay and the need for expensive antennas.

It is obviously wasteful to use a satellite merely as a point-to-point channel because the satellite
is inherently a broadcast medium. A satellite can directly interconnect all users within its range.
We will concentrate on the way of using satellites as broadcast channels.

A satellite thus can be considered as a single communication channel that must be shared
efficiently and fairly among a large number of dispersed, uncoordinated users. How to share the
channel is the issue of this chapter. Before describing satellite packet broadcasting in detail, it is
worth mentioning some of the advantages it has over conventional store-and-forward networks
that use terrestrial cables.

(i) The protocols are simpler because acknowledgements might not be needed.

(ii) The routing problem vanishes.

(iii) It is no longer possible for some lines to be badly congested while others are idle.

(iv) The topology optimisation problem is reduced to adjusting the satellite bandwidth.

(v) Mobile users can be easily accommodated.

4.3. Conventional Channel Allocation Protocols

4.3.1. Frequency-division multiplexing (FDM)

The traditional way of using a satellite is FDM. If there areN users, the bandwidth is divided up
into N equal sized portions, each user being assigned one portion. Since each user has his own
private frequency to use, there isno interferencebetween users.FDM is thusa simple and efficient
allocation mechanism when there are only a small and fixed number of ground stations, each of
which hasa steady load of traffic.However,when the number of stations is large and continuously
varying, FDM presents some problems. At any instant if fewer thanN users use the channel a
large portion of the spectrum will be wasted. If more thanN users want to use the channel some
of them cannot be accommodated for lack of bandwidth.

In most computer systems data traffic is extremely bursty. Consequently, FDM is very inefficient
because most of the channel will be idle most of the time.

4.3.2. Fixed Assignment Time Division Multiple Access (TDMA)

In this protocol channel time is administratively assigned to each station according to its

4.3. Conventional Channel Allocation Protocols 57

anticipated traffic requirement. the simplest fixed TDMA scheme is illustrated in figure 4.4.1.1.

The frame timeT is large enough to contain one time slot for each station.The time slots assigned
to each station can be of different durations.

In this protocol all stations constantly monitor the satellite downlink, checking each received
packet to see if it addressed to them. If it is, a station delivers it to its user destination, otherwise
it ignores it. A more detailed view of how channel time is used is given in figure 4.2.

When data packets are short, several of them can be lumped together in a single burst for more
efficient use of the time slot (figure 4.3).

The drawbacks in fixed assignment TDMA are similar to those appearing in FDM:

• fixed assignment does not allow for changes in traffic flow among the stations relative to
that assumed when the system is designed.

• fixed assignment performance tends to become poor as station traffic becomes bursty and
the number of stations becomes large.

Because of these inefficiencies of the traditional data communication methods several
alternative protocols have evolved for packet systems. The next section describes random access
protocols.

4.4. Random-Access Protocols

4.4.1. Pure Aloha

This approach was first employed by Abramson at the University of Hawaii. The basic idea
of an Aloha system is simple: just let the users transmit whenever they have data to be sent. If
no other user is transmitting during this time (and no local noise errors occur at the receiver),
the packet will be received successfully by the destination station. If one or more other users are
transmitting, a collision occurs and the colliding packets will be destroyed. However, due to the
feedback property of packet broadcasting, the sender of a packet can always detect the collision
one round-trip time later. If the packet was destroyed the sender just waits a random amount of
time and sends it again. The waiting time before retransmission must be random to minimise the
probability of further collisions. The described scheme is known ascontention.

Figure 4.4 shows the generation of packets in an Aloha system.

The channel activity is shown in figure 4.5.

4.4.1.1. Performance

Assumek data sources are each transmitting independently at a Poisson rate ofλmessages/sec.
Messages are assumed to be of constant length, eachτ seconds long.

The maximum possible throughput of such a channel, obtained only if one user were allowed to
access the channel and transmit packets continuously with no gaps in the transmission, would be

58 Chapter 4. Packet Protocols for Broadcast Satellites

T T

N 1 2 3 ... N 1 2 3 ... N 1

Figure 4.4.1.1.

τ τ

t t t t
g i+1 g

i i+1

i

Figure 4.2. Slot, burst, guard times

t t

D D D

tg i g

1 2 3

Figure 4.3. Multiple packets per burst

User

A

B

C

D

E

Figure 4.4. Packets are transmitted at completely arbitrary times

1
9τ

packets/sec. This is thus the capacity of the channel,C.

With k users the effective utilisation of the channel is

S−− kλ
9C
−− kλt < 1

The parameterS thus plays the role of the traffic intensity or utilisation parameterρ used
previously. We shall callS the channel throughput, measured in average number of packets
transmitted per packet time.

4.4. Random-Access Protocols 59

��
��
��
��
��

��
��
��
��
���

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

time

a packet

a packet its packet

User 1 sends

User 2 sends User 1 retransmits

both are damaged
at overlapping times so that
Users 1 and 2 send packets

its packet
User 2 retransmits

Figure 4.5.

In the Aloha system there will be more thanSpackets per packet time using the channel because
some packets have to be transmitted more than once due to collisions. Let us assume further that
the total channel traffic, consisting of newly generated packets plus retransmitted packets, obeys
Poisson distribution. That is, the probability thatn packets are generated during a givenp-packet
time is given by

Pp[n]−−
(G np) −Gpe

9n!

A packet will not suffer a collision if no other packets are sent within one packet time of its start,
as shown in figure 4.6.

In other words, there is a time period of duration2/C in which no other packet must originate
if a collision is to be avoided. From the equation above, the probability that no collision occurs
during this 2 packet time is

P2[n−− 0]−−
−2Ge

and the probability that at least one collision will take place is1− −2Ge . The average number of
retransmissions is

R−−G(1− −2ge)

and thus

G−− S+ G(1− −2Ge)

Hence we have

60 Chapter 4. Packet Protocols for Broadcast Satellites

������
������
������
������

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

time

vulnerable

the shaded packet the shaded packet
Collides with the start of Collides with the end of

t t t00 − τ
0+ τ

Figure 4.6. Vulnerable for the shaded packet

S−−G −2Ge

This result was first derived by Abramsom (1970). The throughput-offered traffic relation is
shown in figure 4.7.

Exercise:Show that the maximum throughput occurs atG−− 0.5 with S−− 1
92e
−− 0.184.

Notes:

(a) When variable-length packets are sent, the maximum achievable channel efficiency for the
pure Aloha has been shown [Ferguson] to be somewhat less than1

92e
.

(b) The average channel efficiency can exceed1
92e

when the transmission rates of the stations are
unequal. This result is known as the excess capacity of an Aloha channel [Abramson 1973]
and can give an efficiency approaching 1 in the case of a single user with a high packet rate
and all other users with a low packet rate. However, the delay encountered by the low-rate
users is significantly higher than in the homogenous case.

4.4.2. Slotted Aloha

In 1972, Roberts proposed a method which has come to be known asslotted Aloha. Here the
channel time is divided up into discrete intervals (slots).Each interval corresponds to one packet.
The timing of the slots is determined by a system wide clock.Each transmission control unit must
be synchronised to this clock. With slotted Aloha, a packet is not permitted to be sent whenever
it is generated. Instead it is required to wait for the beginning of the next slot.

Figure 4.8 shows a slotted Aloha channel. packet B and C on this diagram are in collision.

If a given packet is transmitted beginning at timet0, then another packet will collide with it if it
originates between timet0− τ andt0. That is, the vulnerable period is now reduced in half and
this leads to

S−−G −Ge

4.4. Random-Access Protocols 61

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

G
 (

at
te

m
pt

s
pe

r
pa

ck
et

 ti
m

e)

 0.0 0.5 1.0 1.5 2.0

S (throughput per packet time)

Aloha

Slotted Aloha

Figure 4.7.

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

A B and C B’ C’

Figure 4.8. A slotted Aloha channel. Each packet must begin on one of the time slots.

It can be shown that the maximum throughput of a slotted Aloha is1
9e

or 36.8% atG−− 1 (figure
4.7).

4.4.3. Reservation Aloha

While the excess-capacity effect does allow a small number of high-rate stations to use the
channel, it would appear desirable to remove these stations from the random-access competition
for channel time. Reservation Aloha methods were designed to do this while maintaining the
relative simplicity of slotted Aloha. In these methods some slots are reserved for specific
stations.Other stations are restrained from using a reserved slot.These methods differ in the way
reservations are made and released.

4.4.3.1. Binder (1975)

This method is basically TDM modified to slotted Aloha for low channel utilisation. As in TDM
each ofN stations “owns” one slot pre time frame. If there are more slots than stations, the extra
slots are not assigned to anyone. If the owner of a slot does not want it during the current frame,
he leaves it empty. During the next frame, the slot becomes available to anyone who wants it on

62 Chapter 4. Packet Protocols for Broadcast Satellites

a contention basis. If the owner wants to retreive the slot, he transmits a packet, thus forcing a
collision (if there was other traffic).After a collision,everyone except the owner must desist from
using the slot. Figure 4.9 shows the Binder reservation scheme in which a frame has 8 slots, 7 of
which are owned.

One slight inefficiency with this method is that whenever the owner of a slot has nothing to
send, the slot must go idle during the next frame.Also that after each collision, the collidees must
abstain for one frame to see if the owner wants the slot back.

4.4.3.2. Crowther (1973)

This reservation scheme is applicable even when the number of stations is unknown and varying
dynamically. In this method the frame size is equal to or greater than the maximum uplink plus
downlink propagation time,allowing each station to remember the state of a slot’sprevious usage
at the time a new usage of it must begin. Three states are distinguished by each station:

State 1: Empty; the slot was nut successfully used by anyone. During this frame everyone can
compete for it on a contention basis.

State 2: Other; the slot was used by another station. Do not use it.

State 3: Mine; the slot was last used by itself. It is reserved for that station’s exclusive use.

Thus if a station has a long queue of messages, once it successfully uses a slot it is guaranteed
successive use of it until its queue is empty. This is illustrated in figure 4.10.

If traffic is equally distributed among the stations and duty cycles are high, the system behaviour
approaches that of fixed TDMA. If duty cycles are low, it approaches simple slotted Aloha
behaviour [Lam, 1978].

If a significant traffic imbalance exists even for a short period of time, however, it is possible for
a single station to capture the entire channel, creating long delays for other stations. Other issues
concern whether a station should wait for its acquired slots or also use intervening empty slots.
Because of these issues we will consider explicit reservation schemes in the next subsection.

4.5. Explicit Reservation Protocols

The basic approach consists of transmitting a relatively small number of bits to request channel
time for queued messages, which are subsequently sent at the requested time.

4.5.1. Roberts Reservation Scheme

In this scheme, each frame consists ofM equal-sized data slots, followed by a special slot, which
is divided intoV smaller subslots used to make reservations.

If a station wants to send data, it broadcasts a short request packet (using the slotted Aloha
protocol) during one of the reservation subslots. If the reservation is successful (i.e. there is
no collision), then the next data slot (or slots) is reserved. At all times every station monitors
all channel traffic and must keep track of the queue lengthJ, so that when any station makes a

4.5. Explicit Reservation Protocols 63

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

D B E G FCA

A

A

A

A

C

C

C

C

D

A

G

B

B

E

E

E

E

G

G

C

F

F

A

A

A

A

Owner:

Frame 2

Frame 3

Frame 4

Frame 1

Figure 4.9.

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

A

A

A

A

C

A

E F

F

B G E

D EG

G F

DA F

Figure 4.10.

successful reservation it will know how many data slots to skip before transmitting.

When the queue length drops to zero, all slots revert to reservation subslots to speed up the
reservation process. Robert’s reservation system is illustrated in figure 4.11.

4.5.2. Reservation-TDMA

Reservation-TDMA (R-TDMA) uses fixed assignments to make reservation. Channel time is
divided as shown in figure 4.12, withN small reservation slots of durationτ′ andk×N large slots
of durationτ in each frame.

One reservation slot in each frame is preassigned to each of theN stations. Each station is also
preassigned one data slot in each of thek subgroups and is called the “owner” of the slot.

Reservationsare made as follows:During its reservationslot each station sendsa “newreservation
count” to announce whether any new packets have arrived since its last reservation slot. Every
station monitors its channel for these reservation packets and, at a globally agreed-upon time
(the update slot), adds the received values to a reservation table which is used to assign the data
slots.

64 Chapter 4. Packet Protocols for Broadcast Satellites

M data slots
V

Reservation subslots

Figure 4.11.

τ

τ

Ντ

τ

τN

kN

1 2 ... N 1 2 ... N 1 ... N

t

Figure 4.12.

If a slot’s owner has one or more reservations in the table, the slot is assigned to the owner. Slots
whose owners have a zero table entry are assigned in a round-robin manner among those stations
with non-zero entries. Each time an assignment is made, the assigned station’s table entry is
decremented. If the reservation table is empty, a station is allowed to send immediately in its own
slot.

Chapter 5. Local Area Networks

5.1. Ethernet

5.1.1. Brief Description

Ethernet is a system for local communication among computing stations. The Ethernet uses
tapped coaxial cables to carry variable length digital data packets among various stations or
devices. The transmission cable (called Ether) is passive and shared by all stations. A station
interfaces to the Ethernet through a transceiver which is tapped into the cable using off-the-shelf
CATV (cable television) taps.

A source station broadcasts its packet onto the Ether.The packet is heard by all stations,however,
it is copied from the Ether only by the destination station which is identified by the packet’s
leading addressbits.Access to the coaxial cable (Ether) isbased on a modified contention scheme.
Figure 5.1 shows a two-segment Ethernet.

5.1.2. Mechanism

Packet broadcastingwas discussed in the previouschapter.The accessmethod to the transmission
medium is on a contention basis. In Ethernet the access method is modified to what is called
CSMA/CD (carrier sense multiple access with collision detection). The Ethernet mechanism is
modelled in Figure 5.2.

5.1.3. Carrier Detection

As a packet’s bits are placed on the coaxial cable by a station, they are phase encoded in such
a way that there is at least one transition during each bit time (see Figure 5.3). The passing of a
packet on the cable can therefore be detected by listening for its transitions. This is referred to as
“detecting the presence of carrier”.

The ALOHA network does not have carrier detection and consequently suffers a substantially
higher collision rate.

5.1.4. Contention algorithm

When a packet is going by, a station interface can hear its carrier and so does not initiate a
transmission of its own.

When a carrier is absent a station may decide to transmit its data. However, it takes about 4µs for
an electrical signal to pass from one end of a 1km coaxial cable to the other end. During this 4µs
more than one station might decide to transmit data simultaneously, not knowing each other’s
carrier already existed on the cable. This results in a collision.

The transceiver must listen to the cable when it is transmitting. If it notices a difference between

65

66 Chapter 5. Local Area Networks

Repeater

terminator

Ether segment #2

E
th

er
 s

eg
m

en
t #

1

interface

cable

in
te

rf
ac

e

co
nt

ro
lle

r

station

trans-
ceiver

station

trans-
ceiver

interface

cable

in
te

rf
ac

e

co
nt

ro
lle

r

stationtap

interface

controller

ceiver
trans-

trans-
ceiver

ceiver
trans-

Figure 5.1. A two-segment Ethernet

Time

interval
contention

interval
idle

(recovery time)
spacing

interframe

packet 4packet 3packet 2packet 1

collisions

Figure 5.2. Contention based access allows any station to use the bus at any time provided it
first checks to see that the bus is not in use. Collisions occur when two stations try to start at the
same time.

5.1. Ethernet 67

011
High (also quiescent state)

Cable has 0 volts in quiescent state

Logic Low: 0 = -82mA = -2.05V
Logic High: 1 = 0mA = 0V

0.75 1.25

Determination of Carrier at receiver

100ns

Low

bit cell

Figure 5.3. Channel Encoding: Manchester encoding is used on the coaxial cable. It has a 50%
duty cycle, and ensures a transition in the middle of every bit cell. The first half of the bit cell
contains the complement of the bit value and the second half contains the true value of the bit.

what it is transmitting and what it is receiving, it knows that a collision is taking place. Each
station thus detects the collision, aborts its transmission, waits a random period of time, and then
tries again. The random waiting time is necessary to minimise the chance of another collision.
The model for Ethernet will therefore consist of alternating contention and transmission periods,
with idle periods occurring when all stations are quiet (Figure 5.2).

5.1.5. Binary exponential backoff

Binary exponential backoff is a waiting time randomisation strategy used by Metcalfe and Boggs
to minimise the transmission delay under light loads and yet be stable under heavy loads. The
strategy proceeds as follows. If there is a collision, all colliding stations set a local parameter,L,
to 2 and choose one of the nextL slots for retransmission. Every time a station is involved in a
collision, it doubles its value ofL. Thus afterk collisions, the chance of another collision in each
of the succeeding slots will be k1/2 . Figure 5.4 shows three stations involved in a collision and
their retransmissions.

5.2. Topology and Packet Formats

5.2.1. Topology

The Ethernet uses a simple unrooted tree topology. Since it is a tree there is exactly one path
between any pair of stations and thus the network does not suffer from multipath interference.
The Ether can branch to any convenient place and because it is unrooted it can be extended from
any of its points in any direction. Any station wishing to join an Ethernet taps into the Ether at
the nearest convenient point.

5.2.2. Packet format

The format of the packet is simple as shown in Figure 5.5. It consists of an integral number of
16-bit words. The first word contains the source and destination addresses - each of 8 bits. The
last word contains a 16-bit cyclic redundancy checksum for end-to-end detection of transmission
errors.

68 Chapter 5. Local Area Networks

S1,S2,S3 S1,S3

S2 S3 S1

L
1
=4

L
2
=2

L
1
=2

L
3
=2

L
3
=4

Figure 5.4.

SY
N

C

de
st

in
at

io
n

ad
dr

es
s

ad
dr

es
s

so
ur

ce

An integral number of 16-bit words

DATA

8 bits 8 bits

up to 4000 bits

16 bits

SYNC bit for
establishing

synchronisation

Accessible to software

CRC

Figure 5.5. The Ethernet packet format

A SYNC bit precedes each packet transmitted. A receiving interface uses the appearance of
carrier to detect the start of a packet and uses the SYNC bit to acquire bit phase. The receiving
interface knows when a packet ends because the carrier ceases. It then checks that an integral
number of 16-bit words has been received and that the CRC is correct. The last word received is
assumed to be the CRC and is not copied into the packet buffer.

When the hardware detects the start of a packet it checks its destination address. If that does not
match its own address it ignores the packet. By convention, a packet with a destination address
of zero is called abroadcast packetand is intended for all station.

5.2.2.1. Performance

The simple model of the Ethernet we use to look at its performance is shown in Figure 5.1. We
will examine the performance under conditions of heavy and constant load, that is, there will
be no idle intervals. In the worst case it takes a station a period of2T to detect a collision after

5.2. Topology and Packet Formats 69

starting a transmission, and for this reason we will model the contention interval as a slotted
ALOHA system with slot width2T.

Let P be the number of bits in an Ethernet packet andC be the peak capacity in bits per second
carried on the Ether.

Now under the stated conditions we assume that there arek stations always ready to transmit.
We also assume that a queued station attempts to transmit in the current contention slot with
probabilityp, or delays with probability1−p.

5.2.2.2. Acquisition Probability

The probabilityA that exactly one station attempts a transmission in a slot and therefore acquires
the Ether is

A−−
k−1kp(1−p)

(show thatA is maximised whenp−− 1/k).

5.2.2.3. Waiting Time

Let W be the mean number of slots of waiting in a contention interval before a successful
acquisition of the Ether by a station’s transmission.

The probability of waiting no time at all is just A.

The probability of waiting one slot is A(1−A).

The probability of waiting islots is iA(1−A) .

So the meanW is shown to be

W−− 1−A
9A

Exercise

Show thatW−− 1−A
9A

W−−
∞∑
i−−0

iiA(1−A)

5.2.2.4. Efficiency

The channel efficiencyE is defined as the fraction of time that the Ether is carrying good packets.
The Ether’s time is divided between transmission intervals and contention intervals.

A packet transmission takesP/Cseconds. The mean time to acquisition isW×2T. Therefore, by
our simple model,

70 Chapter 5. Local Area Networks

E−−
P/C

9P/C + 2WT

Exercises

1. If the Ethernet is constantly under very heavy load conditions, i.e.k− >∞, find the worst
value ofW and the channel efficiency.

2. Draw the channel efficiency as a function of the number of stations queued. For the cases

(a) the packet sizeP = 1024 bits

(b) P = 256 bits

(c) P = 128 bits

Assuming that the data rate is 10Mbps, the cable length is 1km and the signal propagates
with velocity 200000km/s.

5.3. Ring Networks

Another popular kind of local network is thering network. Ring nets also use cables, twisted
pair, coaxial or fibre optic, just like carrier sense networks, but the organisation is fundamentally
different.

The access method employed in ring networks is called token-passing. Token-passing is
essentially a time-sharing scheme. It permits a station to transmit only at stated times, when it
possesses a “token”, allowing the station to use the network (figure 5.6). When a node completes
a transmission or when an allotted maximum time elapses, it transmits the token to the next node
in a prescribed sequence.

We will discuss afew major typesof ring networks in the following subsections.

5.3.1. Token Ring

The token is a special 8-bit pattern, say 11111111. In this kind of ring the token circulates around
the ring whenever all stations are idle. When a station wants to transmit a packet, it has to seize
the token and remove it before transmitting.

To remove the token, the ring interface,which connects the station to the ring (see figure 5.7),must
monitor all bits that pass by. When the last bit of the token passes by, the ring interface inverts it,
changing the token into another bit pattern, known as aconnector(11111110).The station which
so transformed the token is immediately permitted to transmit its packet.

This mechanism has several important implications for the ring design:

(a) The interface must be able to read and store the last bit of a potential token, and decide
whether or not to invert it before forwarding it to the ring. This creates a 1-bit delay in each

5.3. Ring Networks 71

msg 1

msg 2

msg 3

msg 4

msg 5

msg 7

msg 2

msg 6Passages of
token

message too long

no message
to transmit

message 2 resumed

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Figure 5.6.

ring interface.

(b) The ring must be long enough (or artificial delays may have to be inserted) to contain a
complete token to circulate when all stations are idle.

5.3.1.1. Operating Modes

Ring interfaces have two operating modes, listen and transmit, as shown in figure 5.8.

In the listen mode, the input bits are simply copied to output, with a delay of one bit time (figure
5.8(a)).

The transmit mode is entered only after the token has been converted to the connector. The
interface breaks the connection between input and output, and enters its own data onto the ring.

As soon as a station finishes transmitting the last bit of its packet it must regenerate the token.
When the last bit of the packet has gone around and come back, it must be removed, and the
interface must switch back to listen mode immediately, to avoid removing the token or connector
that follows.

To make sure that the packet is correctly received by the intended destination an
acknowledgement is required. The packet format includes a 1-bit field after the checksum

72 Chapter 5. Local Area Networks

ring interface

Station

unidirectional ring

Figure 5.7.

To station From station To station From station

1-bit delay

Ring interface

(a) Listen mode (b) transmit mode

5.3. Ring Networks 73

Figure 5.8.

for acknowledgements. This bit is initially cleared (i.e. zero). When the destination station has
received a packet, and the checksum has been verified correctly the acknowledgement bit is set
to 1.

5.3.1.2. Performance

When traffic is light, the token will spend most of its time idly circulating around the ring. When
the traffic is heavy, as soon as a station finishes its transmission and regenerates the token, the
next station inline will seize the token and transmit itsqueued packets. In thismanner the ring nets
are similar to systems that use hub polling. In both cases the control token is passed smoothly in
round-robin fashion from station to station. The major difference is that with conventional hub
polling the master station initiates the poll, whereas in the ring net all stations are equals.

To analyse the performance of a token ring we assume:

• Packets are generated according to a Poisson process, the total arrival rate of allN stations
combined isλ packets/sec.

• The service rate isµ packets/sec; this is the number of packets/sec that a station can
transmit.

• When a station is permitted to send it sends all its queued packets, with the mean queue
length beingq packets.

The quantity we are interested in is the “scan time”,s, the mean interval between token arrivals
at a given station.The scan time is the sum of the walk timew (propagation delay and 1-bit delays
at the interfaces around the ring) and the service time required forNqqueued packets, i.e.

s−− w +
Nq
9µ

The mean queue lengthq at each station is

q−−
λs
9N

Hence

s−− w + λs
9µ

Introducingρ−− λ9µ
and solving forswe find

74 Chapter 5. Local Area Networks

s−−
w

91− ρ

The channel-acquisition delay is about half the scan time. Thus from the last equation we notice
that

• The delay is always proportional to the walk time, and hence to the length of the ring, both
for low and high load.

• The delay increases rapidly when the utilisation factor of the entire ringρ tends to 1.

The token ring works fine as long as all the interfaces function flawlessly. However the system
becomes useless when the token is accidentally lost. One way to get around this problem is to
have a timer in each of the interfaces. the timer is set just before the interface searches for a token.
If the timer goes off the interface knows that the token is lost and it then puts a new token onto
the ring. However, if two or more interfaces decide to put tokens onto the ring at the same time
the system is in real deep trouble.

5.3.2. Contention Rings

As the name implies, in acontention ring, a station utilises the contention mechanism to acquire
the control token when the channel is under light load.

The contention ring contains nothing at all when there is no traffic. When a station has a packet
to transmit, it first listens to see if there is any traffic passing by its interface.

• If there is no traffic on the ring it just starts transmission. At the end of its packet, it puts a
token on the ring, just as the token ring does.However, if the token remains uncaptured after
travelling around the ring the interface removes the token and the ring becomes quiet once
again.

• If there is traffic on the ring the interface waits for the token, converts it to a connector and
then transmits its own packet. When it finishes the transmission it generates the token to the
ring. When the traffic is heavy another station will capture the token and repeat the process.
Consequently, under conditions of high steady load the contention ring acts just like a token
ring.

The trouble occurs when two or more stations believe that the ring is idle and simultaneously
decide to transmit packets, and this results in a collision. A station detects a collision by
comparing what it is transmittingand what it is receiving.When it detectsa collision, it terminates
its transmission but keeps on absorbing data until there is no more. Eventually the ring becomes
quiet, the colliding stations wait a random amount of time and then try again.

In brief, the contention ring has low channel-acquisition delay when it is lightly loaded and the
properties of a token ring when it is heavily loaded.

5.3. Ring Networks 75

5.3.3. Register Insertion Rings

Figure5.9showsa ring interfaceof the register insertion ring.The interfacecontains two registers,
a shift register for receiving packets destined for this station or passing through this station and
an output buffer for holding packets to be sent by this station. The maximum size of a packet is
obviously the length of the output buffer.

When the ring is first started up, the input pointer points to the extreme right bit position in the
shift register, i.e. the register is empty. When data arrive from the ring bit by bit they are placed
in the register from right to left, the pointer moving along as well. As soon as all the bits of the
destination address field have arrived the interface works out whether the incoming packet is
destined for it or not. If it is, the packet is removed from the ring into the station. The pointer is
then reset to the extreme right position.

If, however, the packet is not addressed to the local station, the interface forwards it onto the ring.
As each new bit arrives, it is put in the place pointed to by the input pointer. The entire contents
of the shift register is then shifted right one position, pushing the rightmost bit out onto the ring.
The input pointer is not advanced. If no new input arrives the contents of the shift register can be
reduced by one bit and the input pointer moves right one position.

Whenever the shift register has pushed out the last bit of a packet, it checks to see if

(i) there is an output packet waiting, and

(ii) the number of empty slots in the shift register is at least as large as the output packet.

Only if both conditions are met can the output proceed, in which case the output switch is flipped
and the output buffer is now shifted out onto the ring, one bit at a time, in synchronisation with
the input.New input is accumulated in the shift register which is why there must be enough empty
slots there to accommodate all the intput while the output buffer is being emptied. As soon as the
output buffer has been emptied, the switch is flipped back again to the shift register.

5.4. Token Passing versus CSMA/CD

The method of accessing the network by any node (station) strongly influences the choices of
network topology. Bus networks like Ethernet and Z-net employ CSMA/CD access, while ring
networks like Domain employ token passing. We will briefly discuss the main and contrasting
points of the two access schemes.

(a) CSMA/CD is a random scheme in which a node accesses the bus on a contention basis.This
scheme offers two major advantages:

(i) extreme simplicity

(ii) suitability for integration into inexpensive LSI chips.

It works well for lightly loaded systems, yielding better than 90% channel capacity
utilisation and low access delay.

For heavily loaded systems, CSMA/CD has some serious drawbacks.

76 Chapter 5. Local Area Networks

�������
�������
�������
�������

�������
�������
�������
�������

����������
����������
����������
����������

����������
����������
����������
����������

Bit serial line to station

Bit serial line from station

Output

switches

input pointer

Input

output buffer

shift register

empty

packet to be sent

Figure 5.9. Register insertion ring

(i) The greater the channel traffic the greater the probability of messages colliding. This
leads to unpredictable transmission delays. For this reason the access method is not
strictly suitable for real-time process controls without modification.

(ii) Another drawback is the lack of a built-inpriorotymechanism.Messageswith different
urgency levels receive the same treatment when contending for the bus.

(b) In token passing type LANs, a message token is passed from station to station allowing
each station to transmit packets in an orderly manner. this type of access approach is highly
deterministic,and its message-transmission times are predictable.Furthermore, the fact that
the sender isalso the receiver for acknowledgement in a ringmakes this type of accesshighly
reliable and thus suitable for applications like process control. In addition, token passing is
not constrained by packet size or data rate; it works just as well under varying message size
and data rate conditions. Token passing access is not confined to a ring architecture;a token
is passed onto each node in much the same way as is done in a ring network.However, token
passing also has some disadvantages.

(i) The interfaces used on a ring are active rather than passive. Any break in the ring,
whether at a station or in the cable, can bring down the entire network.

(ii) An access control token could be destroyed or even mistaken and it is a difficult task
to recover.

(iii) Token passing is more complex than CSMA/CD and this makes the integration into
LSI ICs much more difficult.

5.5. Broadband versus Baseband 77

5.5. Broadband versus Baseband

[Note: I have not changed this section from the original written in 1982.]

Multiconductor, twisted-pair,coaxial and fibre optic cable are all suitable for local area networks.
However, baseband or broadband coaxial cable and fibre optic cable are most often selected to
handle these transmissions.

Baseband coax is more economical.Unlike broadband cable systems,baseband cable systems do
not require data modulation onto an rf carrier. Consequently, expensive items like modems are
not required. Baseband systems appear ideal for application involving low data rates (less than 3
Mbps) over short cable lengths (less than 2 km). Baseband coaxial cables are being successfully
implemented in such networks as Ethernet, Z-net, Primernet, HYPERchannel and Net/one.

For higher data ratesand longer distances,broadband coaxial cable ismore practical.Furthermore
it is predictable that future LANs must accommodate both voice, video and digital data traffic
and boradband coax as well as fibre-optic cables are the choices.

However, for fibre optic, they are still not cost effective for the multidrop applications in local
networks. Fibre optic cables are capable of carrying very high data rates (Gigabits/sec) and this
makes them suitable for long distance communications between networks, for environments
where electrical noise isolation and electromagnetic interference are critical.

Chapter 6. Flow Control

6.1. Introduction

A packet-switched network may be thought of as a pool of resources (channels, buffers and
switch processors) whose capacity must be shared dynamically by many users wishing to
communicate with each other. Each user must acquire a subset of the resources to perform its
task (transfer data from source to destination). If the competition for the resources is unrestricted
and uncontrolled, we may encounter problems such as loss of efficiency, unfairness, congestion
and deadlock.

6.2. Flow Control: problems and Approaches

In this section, we first describe the congestion problems caused by lack of control. Then
we define the functions of flow control and the different levels at which these functions are
implemented.

6.2.1. Problems

6.2.1.1. Loss of Efficiency

Network operation becomes “inefficient” when resources are wasted. This may happen either
because conflicting demands by two or more users make the resource unusable, or because a user
acquires more resources than strictly needed, thus starving other users.

Example:An example of wastage caused by buffer capture is shown in Figure 6.1.

We have a single network node with two pairs of hosts, (A,A′) and (B,B′). The traffic requirement
from A to A′ is 0.8. The requirement fromB to B′ is variable and is denoted byλ.

Whenλ→ 1, the output queue from the switch to hostB′ grows rapidly filling up all buffers in
the switch. The total throughput, i.e., the sum of (A,A′) and (B,B′) delivered traffic as a function
of λ is plotted in Figure 6.2.

• Forλ < 1, throughput−− λ + 0.8

• Forλ > 1, throughput drops to 1.1. This is because the switch buffers become full causing
built-up queues in bothAandBhosts.The probability that a packet fromBcaptures a buffer
in the switch is 10 times that fromA. Since the (B, B′) throughput is limit to 1, the (A, A′)
throughput is reduced to 0.1, yielding a total throughput 1.1.

78

6.2. Flow Control: problems and Approaches 79

λ

line speeds

switch

B

A

A’

B’

0.8

C=1

C=1

C=1C=10

Figure 6.1.

0.8
1.1

1.8

0
λ

1.0

total throughput

Figure 6.2.

6.2.1.2. Unfairness

This is just a result of uncontrolled competition. Some users might have advantages over others
(capture a larger share of resources) either because of their relative position in the network or
because of the particular selection of network and traffic parameters.

In the above exampleBobviously enjoys better treatment thanA. Another example of unfairness
is depicted in Figure 6.3.

6.2.1.3. Congestion and Deadlock

Congestion can be defined as a situation when an increase of offered load beyond the critical
system capacity causes a decrease in useful throughput (see Figure 6.2).

The ultimate congestion is a deadlock i.e.when the network crashes.Figure 6.4 illustratesa direct
store-and-forward deadlock. Two adjacent nodes want to send packets to each other, but each is
full and cannot accept them. They are both stuck in this lock up situation.

80 Chapter 6. Flow Control

0.5

C=1λ

B throughput

A throughput

0.5

1.0

total throughput

λ

B

A

Figure 6.3.

Figure 6.4.

6.2.1.4. Flow Control Functions

Flow control is a set of protocols designed to maintain the flow of data within limits compatible
with the amount of available resources. In particular, flow control aims to

• maintain efficient network operations

• guarantee fairness to a certain degree in resource sharing

• protect the network from congestion and deadlock.

These goals are not achieved without a cost. The flowcontrol performance tradeoff is shown in
Figure 6.5.

The controlled throughput curve is lower than the ideal curve because of control overhead. The
control overhead is due to the exchange of information between nodes and utilization of some
resources required for control functions.

Different flow-control procedures may operate at different levels in the network. In the following
subsection we will identify various levels of protocols with their associated problems and the
appropriate flow control protocols.

6.2. Flow Control: problems and Approaches 81

maximum capacity ideal

controlled

deadlock offered load

throughput

uncontrolled

Figure 6.5. Flow control performance trade-offs

6.2.1.5. Levels of Flow Control

Since flow control levelsare closely related to network protocol levelswe identify the flow control
structure as in Figure 6.6.

• At the physical level no flow control is assigned

• At the data link level we distinguish two types of link protocol: the node-to-node protocol
and the network access protocol corresponding to node-to node flow control and network
access flow control respectively.

• At the packet level protocol we have virtual circuit protocol and correspondingly the VC
flow control. However, if the virtual circuit level were not implemented the network access
flow control would take over.

• Above the packet protocol but within the subnet we find the entry-to-exit protocol and ETE
flow control.

• Next we have the transport protocol and flow control.

6.3. Hop Level Flow Control

The objective of hop level flow control (or node-to-node) is to prevent store-and-forward buffer
congestion. Hop level flow control operates locally. It monitors queues and buffer levels at each
node and rejects traffic arriving at the node when some predetermined thresholds are reached.

It hasbeen observed that a fundamentaldistinction between different flow control schemeshere is
based on the way traffic is divided into classes. We will consider 3 families of protocols: channel
queue limit, buffer class and virtual circuit hop level schemes.

82 Chapter 6. Flow Control

DTE DTEDCE DCE

Transport level

Hop levelNetwork access

VC

Link

Transport

Packet Entry to exit level VC

Network access

Figure 6.6. Flow control levels

6.3.1. Channel Queue Limit Flow Control

In this family the number of classes is equal to the number of channel output queues. The flow
control scheme supervises and puts limits on the number of buffers each class can seize; packets
beyond the limits are discarded. Within this family we have

(1) Complete Partitioning (CP)

Let B denote the buffer size,N the number of output queues andni the number of packets
on theith queue. The constraint for CP is

0 ≤ ni ≤
B
9N

;∀i

(2) Sharing with Maximum Queues (SMXQ)

The constraints for SMXQ are

0 ≤ ni ≤ bmax ;∀i∑
ni ≤ B

wherebmax is the max queue size allowed andbmax> N.

(3) Sharing with Minimum Allocation (SMA)

To prevent any output queue from starving, each queue is guaranteed a minimum number
of buffers,bmin (bmin < B/N). The constraint is then∑

i
max(0,ni−bmin) ≤ B−Nbmin

(4) Sharing with Minimum Allocation and Maximum Queue.

This scheme combines 2 and 3.

Some form or another of CQL flow control is found in every network implementation. The
ARPANET IMP has a shared buffer pool with minimum allocation and maximum limit for each

6.3. Hop Level Flow Control 83

queue as shown in Figure •.

Irland found that the optimal value of the maximum queue lengthbmaxis a complicated function
of the mean traffic. However, he discovered that thesquare root schemewhere

bmax
−−

B
9
√

N

gives, not optimal, but good performance.

It can be easily seen that the CQL flow control eliminates direct S/F deadlock.

6.3.2. Structured Buffer Pool (SBP) Flow Control

In this method, packets arriving at each node are divided into classes according to the number
of hops they have covered. Consider a subnet withN nodes in which the longest route from any
source to any destination is of lengthH hops. Each node needsH + 1 buffers numbered from0
to H. The “buffer graph” is constructed (Figure 6.8) by drawing an arc from bufferi in each node
to bufferi−1 in each of the adjacent nodes. The legal routes from bufferi at nodeAare those to
a buffer labelledi + 1at nodes adjacent toA, and then to a buffer labelledi + 2 at nodes two hops
away fromA, etc.

An input packet from a host can only be admitted to the subnet if buffer 0 at the source node is
empty. Once admitted, this packet can only move to a buffer labelled 1 in an adjacent node, and
so on, until either it reaches its destination and is removed from the subnet, or it reaches a buffer
labelledi, which is still not the destination, and is discarded.

This scheme can be shown to prevent “indirect store-and-forward” deadlock. The indirect
store-and-forward lockup situation is illustrated in Figure 6.9. Here each node is trying to send
to a neighbour, but none has any buffers available to receive incoming packets.

To see that this scheme prevents deadlock, consider the state of all buffers labelledE at some
instant. Each buffer is in one of the three states

• empty

• holding a packet destined for a local host; the packet is delivered to the host.

• holding a packet for another host; this packet is looping and is dropped.

In all three cases the buffer can be made free. Consequently, packets in buffers labelledH − 1
can now either be delivered if it reaches its destination, or be moved forward to buffers labelled
H. Thus eventually, all packets can be delivered or discarded, free of deadlocks.

Merlin and Schweitze also presented a number of improvements to this scheme to reduce the
number of buffer needed and to improve the throughput efficiency:

• A packet that has already madei hops can be put in any available higher numbered buffer
at the next hop not just in bufferi + 1.

84 Chapter 6. Flow Control

Total buffer pool is 40 buffers

min allocation max allocation
Reassembly 10 20
Input queue 2
Output queue 1 8
Total S/F buffer 20

Figure •. Buffer allocation in ARPANET

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
�����
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
��� ���

���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
������

���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
��
��
��
��

Sink B

Source A

Sink A

Source B

Figure 6.8.

• Limiting the number of class 0 buffers that could be seized by input packets (i.e. packets
entering the network the first time from external sources).

6.3.3. Virtual Circuit Hop Level Flow Control

This family of flow control is available only in virtual-circuit networks. In VC networks, a
physical network path is set up for each user session. All the packets are then forwarded along
the pre-established path which is released when the session is terminated. The VC nets permit
“selective flow control” to be exercised on each individual virtual circuit.

6.3. Hop Level Flow Control 85

B

C

E

A

F D

packets to D

packets to E

packets to F

packets to B

packets to C

Figure 6.9. Indirect store-and-forward deadlock

The VCHL flow control procedure consists of setting up a limitL on the maximum number of
packets for each VC connection that can be in transit at each intermediate node. The limitL may
be fixed at set up time or may be adjusted dynamically, based on load variations. The network
may refuse a connection if requirementscannot be met.One plus point about the scheme is that if
a resource becomes congested, the connections (VCs) that use that resource can be traced back to
their oriains and regulated at the network access level, and leaving other sources undisturbed.

In TRANSPAC network, each node records the aggregated “declared throughput” (i.e. data
rate) requirements by users, and at the same time monitors actual throughput and average buffer
utilization. Based on the actual to declared throughput ratio, the node may decide to “oversell”
capacity, i.e. temporarily carries input rates exceeding the line capacities. VCHL flow control is
exercised as follows. Packet buffers are dynamically allocated to VCs based on demand. Actions
take place according to the three defined threshold levels:S0, S1 andS2.

• S0 : no further new VC requests are accepted.

• S1 : slow down the flow on current VCs, by delaying the return of ACKs.

• S2 : selectively disconnect existing VCs.

86 Chapter 6. Flow Control

The threshold levelsS0,S1 andS2 are dynamically evaluated as a function of declared throughput,
measured throughput and current buffer utilization.

6.4. Network Access Flow Control

The objective of network access flow control is to throttle external inputs to prevent
overall internal buffer congestion. Congestion may be local (at the entry node), global (entire
network) or selective (particular path leading to a given destination). Flow control is exercised
to regulate the access of external traffic based on the condition determined at the network access
points.

We will consider three NA flow control schemes: isarithmic, input buffer limit and choke
packet.

6.4.1. The Isarithmic Scheme

Since the main cause of congestion is the excessive number of packets existing in the network,
the Isarithmic scheme controls congestion by keeping the number of packets constant, below the
congestion point.

There exist permits which circulate about within the subnet. Whenever a node wants to send a
packet just given to it by its host, it must first capture a permit and destroy it.When the destination
node removes the packet from the subnet, it regenerates the permit. These rules ensure that
the number of packets in the subnet will never exceed the total number of permitsP initially
allowed.

Results of simulation studies by the National Physical Laboratories are summarized below.

• The scheme performs well in uniform traffic pattern situations, but poor in the case of
nonuniform, time varying traffic patterns.

• The method of how to distribute the permits within the subnet is far from obvious.

• If permits ever get lost for any reason, the capacity of the network will be forever
reduced.

• Experimental results show that the maximum number of permits that can be accumulated
at each node is 3 and thatP−− 3N, whereN is the total number of nodes in the subnet.

6.4.2. Input Buffer Limit Scheme

The input buffer limit (IBL) is a local network access method, whereby packets are differentiated
into input and transit at the entry node. The function of IBL flow control is to throttle the input
traffic when certain buffer utilization thresholds are reached in the entry node.

We will describe 3 versions of IBL flow control scheme.

(1) The IBL scheme proposed for GMDNET is a by-product of the nested buffer class structure
considered previously. Input traffic is assigned to class zero and is entitled to use buffer class

6.4. Network Access Flow Control 87

0.2 0.4 0.6 0.8 1.0

5

10

15

20

Throughput

(messages/sec)

Input buffer limit

Figure 6.10. IBL Throughput vs
NI

9NT

for NT
−− 40 (approximate)

zero only. Simulation results indicate that for a given topology and traffic pattern there is an
optimal input buffer limit size wh ch maximizes throughput for heavy offered load.

(2) Another version of IBL flow control scheme was proposed and analyzed by Lam.Each node
has a pool ofNT buffers, all of which may be occupied by transit traffic. However, no more
thanNI (< NT) buffers can be occupied by input packets. The analytical results also show
that there is an optimal ratioNI/NT, which maximizes throughput for heavy load, as shown
in Figure 6.10.

The IBL scheme is robust to external perturbations when operating at the optimal value of
NI/NT.However, the assumption that all nodes in the subnet have the same blockingcapacity
is not quite realistic.

(3) Drop-and-throttle flow control (DTFC) [Kamoun]

In this version of IBL the input packet is discarded when the total number of packets in
the entry node exceeds a given threshold. Transit packets, instead, can freely claim all the
buffers.However, if the node is full the transit packets too will be dropped and lost.A similar
scheme, called free flow scheme, is described and analyzed by Schwartz and Saad.

6.4.3. Choke Packet Scheme

In this scheme the flow control mechanism is invoked only when the system is congested. The
mechanism described below was proposed for the Cyclades network.

Each node monitors the utilization percentage of each of its output lines. Associated with each
line is a real variable,uk, whose value, between 0.0 and 1.0, reflects the recent utilization of that
line at timek; andf k (either 0 or 1) the instantaneous line utilization.uk is updated according to

uk
−− auk−1 + (1−a)f k

88 Chapter 6. Flow Control

where the constanta determines how fast the node forgets recent history.

Wheneveruk moves above the threshold, the output line enters a warning state. Each newly
arriving packet is checked to see if its output line is in warning state. If so and

• If the packet is an input packet it is dropped.

• If the packet is a transit packet

the node sends a choke packet back to the source node giving it the destination found in
the transit packet. The transit packet is tagged so that it will not generate any more choke
packets later, and is forwarded on the path.

When the source node gets the choke packet, it reduces the traffic sent to the specified
destination by X%.The source host then ignoresother choke packets for a fixed time interval
T seconds.

After T seconds the source host listens for more choke packets for another interval. If one
arrives, the line is still congested, so the source host reduces the flow still further and repeat
the same process. If no more choke packets arrive during the listening period, the source
host may increase the flow again.

Simulation results based on the Cigule network topology are given in Figure 6.11.

The Choke Packet Scheme is different from the IBL scheme in that it uses a path congestion
measure to exercise selective flow control on input traffic directed to different destinations.

6.5. Entry-to-Exit Flow Control

The objective of the entry-to-exit (ETE) flow control is to prevent buffer congestion at the exit
(or destination) node due to the fact that the remote sources are sending traffic at a higher rate
than can be accepted by the destination hosts.

If message sequencing and/or reassembly is required, the entry to exit scheme is necessary to
avoid deadlocks at the exit node.

Examples of deadlocks at the exit node are given in Figure 6.12.

Virtually all ETE controls are based on a window scheme that allows only up to W sequential
messages to be outstanding in the network before an end-to-end ACK is received.

We will describe a few ETE schemes implemented by various networks.

6.5.1. Arpanet RFNM and Reassembly Scheme

ETE flow control in ARPANET applies to each pair of hosts. Sliding window scheme is used:
a limit of eight messages between each pair of hosts. All messages travelling from the same
host to the same destination are numbered sequentially. At the destination, messages whose
sequence numbers are out of the window range are discarded. Messages arriving out of order
are also discarded. When a message is received correctly a Ready For Next Message (RFNM) is
acknowledged back to the sender so that it can advance its sending window. If there has been no
response for 30 seconds the source node sends a query to the destination node. Retransmission

6.5. Entry-to-Exit Flow Control 89

4 8 12 16 20 24 28

2

4

6

8

10

Network operation time 95 seconds

Generated load (thousands of packets)

Uncontrolled network

Controlled network

Ideal throughput for Gigale network

T
ho

us
an

d
of

 p
ac

ke
ts

 r
ec

ei
ve

d

Figure 6.11. Throughput performance in Cigale with and without flow control (approximate)

Node 1 Node 2 Node 3 Host 1

Host 2 Node 1 Node 2 Node 3 Host 1

C C A C B B A A A

A K H J F D B

B B

E C

3 2 4 2 1 1 2 3 1 3 4

Reassembly Buffer Deadlock

Resequence Deadlock

Figure 6.12.

90 Chapter 6. Flow Control

of the message might be required depending on the answer.

However, deadlock still occurs if there are not enough buffers to reassemble all the packets of a
multipacket message at the destination. The ARPANET solved the deadlock problems by using
following mechanisms:

(a) Reservation for Multipacket Messages.

Before a source node sends a message to a destination node, it is required to send a REQ
ALL (request for allocation) message to the destination. Only after receiving an ALL
(allocate) packet it is allowed to send the message. If the destination node does not have
enough buffers, it just queued the request and sent ALL packet later and in the meantime
the source node just has to wait.

To be more efficient and to reduce the delay, the next lot of buffers is automatically reserved
for the same stream of messages by the destination node. This is done by piggybacking
an ALL packet on an RFNM back to the source. If the source host failed to send another
multipacket message within 250 msec, the source node would give back the allocation.

(b) Reservation for Single-Packet Message

A single packet message serves as its own allocation request. If the destination node has
room, it accepts the message and sends back an RFNM immediately. If it does not have any
room, it discards the message and queues the request. It notifies the source node later when
space becomes available.

6.5.2. SNA Virtual Route Pacing Scheme

Flow control is done per virtual route. This scheme is called “VR pacing”. It is actually a
combination of ETE and hop to hop level flow control. Upon receipt of transmit authorization
from the destination, the source is permitted to send a window ofN packets, the first of which
will normally contain a request to sendN more packets. When the destination (exit node) has
sufficient buffer space available, it returns an authorization for the next group ofM packets.

Congestion control isachieved by dynamicallyadjusting the pacingparameter,N.For each virtual
routeN can vary fromh to 3h, whereh is the number of hops in the route. Each packet contains
2 bits that are set to 0 by the source node. An intermediate node can set one bit or the other to
1 depending on how congested the route becomes. If the route is not congested the bits are left
alone. When each packet arrives at its destination, the state of the bits tells how much congestion
there is along the path.Based on the amount of congestion, the parameterN for the corresponding
virtual route can be increased or decreased.

Chapter 7. Introduction to Queueing
Theory

“They also serve who only stand and wait”.
MILTON.

“Ah, ‘All things come to those who wait’.
They come,but often come too late”.

From Lady Mary M. Currie: Tout Vient a Qui Sait Attendre, 1890.

7.1. Introduction

Think for a moment how much time is spent in one’s daily activities waiting in some form of a
queue: stopped at a traffic light; delayed at a supermarket checkout stand; standing in line for a
ticket at a box-office; holding the telephone as it rings, and so on. These are only a few examples
of queueing systems.

The thing common to all the systems that we shall consider is a flow ofcustomersrequiring
service,there being some restriction on the service that can be provided. For example, the
customer may be aircraft requiring to take-off, the restriction on ‘service’ being that only
one aircraft can be on the runway at a time. Or, the customers may be patients arriving at an
out-patient’s clinic to see a doctor, the restriction on service is again that only one customer can
be served at a time. The two examples are both cases ofsingle-server queue.

An example of amulti-server queueis a queue for having goods checked at a supermarket; here
the restriction is that not more than, say,mcustomers can be served at a time.

In this section we study the phenomena of standing, waiting and serving –queueing theory.

7.2. Aims and Characterisations

In the examples given so far, the restriction on service is that not more than a limited number of
customers can be served at a time, and congestion arises because the unserved customers must
queue up and await their turn for service. For example, if the customers and messages waiting
to be served at a concentrator in a computer network, the messages arrive irregularly due to the
bursty nature of the traffic. Then from time to time more than one customer will be at the service
point at the same time, all but one of them (in a single-server queue) must queue up in the buffer
awaiting their turn for service, and congestion has occurred. This simple point illustrates an
important general principle, namely that the congestion occurring in any system depends in an
essential way on the irregularities in the system and not just on the average properties.

Our aim in investigating a system with congestion is usually to improve the system by changing
it in some way. For example, the rate of arrival of messages may be so high that large queues

91

92 Chapter 7. Introduction to Queueing Theory

develop, resulting in a long delay-time per message passing through a computer network; or the
rate of arrival may ke so low that the concentrators are unused for a large proportion of time.
In either case a change in the system may be economically profitable. In any case, it is often
very helpful to be able to predict what amount of congestion is likely to occur in the modified
system.

In order to investigate congestion we must specify the queueing system sufficiently. Generally
a queueing system can be characterized by the following components:

1. The arrival pattern. This means both the average rate of arrival of customers and the
statistical pattern of the arrivals. Generally, the arrival process is described in terms of the
probability distribution of the interval between consecutive arrivals. The distribution is
denoted byA(t), where

A(t)−− P[time between arrivals< t]

2. The service discipline. This means

(a) The service time,which refers to the length of time that a customer spends in the service
facility. The probability distribution of the service time is denoted byB(x), where

B(x)−− P[service time< x]

(b) The number of servers,m.

3. The queueing discipline. This describes the order in which customers are taken from the
queue. The simplest queueing discipline consists in serving customers in order of arrival,
i.e. first-come-first-serve (FCFS), but there are many other possibilities.

4. The amount of buffer space in the queues.Not all queueing systems have an infinite amount
of buffer space. When too many customers are queued up for a finite number of slots, some
customers get lost or rejected.

The notationA/B/m is widely used for the specification of queueing systems, whereA is the
interarrival-time probability distribution,B the service-time probability distribution, andm the
number of servers. The probability distributionsA andB are often chosen from the set

M exponential probability density (M: Markov)

D all customers have the same value (D: Deterministic)

G arbitrary distribution (G: General)

Thus, for example, the systemM/M/1 is a single-server queueing system with exponentially
distributed interarrival times, exponentially distributed service times.

7.2. Aims and Characterisations 93

We sometimes need to specify the system’s buffer storage (which we denote byK) or to specify
the customer population (which we denote byM) and in these cases the notationA/B/m/K/M is
used. If either of these last 2 parameters is absent, then we assume it takes on the value of infinity.
For example, the systemM/D/3/10 is a 3-server system with exponentially distributed interarrival
times, with constant service times and with a system storage capacity of size 10.

We have indicated how one must specify a queueing system; we now identify some of the
properties of a queueing system that may be of practical interest. Basically we are interested in

(1) the mean and distribution of the length of time for which a customer has to queue for service,
i.e. thewaiting time;

(2) the mean and distribution of the number of customers in the system at any instant;

(3) the mean and distribution of the length of the server’s busy periods.

These three properties of the queueing system are related in a general way, in that all three
mean values tend to increase as a system becomes more congested. In order to study the system
analytically we will describe the structure of basic queueing systems in the next section.

7.3. The structure for basic queueing systems

We consider a very general queueing systemG/G/m.We focus attention on the flow of customers
as they arrive, pass through and eventually leave the system. We portray our system as in Figure
7.1, where

Cn thenth customer to enter the system

N(t) the number of customers in the system at timet.

We define a number of quantities for the general queueing system as follows (some of these
quantities are illustrated in Figure 7.2):

τn arrival time forCn

tn interarrival time betweenCn andCn− 1 (i.e.τn− τn−1.
−t ≡ 1

9λ
– the average interarrival time

A(t) the interarrival times probability distribution

−− P[tn ≤ t] independent ofn

xn service time forCn

−x average service time per customer−− 1
9µ

94 Chapter 7. Introduction to Queueing Theory

Queue

Server

Mean arrival rate is

customers/sec

Mean service rate is

customers/sec
λ µ

Figure 7.1.

S

w x x x

C C C C

C C C

C C

Server

Queue

time

time

τ τ τ

n

n n+1 n+2

n+1 n+2

n n+1 n+2

n n n+1 n+2

n-1 n n+1 n+2

t t

Cn+2
n+1n

Figure 7.2.

B(x) the service time probability distribution

−− P[xn ≤ x] independent ofn

Wn waiting time (in queue) forCn

W average waiting time per customer

Sn total delay time or system time forCn

−−Wn + Xn

T average system time

−−W +−x

7.3. The structure for basic queueing systems 95

ρ the traffic intensity or the utilization factor
average arrival rate of customers
9average service rate of the servers
−−
λ
9µ

or λ−x for single server system

−−
λ

9mµ
or λ

−x
9m

for m-server system

Little’s theorem: the average number of customers in a queueing system is equal to the average
arrival rate of customers to that system, times the average time spent in that system, i.e.

−
N−− λT

7.4. The arrival pattern

In this section we will describe some common types of arrival pattern that are most used in the
queueing theory.

(a) Regular arrival

The simplest arrival pattern physically is the regular one in which customers arrive simply
at equally spaced instants,T units of time apart. The rate of arrival of customers isλ−−

1
9T

per unit time. A practical example where the arrivals is nearly regular is in an appointment
system.

(b) Completely random arrivals or Poisson arrivals

The simplest arrival pattern mathematically,and the most commonly used in all applications
of queueing theory is the completely random arrival process.To define this process formally,
letλ be a constant representing the average rate of arrival of customers and consider a small
time interval∆t, with∆t → 0. The assumptions for this process are as follows:

• The probability of one arrival in an interval of∆t sec,say (t,t +∆t) isλ∆t, independent
of arrivals in any time interval not overlapping (t, t +∆t).

• The probability of no arrivals in∆t sec isl − λ∆t. Under such conditions, it can be
shown that the probability of exactlyk customers arriving during an interval of length
t is given by the Poisson law:

Pk(t)−−
k(λt) −λte
9k!

k ≥ 0, t ≥ 0

The mean of the distribution

Definingk as the number of arrivals in this interval of lengtht we have

96 Chapter 7. Introduction to Queueing Theory

Figure 7.3. Fundamental property of the Poisson arrivals.Two intervalsAandB of equal length
and therefore with equal probability for an arrival.

E[k]−−
∞∑

k−−0
kPk(t)

−−
−λte
∞∑

k−−0
k

k(λt)
9k!

−−
−λtE
∞∑

k−−1

k(λt
9(k− 1)!

−−
−λte λt

∞∑
k−−0

k(λt)
9k!

E[k]−− λt as xe −− 1+ x +
2x

92!
+

3x
93!

+ …
The variance of the distribution

σ2
k
−− E[2(k−E[k])]

−− E[2k − 2(E[k]) − 2kE[k]]

−− E[2k]− 2(E[k])

σ2
k can also be rewritten as follows:

σ2
k
−− E[k(k− 1)] + E[k]− 2(E[k])

but

E[k(k− 1)]−−
∞∑

k−−0
k(k− 1)Pk(t)

−−
−λte
∞∑

k−−0
k(k− 1)

k(λt)
9k!

−−
0−λte 2(λt)

∞∑
k−−2

k−2(λt)
9(k− 2)!

−−
−λte 2(λt)

∞∑
k−−0

k(λt)
9k!

7.4. The arrival pattern 97

−−
2(λt)

Thus

σ2
k
−−

2(λt) + λt− 2(λt)

σ2
k
−− λt−− E[k]

Now we will show that the timet between arrivals is a continuously-distributed exponential
random variable.

By definition

A(t)−− P[tn ≤ t]

−− 1−P[tn > t]

But P[tn > t] is just the probability that no arrivals occur in (0, t), that is,P0(t). Therefore, we
have

A(t)−− 1−P0(t)

i.e. the Probability Distribution Function [PDF] is given by

A(t)−− 1− −λte ; t ≥ 0

and the probability density function is given by

f (t)−−
dA(t)

9dt

f (t)−− λ
−λte , t ≥ 0

Thus the Poisson arrivals generate an exponential interarrival distribution whose pdf and PDF
are shown in figure 7.4.

The mean

E[t]−−
∞

∫
0
tf (t)dt

−−
∞

∫
0
tλ −λte dt

−−
1
9λ

The second moment

2E[t]−−
∞

∫
0

2t f (t)dt

98 Chapter 7. Introduction to Queueing Theory

Probability density function (pdf)

0

(*l

f(
t)

t

Probability distribution function (PDF)

 0

 1

A
(t

)

t

Figure 7.4.

−−
∞

∫
0

2t λ −λte dt

−−
2
92
λ

The variance

σ2
t
−− E[2t]− 2(E[t])

−−
2
92
λ
− 1

92
λ
−−

1
92
λ

The coefficient of variation

Ca
−−

σt

9E[t]
−− 1

i.e. 100%.

7.5. The service time distribution

(a) Constant service time. The service time may be assumed to be constant. This is always an
idealization but often gives adequate answers.

(b) Exponential service time. Again we can assume that the service time distribution is
exponential with probability density functionB(x), where

B(x)−− µ
−µxe , x ≥ 0

The average number of customers served per second isV and the average service time per
customer is

7.5. The service time distribution 99

E[x]−− 1
9µ

The service thus is treated as if it were a complete random operation with the property that
the probability that service is completed in a small element of time is constant (−− µ∆x),
independent of how long service has been in progress.

Chapter 8. Simple Queues with Random
Arrivals

In this chapter we consider a number of simple queueing systems. We will also present some
methods that can be used in dealing with these queueing problems. We shall focus only on the
equilibrium behaviour of these systems.

8.1. Equilibrium solutions

Simple example

Consider a system which at any instant is in one of two possible states,A andB as shown in
Figure 8.1.

We assume

• The probabilities of finding the system in stateA and stateB at timet arepA(t) andpB(t)
respectively.

• The probability that the system moves from stateAat timet to stateBat time (t +∆t) isλ∆t;
and that fromB to A isµ∆t.

With these assumptions the probability that the system is in stateAat time (t +∆t) is the sums of
the probabilities that

(a) the system is in stateA at timet and no transition occurs in the interval (t, t +∆t).

(b) the system is in stateB and a transition fromB to A occurs in (t, t +∆t).

That is

pA(t +∆t) −− (1−λ∆t)pA(t) + µ∆tpB(t) (8.1.1)

Similarly,

pB(t +∆t) −− λ∆tpA(t) + (1−µ∆t)pB(t) (8.1.2)

Letting∆t → 0, we have

d
9dt

pA(t) −− −λpA(t) + µpB(t) (8.1.3)

100

8.1. Equilibrium solutions 101

A B
Ap (t)

p (t)B

λ∆

µ∆

t

t

Figure 8.1.

d
9dt

pB(t) −− λpA(t)−µpB(t)

Now in equilibrium the probability of finding the system in a given state does not change with
time, i.e.

d
9dt

pA(t) −−
d
9dt

pB(t) −− 0 (8.1.4)

and this does not mean that transitions do not occur within the system, it simply means that at
each state of the system the two transitions, transition away from the state and transition to the
state, must occur at the same rate. From equations 8.1.3 and 8.1.4 we can see that (as shown in
Figure 8.2)

λpA
−− µpB (8.1.5)

From equation 8.1.5 and the condition that

pA + pB
−− 1 (8.1.6)

we can solve forPA andPB:

pA
−−

µ

9λ + µ
and pB

−−
λ

9λ + µ
(8.1.7)

It should be noted that equation 8.1.5 can be written down simply by observing the state diagram
of figure 8.2, saving all the trouble in writing down (8.1.2) and (8.1.3) first.

General Situation

Consider a general system with a set of statesA0,A1,A2… wherepk(t) denotes the probability of
finding the system in stateAk at timet. We suppose that the probability that the system jumps
from the stateAk at timet to the stateAk+1 at time (t +∆t) isλk∆t, independent of the history of
the system before timet. Likewise the system may jump fromAk at timet to Ak−1 at time (t +∆t)

102 Chapter 8. Simple Queues with Random Arrivals

p
A

p
B

p
B

p
A

λ

λ

Figure 8.2.

0 1 2 k-1 k k+1

λ
0 λ λ λ

µµµµ
1

1 k-1 k

2 k k+1

Figure 8.3.

with probabilitypk∆t; and of course we must haveµ0
−− 0 because there is no stateA−1.

For any stateAk the probabilitypk(t) satisfies the following differential equation (analogous to
(8.1.3)).

dpk(t)

9dt
−− − (λk + µk)pk(t) + λk−1pk−1(t) + µk+1pk+1(t) (8.1.8)

When the system is in equilibrium we can equate
dpk(t)

9dt
to zero in equation 8.1.8 for allk and

solve forpk(t) (k−− 0,1,2…) subject to the condition that

p0 + p1 + p2 + … −− 1 (8.1.9)

Alternatively, with the help of the state diagram for the system (figure 8.3) we can directly write
down the set of equilibrium equations.

λ0p0−− µ1p1 (8.1.10)

(λ1 + µ1)p1−− λ0p0 + µ2p2

or in general

(λk + µk)pk
−− λk−1pk−1 + µk+1pk+1 (k ≥ 1)

8.1. Equilibrium solutions 103

and again solve (8.1.10) forpk subject to (8.1.4).

8.2. M/M/1 queue: single-server queue with random arrivals and exponential service
times

In this system we have

λk
−− λ ;k−− 0,1,2…

µk
−− µ ;k−− 1,2,3…

We say that the stateAk is occupied if there arek customers in the queue including the one being
served. Let us apply the ideas of section 8.1 to our queueing situation here. We first construct the
state diagram for the system as in Figure 8.4. Then we write down the equilibrium equations for
the systems as follows

λp0−− µp1 (8.2.1)

(λ + µ)p1−− λp0 + µp2

···

(λ + µ)pk
−− λpk−1 + µpk+1

with the normalizing condition

p0 + p1 + … −− 1 (8.2.2)

The recursive solution for (8.2.1) is

λpk
−− µpk+1 (8.2.3)

or in terms ofp0 andρ−− λ9µ

pk
−−

kρ p0 (8.2.4)

To findp0 we use equations (8.2.2) and (8.2.4)

∞∑
k−−0

kρ p0−− 1

and

∞∑
k−−0

kρ −−
1

91− ρ
(8.2.5)

104 Chapter 8. Simple Queues with Random Arrivals

0 1 2 k-1 k k+1

λ λ λ λ

µµµµ

Figure 8.4.

Hence

p0−− (1− ρ) (8.2.6)

and in general

pk
−− (1− ρ) kρ (8.2.7)

The mean number of customers in the system,N, can be found directly from (8.2.6)

−
N−−

∞∑
k−−0

kpk
−− (1− ρ)

∞∑
k−−0

k kρ

−
N−−

ρ

91− ρ
(8.2.8)

Exercise:Show that
−
N−−

ρ

91− ρ

The variance of the number of customers in the system is found to be

σ2
N
−−

ρ

9 2(1− ρ)
(8.2.9)

Using Little’s result we can now find the total average delay time, including the service time:

T−−
−
N
9λ
−−
ρ/λ
91− ρ

−−
1/µ

91− ρ
−−

1
9µ−λ

(8.2.10)

The probability of finding at leastk customers in the system is

P[N ≥ k in the system]−−
∞∑
i−−k

pi

8.2. M/M/1 queue 105

−− (1− ρ)
∞∑
i−−k

iρ

−−
kρ (8.2.11)

Figure 8.5 shows the dependence of the queue length and of the total delay time on the traffic
intensityρ.

Asρ approaches 1, both the queue length and the total delay grow very quickly.

8.3. Arrival rates and service times dependent on queue size

In this section we cover more general systems in which the rate at which customers arrive may
depend on the size of the queue. We suppose that transitionsAk → Ak+1 are associated with a
probabilitypk∆t and that transitionsAk → Ak−1 (for k > 0) are associated with a probability
µk∆t. We still assume that the probabilities referring to transition in (t, t +∆t) do not depend on
what happened beforet. For this situation the set of equilibrium equations (8.1.9) applies and the
solutions are found to be

pk
−−
λ0λ1λ2…λk−1
9µ1µ2µ3…µk

p0 (8.3.1)

or

pk
−− p0

k−1∏
i−−0

λi

9µi+1
k−− 0,1,2… (8.3.2)

By using condition (8.2.1) we obtain

p0−−
1

91+
∞∑

k−−1

k−1∏
i−−0

λi

9µi+1

−−
−1S (8.3.3)

We will apply these formulas to a number of queueing systems.

8.3.1. Queue with discouraged arrivals

Consider a case where the sight of a long queue discourages customers from joining it, say (see
Figure 8.6)

λk
−−

α
9k + 1

k−− 0,1,2…

µk
−− µ k−− 1,2,…

106 Chapter 8. Simple Queues with Random Arrivals

 0 1 0 1

Figure 8.5.

0 1 2 k-1 k k+1

µµµµ

α α α α/2 /k /(k+1)

Figure 8.6. State-transition-rate diagram for discouraged arrivals

then

S−− 1+α
9µ

+ 1
92!

2(
α
9µ

)
+ 1

93!

3(
α
9µ

)
+ …−− α/µe

and we find that

p0−−
−α/µe (8.3.1.1)

pk
−−

k(α/µ)
9k!

−α/µe (8.3.1.2)

We thushave a Poisson distributionof queue size with meanN−−α9µ
.The probability that the server

is free is −α/µe . The traffic intensityρ can also be interpreted as the fraction of time the server is
busy, i.e.

ρ−− 1−p0−− λ
−x (8.3.1.3)

We have therefore

8.3. Arrival rates and service times dependent on queue size 107

ρ−− 1− −α/ρe (8.3.1.4)

−−
λ
9µ

λ−− µσ−− µ(1− −α/µe)

Using Little’s result we obtain

T−−
−
N
9λ
−−

α

92µ (1− −α/µe)
(8.3.1.5)

8.3.2. M/M/∞: Queue with infinite number of servers

We consider the case that whenever a customer arrives there is a server made available to deal
with him without delay (Figure 8.7).

λk
−− λ k−− 0,1,2…

µk
−− kµ k−− 1,2,3…

Here we find

S−− 1+ λ
9µ

+ 1
92!

2(
λ
9µ

)
+ 1

93!

3(
λ
9µ

)
+ …−− λ/µe

p0−−
−λ/µe

pk
−−

k(λ/µ)
9k!

−λ/µe (8.3.2.1)

Again this is a Poisson distribution with mean queue size
−
N−− λ9µ

and average delay

T−−
−
N
9λ
−−

1
9µ

(8.3.2.2)

8.3.3. M/M/m: Queue with m servers

In this case (see figure 8.8)

λk
−− λ k−− 0,1,2…

µk
−− kµ 0 ≤ k ≤m

µk
−−mµ k ≥m

Here we find

108 Chapter 8. Simple Queues with Random Arrivals

0 1 2

λ λ λ λ

µ µ µ µ2 k (k+1)

k-1 k+1k

Figure 8.7.

0 1 2

λ λ λ λ

m-1 m m+1

µ µ µ µ2 m m

Figure 8.8.

Fork <m

pk
−−

−1S
k−−i∏
i−0

λ
9µ(i + 1)

−−
−1S

k(
λ
9µ

)
1
9k!

pk
−−

−1S
k(mρ)

9k!
; ρ−−

λ
9mµ

< 1 (8.3.3.1)

Fork >m

pk
−−

−1S
m−1∏
i−−0

λ
9µ(i + 1)

k−1∏
j−−m

λ
9mµ

−−
−1S

k(
λ
9µ

)
1

9m! k−mm

pk
−−

−1S
kρ mm
9m!

(8.3.3.2)

where

S−− 1+ λ
9µ

+
2
λ

92! 2µ
+ …+

m−1
λ

9(m− 1)! m−1µ
+ 1

9m!

m(
λ
9µ

)
+ 1

9m!

m+1(
λ
9µ

)
1
9m

+ …

−− 1+
m−1∑
k−−1

k(mρ)
9k!

+
∞∑

k−−m

k(mρ)
9m!

1
9 k−mm

8.3. Arrival rates and service times dependent on queue size 109

−−

[
m−1∑
k−−0

k(mρ)
9k!

]
+

[
mm

9m!

∞∑
k−−m

kρ

]

−−

[
m−1∑
k−−0

k(mρ)
9k!

]
+

[
m(mρ)

9m!

(
1

91− ρ

)]
(8.3.3.3)

Exercise:Find the probability that an arriving customer is forced to join the queue (Erlang’s C
formula).

8.3.4. M/M/1/K: Queue with finite storage

We consider a queueing system in which there is a single server, with Poisson arrivals and
exponential service time, but we assume the system can hold at most a total ofK customers
(including the customer in service). Here we have (Figure 8.9)

λk
−− λ k < K

λk
−− 0 k ≥ K

µk
−− µ k−− 1,2…K

This implies that customers continue to arrive according to a Poisson process but only those who
find the system with less thanK customers will be allowed entry otherwise they are considered
to be lost and do not return later.

Then we find

S−− 1+ λ
9µ

+
2(λ

9µ
) + …+

K(
λ
9µ

)

−−
1− K+1(λ/µ)

91− (λ/µ)
(8.3.4.1)

and

pk
−−

−1S
k−1∏
i−−0

(
λ
9µ

)

−−
−1S

k(
λ
9µ

)

pk
−−

k(
λ
9µ

) 1−
(
λ
9µ

)

91−
K+1(

λ
9µ

) , for k ≤ K (8.3.4.2)

−− 0 , otherwise

110 Chapter 8. Simple Queues with Random Arrivals

0 1 2

λ λ λ λ

µµµµ

K-2 K-1 K

Figure 8.9.

8.3.5. M/M/m/m: m-server loss system

Calls on telephone exchange withm lines. This is the situation which arises when we consider a
telephone exchange with justmlinesand no facility for holding subscriberswho require a line but
can not be supplied with one. It is assumed that such calls are lost. We have (see figure 8.10)

λk
−− λ k <m

λk
−− 0 k ≥m

µk
−− kµ k−− 1,2…m

Here we find that

S−− 1+ λ
9µ

+ 1
92!

2(
λ
9µ

)
+ … 1

9m!

m(
λ
9µ

)
(8.3.5.1)

That is

p0−−

−1[
m∑

k−−0

k(
λ
9µ

)
1
9k!

]

and

pk
−−

−1S
k−1∏
i−−0

λ
9µ(i + 1)

k ≤m

pk
−−

k(
λ
9µ

)
1
9k!

9
m∑

m−−0

k(
λ
9µ

)
1
9k!

k ≤m (8.3.5.2)

−− 0 k >m

In particular,pm describes the fraction of time that allmservers are busy. The expression forp is
called Erlang’s loss formula and is given by

8.3. Arrival rates and service times dependent on queue size 111

0 1 2

λ λ λ λ

µ µ µ µ2 m(m-1)

m-2 m-1 m

Figure 8.10.

pm
−−

m(
λ
9µ

)
1
9m!

9
m∑

k−−0

k(
λ
9µ

)
1
9k!

(8.3.5.3)

Chapter 9. The Single Server Queue

9.1. The single server queue - M/M/1 queue

A single server queue of packets waiting to be transmitted is shown in figure 9.1.

Assumptions

We assume that the arrivals at the node have a Poisson distribution with average rate of message
arrivalx. The probability thatk messages will arrive in an interval oft seconds is given by

pk(t)−−
k(λt) −λte
9k!

; k−− 0,1,2…

The probability distribution function of the interarrival time is

A(t)−− 1− −λte ; t ≥ 0

We also assume that the length of the messages has an exponential distribution with mean1/µ
bits, i.e.

B(x)−− 1− −µxe ; x ≥ 0

We assume that the capacity of the link isC bits per second. Thus the link transmission time or
“service time”, for a messageP bits in length isP/C seconds.

We assume that the stored messages are served in order of their arrival, i.e. a First-in First-out
(FIFO) queue discipline.

Let pk be the equilibrium probability that there are exactlyk customers in the system (queue
and server). Figure 9.2 shows the states for a singleserver queueing system, with the allowed
transitions indicated by arrows.

In equilibrium the probability of finding the system in a given state does not change with time.
From Figure 9.2,

λp0−− µCp1

λp1−− µCp2

λpk
−− µCpk+1

From these equations we can solve forpk in terms ofp0, i.e.

112

9.1. The single server queue - M/M/1 queue 113

server
unidirectional link

arrival rate

λ messages/sec

queue of messages

Figure 9.1. A unidirectional link and single-server queue

0 1 2 k-1 k k+1

λ λ λ

µµµµ

λ p p p p

p p p p

0 1 k-1 k

1 2 k k+1

Figure 9.2.

pk
−−

kρ p0 where ρ−− λ
9µC

To findp0 we use the fact that

∞∑
k−−0

pk
−− 0 → p0−− (1− ρ)

hence

pk
−− (1− ρ) kρ

The mean number of customers in the system,N, can be found directly from the state
probabilities

N−−
∞∑

k−−0
kpk

N−−
ρ

91− ρ
By using Little’s theorem, which states that the average number of customers in the system is
equal to the average arrival rate of customers to that system, times the average time spent in that
system:

114 Chapter 9. The Single Server Queue

N−− λT

We can find the total average timeT

T−− N
9λ
−−

1
9µC(1− ρ)

−−
1

9µC−λ

The average queueing or waiting time for a message is given by

W−− T− service time −− T− 1
9µC

W−−
ρ

9µC(1− ρ)

9.2. The M/G/1 queues

The M/G/1 queue is a single-server system with Poisson arrivals and arbitrary service time
distribution denoted byB(x). The interarrival time distribution is given by

A(t)−− 1− −λte , t ≥O

with an average arrival rate ofλ customers per second, a mean interarrival time of1/λ sec, and
a varianceσ2

a
−− 1/ 2

λ .

The well known formula, the Pollaczek-Khinchin mean value formula, for the average number
of customers in an M/G/1system is given by:

N−− ρ + 2ρ
1+ C2

b

92(1− ρ)

where

Cb ≡
σ2

b

92−x

From this and by using the Little’s theorem we find

T−−−x +
ρ−x(1+ C2

b)

92(1− ρ)
; ρ−− λ−x

9.2. The M/G/1 queues 115

Thus we have the average queueing time

W−−
ρ−x(1+ C2

b)

92(1− ρ)
−−

λ
−2x

92(1− ρ)

9.3. Response time for a contention model

We consider a single multipoint line that connects several terminals to the computer. Messages
generated at terminals follow a Poisson distribution. We assume that when a terminal generates
a message, it may seize the line, if the line is free, send its message and receive the computer
response message; if the line is busy the newly generated message must wait until the line
becomes available.

The response time, defined as the time interval between the terminal’s seizure of the line and the
beginning of the receipt of the response message, is composed of:

(1) Queueing for storage at local terminal

(2) Queueing for lines→W

(3) Propagation time

(4) Transmission time→ ttm + tcr

(5) Computer processing time→ tcs

We will assume (1) and (3) are negligible. In the context of queueing systems the average service
time for a message is given by:

−x−− ttm + tcs+ tcr

If we assume that the service time in general can assume any distribution and only that its average
−x and its varianceσ2

x are known, then the average queueing delay is given by:

W−−

ρ−x

(
1+

σ2
x

92−x

)
92(1− ρ)

and the average response time is given by:

T−−W +−x

Example

116 Chapter 9. The Single Server Queue

Average service time = x =
1

µ

queueing

computer

t

t

t cs

tm

cr

Figure 9.3.

Suppose we have 10 terminals with an average message rate of 90 messages per terminal per
hour. Assume all messages have a constant length of 800 bits and the line speed is C = 2400 bps.
Assume further that:

tcs
−− 0.2 sec

σ2
cs
−− 0.1

tcr
−− 0.5 sec

σ2
cr
−− 0.8

λ−−

ttm−−

−x−−

σ2
x
−−

ρ−−

And so

W−− 0.258×1.033×

[
1+ 0.9

9 21.033

]
92(1− 0.258)

−− 0.331 sec

and the response time is

T−−W +−x−− 0.331+ 1.033

−− 1.374 seconds

9.3. Response time for a contention model 117

The response time is shown graphically in Figure 9.4.

9.4. Networks of M/M/1 queues

The results derived in section 9.2 for the M/M/1queue can be directly applied to the problem of
finding the queueing delay for packets in an IMP. However, when applied to a network of queues
we face a number of problems.

The first problem is that the communication channels are not isolated.The output of one channel
becomes the input to another. Packets in a single IMP may come from several channels. Thus the
input to a certain line is no longer a single external Poisson process but the sum of the outputs of
several other network lines. Fortunately, it has been shown by Burke that if the output of several
M/M/1 queues feed into the input of another queue, the resulting input arrival process is also a
Poisson process, with mean equal to the sum of the means of the feeding process. This is shown
in figure 9.5.

Even more fortunate, Jackson has shown that an open network of M/M/1queues can be analyzed
as though each one were isolated from all the others. All that is required is the mean input rate.

Another problem is that once a packet is generated at a node it retains its size throughout
its passage through the network. This property introduces correlations into the system and
causes severe mathematical difficulties in the analysis. Kleinrock therefore introduced the
“Independence Assumption”, which assumes that every time a packet arrives at a node, a new
length is chosen for it at random from a negative exponential distribution with average length1/µ
bits. This assumption is contradictory to reality but simulations and actual measurements show
that it is quite reasonable to make, and allows the model to produce reliable results.

As a consequence of the independence assumption, and of the Burke and Jackson theorems,
the queues at the node of packets waiting for links to become available can each be treated
independently according to the single server queue results.

As an example, consider the 3-node network of Figure 9.6

λ1−− γ13 + γ12

λ2−− γ13 + γ23

λ3−− γ31 + γ32

λ4−− γ21 + γ31

The average time in the system for messages that traverse link 1 is

T1−−
1

9µC1− (γ13 + γ12)

for messages that traverse link 2

118 Chapter 9. The Single Server Queue

 0 1

Figure 9.4.

- tλ

λ

λ

λ

2

1

n

λ= λ0 +λ 1 +λ +λ2 n

M/M/1

M/M/1

A(t) = 1-e

...

Figure 9.5.

T2−−
1

9µC2− (γ13 + γ23)

and so on. Thus the average time in the system for messages going from source node 1 to
destination node 3 isT1 + T2.

9.4. Networks of M/M/1 queues 119

1 2 3

γ
12

γ

γ

γ

γ

γ

13

23

21

31

32

link 1 link 2

link 3link 4

Figure 9.6.

The average time in the system for all packets, (i.e. the average packet delay time through the
network) is defined as

T−−
m∑

i−−1

λiTi

9γ

wherem is the number of links in the network and

γ −−
n∑

i−−1

n∑
j−−1
γij

wheren is the number of nodes in the network.

Chapter 10. Capacity Assignment in
Distributed Networks

10.1. Introduction

Consider a computer communication network withM-channels andN-nodes. TheM
communication channels are assumed to be noiseless, reliable and to have a capacity denoted by
Ci (bits per second) for theith channel.TheN nodes refer to the packet switching centres (IMPS).
Traffic entering the network from external sources (i.e. from Hosts) forms a Poisson process with
a meanγjk (packets per second) for those packets originating at nodej and destined for nodek.
The total external traffic entering the network is defined by

γ −−

N∑
j−−1

N∑
k−−1

γjk

Since each channel in the network is considered to be a separate server,γi isdefined as the average
flow (packets per second) in theith channel. The total traffic within the network is defined by

λ−−
M∑
i−−1

λi

We further assume that the cost of constructing theith channel with capacityCi is given bydi(Ci).
The total cost of the network (assuming to consist only of the cost for channel construction) is
given by

D−−
M∑
i−−1

di(Ci)

The average packet delay defined as the average total time that a message spends in the network
is

T−− E[packet delay]

10.2. Square root channel capacity assignment

The optimization problem here is to assign capacityCi to each link of the network in such a way
that the average packet delayT through the network is minimized subject to a certain constraint.

120

10.2. Square root channel capacity assignment 121

More precisely we can put it as follows:

CA PROBLEM

Given: Flows{λi} and network topology
Minimize: T
With respect to: {Ci}

Under constraint: D−−
M∑
i−−1

di(Ci)

Given{λi} on each link means that we must know the routing algorithm.λi is then derived from
the end-to-end traffic{γjk}. di(Ci) can be a very general function, here we only consider a linear
functiondiCi.

SOLUTION

To minimizeT we proceed by forming the Lagrangian as follows

L−− T + β[
M∑
i−−1

diCi−D]

−−
M∑
i−−1

λi

9γ
[1
9µCi−λi

] + β[
M∑
i−−1

diCi−D]

As usual we must satisfy the following set ofM equations

∂L
9∂Ci

−− 0 ; i −− 1,2…M

i.e.

0−−
λi

9γ
−µ

9
2(

µCi−λsuni
) + βdi

or

Ci
−−
λi

9µ
+

2(
λi

9di

)
1

9
√

9µβγ

To findβ we multiplyCi by di and sum over alli:

M∑
i−−1

diCi
−−

1
9
√

9βµγ
−−

and by defining the “excess dollars”De by

122 Chapter 10. Capacity Assignment in Distributed Networks

De≡ D−
M∑
i−−1

λidi

9µ

The optimal solution to the linear CA problem is

Ci
−−
λi

9µ
+

(
De

9di

) √
9λidi

9
M∑
j−−1

√
9λjdj

, i −− 1,2…M

This assignment of capacity is called the “Square root channel capacity assignment” sinceCi
has a term proportional to

√
9λi. The minimum average time delay, found by using this optimal

capacity assignment is given by

T−−
M∑

i−−2

λi

9γ

[
1

9µCi−λi

]

−−
−n

9µDe

2[
M∑
i−−1

√
9

(
λidi

9λ

)]
where−n denotes the mean number of hops per packet, i.e.

−n−− λ9γ

10.3. A special case

An important special case is whendi
−− d (without any loss of generality, we can assumed −−

1). This case appears when one considers satellite communication channels in which the distance
between any two points on earth within the coverage of the satellite is essentially the same
regardless of the terrestrial distance between these two points. In this case

D−−
∑

Ci
−− C

i.e. the total capacity is held constant. The optimal assignment is

Ci
−−
λi

9µ
+ C(1−−n ∗ρ)

√
9λi

9
M∑
j−−1

√
9λj

i −− 1,2…M

10.3. A special case 123

T−−

−n

2(
M∑
i−−1

√
9
λi

9λ

)
9µC(1−−n ∗ρ)

where

∗ρ ≡
γ

9µC

Compare these equations with those in Schwartz, whereρ −−
λ

9µC
which is equivalent to traffic

intensity parameter for the entire network.

Ci
−−
λi

9µ
+ C(1− ρ)

√
9λi

9
M∑
j−−1

√
9λj

T−−

(
M∑
i−−1

√
9λi

)
9γµC(1− ρ)

REMARKS

1. From the expression forT it can be seen thatT is proportional to−n. This suggests that the
minimum delay is obtained with a fully connected network. (See figure 10.1).

2. On the other hand, the term
2(∑λi

9λ

)
in the expression forT is minimum if one of these

terms is 1and all the rest are zero.This indicates thatT is minimized if traffic is concentrated
on few large capacity links and very little traffic on the others. The loop network has this
property, but unfortunately the average number of hops per packet−n is high.

3. A star network achievesa relativelyhigh concentration of trafficon each link and an average
−n' 2. This indicates that we should choose a topology which falls between fully connected
and star configurations. It is suggested by Kleinrock that forρ → 0 a star-like net is more
appropriate, and whenρ→ 1 a more connected net is a better choice.

10.4. Some other capacity assignments

1. Uniform assignment in which every line gets an equal amount of capacity, i.e.Ci
−−

C
9M

for
all M.

It will be seen later that the uniform assignment increases the overall average time delay

124 Chapter 10. Capacity Assignment in Distributed Networks

(a)

(b) (c)

Figure 10.1. Three topologies of interest: (a) the fully connected net; (b) the loop network; (c)
the star net

per packet but reduces the difference in time delays on light and heavy traffic links.

2. Proportional assignment in whichCi is proportional to1< the traffic demandλi i.e.

Ci
−−
λi

9λ

It will be seen that the proportional assignment increases the average time delay (relative

10.4. Some other capacity assignments 125

to the square-root assignment), and also exagerates the distinction between light and heavy
traffic lines. The lighter user is penalized in favor of the heavy user.

3. The CA problem can be generalized as follows:

The problem is to chooseCi to minimize

(k)T −−

1/k[
M∑
i−−1

λi

9λ

k(
Ti

)]

subject to the constraint:

D−−
M∑
i−−1

diCi

Fork−− 1 we have considered in section 10.1

Fork−− 2 we have a mean-squared delay to be minimized

Fork→∞we have a min-max criterion where the largest time delay on any links is being
minimized, subject to the constraint of cost.

A Lagrange multiplier technique is used as in section 10.1, and the optimum capacity
assignment for arbitraryk is given by

C(k)
i
−−
λi

9µ
+

De

9di

1/(1+k)(
λid

k
i

)

9
M∑
j−−1

1/(1+k)(
λid

k
i

) , i −− 1,2…M

and

(k)T −−

1/k(−n
)

9µDe

(1+k)/k[
M∑
i−−1

1/(1+k)(
λid

k
i

9λ

)]

10.5. An example

A 7-link network is given in figure 10.2. All links are assumed to be full-duplex and symmetrical
in capacity.The traffic reauirement is given in Table 10.1. Assuming that the routing of messages
takes on the shortest geoaraphical route as shown in Table 10.2. Assuming further that all
messages have the same average length1/µ bits and that the overall network message capacity in
messages/sec is fixed atµC−− 192 messages/sec.Find the capacity of each line so that the average

126 Chapter 10. Capacity Assignment in Distributed Networks

4

5

2
1

3

Denver

Chicago

Houston

New York

Los Angeles

3.15

3.55

0.13

0.82

3.88

2

1

3

5 6

7

4

3.64

9.95

Figure 10.2. Network example (shortest distance routing)

Destination:
New Los
York Chicago Houston Angeles Denver

Source City 1 2 3 4 5
1. New York 9.34 0.935 2.94 0.610
2. Chicago 9.34 0.820 2.40 0.628
3. Houston 0.935 0.820 0.608 0.131
4. Los Angeles 2.94 2.40 0.608 0.753
5. Denver 0.610 0.628 0.131 0.753

Table 10.1. Traffic Matrix Network

Destination:
source 1 2 3 4 5

1 1− 2(l7) 1− 3(l6) 1− 3− 4(l6, l2) 1− 2− 5(l7, l4)

2 2− 1(l7) 2− 3(l5) 2− 5− 4(l4, l1) 2− 5(l4)

3 3− 1(l6) 3− 2(l5) 3− 4(l2) 3− 5(l3)

4 4− 3− 1(l2, l6) 4− 5− 2(l1, l4) 4− 3(l2) 4− 5(l1)

5 5− 2− 1(l4, l7) 5− 2(l4) 5− 3(l3) 5− 4(l1)

Table 10.2. Routing

10.5. An example 127

message time delay is minimized. Find the minimum time delay.

Answer

From the traffic requirementγij. and the routing assignment, the traffic flow (one way) on each
link can be derived as follows:

λ1−− γ24 + γ45
−− 2.40 + 0.753 −− 3.15 messages/sec one way

λ2−− γ14 + γ34
−− 2.94 + 0.608 −− 3.55

λ3−− γ35
−− 0.131

λ4−− γ15 + γ24 + γ25
−− 0.610 + 2.40 + 0.628 −− 3.64

λ5−− γ23
−− 0.820

λ6−− γ13 + γ14
−− 0.935 + 2.94 −− 3.88

λ7−− γ12 + γ15
−− 9.34 + 0.61 −− 9.95

The total one way link traffic is

λ−−
7∑

i−−1
λi
−− 25.12 messages/sec

The total number of messages/sec entering the entire network on the average is

γ −−
∑

jk

γjk
−− 38.3 messages/sec

For one way trafficγ′−−
γ

92
−− 19.15 messages/sec.

The average number of hops per packet is

−n −− λ
9γ′
−−

25.12
919.15

−− 1.3

The CapacityCi can be calculated by using the formula

Ci
−− λi + µC(1− ρ)

√
9λi

9
M∑
j−−1

√
9λj

hereρ −− λ
9µC
−−

25.12
9192

−− 0.13 ⇒ 1− ρ−− 0.87
and so

128 Chapter 10. Capacity Assignment in Distributed Networks

M∑
j−−1

√
9λj
−−
√

93.15 +
√

93.55 +
√

90.13 +
√

93.64 +
√

90.82 +
√

93.88 +
√

99.95

−− 1.77 + 1.88 + 0.36 + 1.91+ 0.91+ 1.97 + 3.15

−− 11.95

µC1−− λ1 + 192×0.87

√
9λ1

911.95

−− λ1 + 13.98
√

9λ1

∴µC1−− 3.15 + 13.98×1.77 −− 27.89≈ 28

µC2−− 3.55 + 13.98×1.88 −− 29.83≈ 30

µC3−− 0.13 + 13.98×0.36 −− 5.16≈ 5

µC4−− 3.64 + 13.98×1.91 −− 30.34≈ 30

µC5−− 0.82 + 13.98×0.91 −− 13.54≈ 13.5

µC6−− 3.88 + 13.98×1.97 −− 31.42≈ 31.5

µC7−− 0.05 + 13.98×3.15 −− 53.99≈ 54
The minimum average message delay is calculated using the formula

T −−

2[
M∑
i−−1

√
9λi

]
9γ′µC(1− ρ)

−−
211.95

919.15×192×0.87
−− 0.042 second

The capacities and time delays obtained for using

(i) square root assignment

(ii) equal assignment

(iii) proportional assignment

are summarized in table 10.3.

Exercise

If an alternate routing as shown in Table 10.4 is used, show that the one-way traffic link flows,λi
are as indicated in figure 10.4, and that

−n−− 1.47

10.5. An example 129

Link Demand
λi, one-

way, mes-
sages/sec

Square root Ti (msec) equal as-
signment

Ti (msec) proportion-
al

1 3.15 28 40.4 27.4 41.3 24
2 3.55 30 37.8 27.4 41.9 27.5
3 0.13 5 206 27.4 36.6 1
4 3.64 30 38 27.4 42.1 28
5 0.82 13.5 78.8 27.4 37.6 6.3
6 3.88 31.5 36.2 27.4 42.5 30
7 9.95 54 22.6 27.4 57.3 76.5

−
Tmin
−−

42msec

−
T−−−−

57.6msec

−
Tprop

−−
54.8msec

Table 10.3. Capacity allocationµCi (one-way, messages/sec)

Tmin
−− 44msec

130 Chapter 10. Capacity Assignment in Distributed Networks

Destination:
source 1 2 3 4 5

1 l7 l6 l7, l4, l1 l7, l4
2 l7 l5 l4, l1 l4
3 l6 l5 l2 l3
4 l1, l4, l7 l1, l4 l2 l1
5 l4, l7 l4 l3 l1

Table 10.4. Alternate Routing

4

5

2
1

3

Denver

Chicago

Houston

New York

Los Angeles

0.13

0.82

2

1

3

5 6

7

4

6.1

6.58

12.7

0.61

0.93

Figure 10.4. Alternate routing,λi’s (messages/sec) shown, either direction

Chapter 11. Dynamic Buffering and Block
Storage

In thischapter we examine the processof dynamicbuffering for inbound messagesfrom a number
of communication lines to a centralized computer. Static assignment of private storage to each
line for message assembly results in costly and inefficient usage of memory resource by ignoring
the stochastic behaviour of both message generation and message length. A more efficient
assignment would be sharing buffer storage among all the lines by dynamically allocating buffers
from a public pool for message assembly.

Messages are generally stored as blocks, with overhead characters assigned to link more than
one block corresponding to message together. In this section we develop a stochastic model for
the dynamic buffering process. We then use the model to determine the total storage requirement
as well as the optimal buffer block size.

11.1. Modelling storage usage

Consider a computer havingM communication lines attached. (See figure 11.1). The model
could apply equally well to terminals accessing a concentrator in a time-sharing mode, or to
concentrators accessing a central processing unit (CPU).

We consider the simplest form of dynamic buffering: when a request for service is made on any
line, a block ofB characters from the buffer is assigned instantaneously.When the block is filled
up another block is in turn assigned instantaneously, the process continues until the message on
that particular line has been completely deposited in the buffer. (See figure 11.2).

Each block assigned hasB characters,b of which are for message characters,c for the necessary
overhead.

The approach here is to assume an unlimited buffer pool and then to find the number of blocks
S typically required by theM lines connected such that the probability of exceedingS is some
small specified number.

To develop the model we make the following assumptions:

(i) Each of theM lines feeding the computer has identical characteristics, with activity on one
line being independent of activity on any other.

(ii) Arrival of individual characters belonging to a single message proceeds at a constant rate
(r characters per second) from start of message (SOM) through end of message (EOM).

(iii) Each of theM lines is assumed alternately active and idle. (figure 11.3(a)). During the
active period the message is assumed exponentially-distributed with the average message
transmission time of1/γ sec, this corresponds to an average message length of1/µ−− r/ γ
characters. In the idle interval, the period between the end and start of an active period is

131

132 Chapter 11. Dynamic Buffering and Block Storage

COMPUTER

Buffer: block of

B=b+c characters
c = overhead characters

1

2

M

Lines

or

ports

connected

Figure 11.1. M lines connected to a computer

line 1

line 2

line M

(a) Possible realisation for M message times

SOM

EOM

idle

idle

active

age

timet

line 1

line 2

line M

timet

(b) Equivalent realisation for storage blocks assigned

blocks assigned

IBB

AIBB

11.1. Modelling storage usage 133

Figure 11.2. Message age versus storage allocation

also assumed exponentially distributed in length, with average length1/λ sec.

With the above assumptions we can model the entire process as consisting ofM independent
M/M/1queueing systems as shown in figure 11.3(b).

11.2. Average buffer storage

We now can proceed to find the average number of blocks needed for a typical incoming line.

Since each block containsb message characters, any message of lengthb or less requires one
block. A message with length betweenb and2b requires 2 blocks, etc. The exponential message
length distribution in “time” is sketched in figure 11.4.

Let f j be the probability thati blocks are needed when a terminal at one of the line requests

service.f j is just the probability that the message length is between (j− 1)b
9r

and
jb
9r

seconds.

f j
−−

jb
9r

∫
(j−1)b

9r

γ −γτe dτ (11.2.1)

−− −
−γτe |

jb
9r
(j−1)b

9r

−−
−γb

9r
(j−1)

e
[

1−
−γb

9re

]
By letting

q−−
−γb

9re −−
−µbe

and

p−− 1− −µbe −− 1−q

we have

f j
−−

j−1q p ; j −− 1,2… (11.2.2)

i.e. the number of blocks needed follows the geometric distribution.

Thus theaveragenumber of blocks needed per active line is

E[Si| line i active]−−
∞∑
j−−1

jf j
−− pj

∞∑
j−−1

j j−1q

134 Chapter 11. Dynamic Buffering and Block Storage

1
λ

1
γ

1
µ

r
γ

idle active idle active

Average time sec Average time sec

Average message length = =

time

(a) State of an input line

(b) Equivalent queueing system

Figure 11.3. (a) state of an input line; (b) equivalent queueing system

−−
p

9 2(1−q)
−−

1
9p
−−

1
91− −µbe

(11.2.3)

The probability that a line is active is given by the fraction of the time the line is active.

i.e. Q−−
1/γ

91/γ + 1/λ
−−

ρ

91+ ρ
; whereρ−− λ9µ

(11.2.4)

The average number of blocks needed by a given line isQ/p. For theM lines connected to the
computer, the average number of blocks of buffer storage needed is

11.2. Average buffer storage 135

0

γ

γe
-γ

τ

0 b/r 2b/r 3b/r

Message length τ (sec)

Figure 11.4. Calculation of blocks needed (the shaded region is the probability that 2 blocks are
needed)

E[S]−−
MQ
9p

(11.2.5)

The average number of characters needed in the buffer is then

E[N]−− (11.2.6)

Example

A data terminal transmits on average, 3 characters per second, at a rate ofr −− ??? characters/sec.
If the average message length is1

9µ
−−???characters,how many blocksof buffer storage are needed

for this line if b−− 2.

Answer

In any time interval the percentage of the active and idle period are:

% active −−

% idle −−

The average message transmission time is1
9γ
−− 1 sec

The average idle period is then1
9λ
−−

136 Chapter 11. Dynamic Buffering and Block Storage

The average number of blocks needed by the line is

E[Si]−−
Q
9p
−−

(
0.3

91− −20/20e
−−

0.3
90.1
−− 3

)

if C −− 2 overhead characters are used, an average of 12 characters per incoming line will be
needed at the buffer.

From equation 11.2.5 it is clear that there is an optimum block sizeb that minimizes the number
of characters needed. To findbopt we differentiate (11.2.6) with respect toband set the derivative
equal to zero. i.e.

d
9db

E(N)−− d
9db

(
MQ(b + c)

91−esup−µb

)
−− 0 (11.2.7)

−−
−−

1+ µb + µc−− 1+ µb +
(µb 2)

92!
+

(µb 3)
93!

+ … (11.2.8)

If we assumeµC¿ 1 (i.e. the overhead charactersc is small compared to the average message
length1/µ) then

1+ µb + µc' 1+ µb +
(µb 2)

92

or

bopt'

√
92c
(

1
9µ

)
(11.2.9)

Example:

• If 1/µ−− 20, c−− 2 then optimum block size is 9 characters. The actual block size isB−− b +
c−− ll characters.

• If 1/µ−− 10, c−− 3, bopt
−− 8 characters and a total of 11 characters are still needed for each

block.

11.3. Buffer size for a specific probability of overflow

It is found that the average number of characters residing in the buffer is a very poor measure
of the buffer sized needed. The buffer size should be chosen such that for given parameters
the specified probability of overflow is met. In our case we simply find a storage level whose
probability of being exceded matches the overflow criterion.

11.3. Buffer size for a specific probability of overflow 137

The method for doing this is straightforward. We have to find the probabilityhi that i blocks are
required byM lines and then find a levelSsuch that Pr[SL(t) > S] < ε or equivalently Pr[SL(t) ≤
S] ≥ 1− ε, whereC is the performance constraint,L(t) denotes a random variable corresponding
to the number of active lines. In other wordsS is the buffer size needed.

The probabilityhi is given by:

hi
−− P[SL(t)−− i] (11.3.1)

−−
M∑

n−−0

Probability that n

out of M lines are
active

×

Probability that these
n lines require a total
i blocks of storage

−−
M∑

n−−0
P[L(t)−− n] × P[X1(t) + X2(t) + …Xn(t)−− i | L(t)−− n] (11.3.2)

whereXl(t) is a random variable denoting the number of block required by thelth active line.

The probability thatn out of M lines are active is just the binomial distribution, with the
probabilityQ (equation 11.2.4) that any one line is active as the basic parameter:

P[L(t)−− n]−−
(

M
n

)
nQ M−n(1−Q) ; n−− 0,1,2…M (11.3.3)

The probabilityP[X1 + X2 + …Xn
−− i | L −− n] thatn active lines requirei blocks can be found in

terms of the probabilityf j. (equation 11.2.2). The following results are from Schultz.

h0−−
M(1−Q)

hi
−−

M(1−Q) iq
min(i,M)∑

n−−1

(
M
n

)(
i− 1
n− 1

) n[
Q(1−p)
9q(1−Q)

]
(11.3.4)

From which the average buffer size required is again (cf equation 11.2.5)

E(SN)−−
MQ
9p

The following curves are taken from Schultz. The average message length is assumed 600
characters,each terminal active 50% of the time, the number of overhead character in each block
is 4, and the probability of exceeding the buffer pool size is−210 .

Exercise

For M −− 1, Q−− 0.3, 1/µ −− 20 characters,c−− 3 overhead characters,b−− 10 characters. Show
that for a probability of overflowP[SL(t) > i]−−

−310 the buffer storage requirements−− i −− 12
blocks.

138 Chapter 11. Dynamic Buffering and Block Storage

b = 69opt
M=100

M=50

M=4

50000

40000

30000

20000

10000

0 50 100 150 200

b: Message characters/block

N: character
pool size

needed

Figure 11.5. Buffer size requirement [approximate]. (From G.D. Schultz, “A Stochastic Model
for Message Assembly Buffering with a Comparison of Block Assignment Strategies,”J.of the
ACM, 19, no. 3, July 19721, 483.) This corresponds toQ−− 0.5, 1

9µ
−− 600char.,c−− 4 char.,prob[S

> i]−−
−210

11.4. Concentration: Finite buffers

In this section we will examine the buffering problems in concentrators for store-and-forward
networks.We will consider the effects of finite buffer size, and the probability of buffer overflow
using the Poisson message arrival model with geometric lengths.

11.4.1. Finite buffer size model

The model is depicted in figure 11.6. A random number of charactersk may arrive every∆sec
interval, and a random numbern characters are present in the buffer whose maximum size isN.
∆ is the character service time. Letπk be the probability ofk characters arriving in∆sec andpn
be the probability thatn characters are present in the buffer. The approach used here consists of
actually writing down explicit expression for the probabilities of buffer occupancy, and solving
the resultant equations recurvively by computer.

At equilibrium the following equations relate the probability of having a particular buffer state
present at the end of a∆ second interval to the possible states that could have existed at the end
of the previous interval, given no more than 1 character removed in∆sec.

p0−− π0p1 + π0p0

p1−− π0p2 + π1p1 + π1p0

p2−− π0p3 + π1p2 + π2p1 + π2p0

11.4. Concentration: Finite buffers 139

Buffer

n characters present

0 <= n <= N

1 char / seck chars/ sec

prob =
k

∆ ∆

π

Figure 11.6. Finite buffer model

···

pn
−− π0pn+1 +

n∑
i−−1
πn−i+1pi + πnp0

···

pN
−− pN

∞∑
i−−1
πi + pN−1

∞∑
i−−2
πi + …+ p2

∞∑
i−−N−1

πi + (p1 + p0)
∞∑

i−−N
πi

−− pN(1−π0) + pN−1(1−π0−π1) + …

pi>N
−− 0

N∑
i−−0

pi
−− 1 (11.4.1.1)

For example, in the second equation of (11.4.1.1), the probabilityp1 that one character being
present in the buffer consists of 3 events:

(i) Two characters were present during the previous interval, one was emitted, none arrived.

(ii) One was present and left, one arrived.

(iii) The buffer was empty and one arrived.

In the equation forpN, we assume that when the buffer is full the excess arrived characters are
blocked or turned away.

With the input message statistics given, theπs are known explicitly and thepns can be found by
solving the system of equation (11.4.1.1).

11.4.2. Probability of buffer overflow

For design purposes we would like to find the probability of buffer overflow and relate this to the
buffer capacityN and to the traffic intensity. Consider the mode of figure 11.7.

Let λ/p characters/sec attempt to enter the buffer whereX is the Poisson arrival parameter and

140 Chapter 11. Dynamic Buffering and Block Storage

Finite buffer
char/sec leave

on average

char/sec arrive

on average

char/sec blocked

α

λ

p
p
of

Figure 11.7. Buffer overflow model

1/p is the average length of a message in characters.Letα char/sec represent the average number
leaving the buffer.α must differ from the number attempting to enter by exactly those blocked
due to the buffer overflow. The fraction of those blocked is just (λ/p)Pof. Hence

α∆−−

(
λ
9p
−λ

9p
Pof

)
(11.4.2.1)

We can relateα to p0, the probability the buffer is empty, by the following argument:

• Characters can only leave when the buffer has at least one character stored or is not
empty.

• Only one character can leave in∆sec.

• The probability that the buffer is not empty is:1−p0.Hence the average number of character
leaving in∆sec is1×(1−p0), i.e.

α∆−− 1−p0 (11.4.2.2)

From (11.4.1.1) and (11.4.2.1) the buffer overflow probability is given by

Pof
−− 1−

p(1−p0)

9λ∆
(11.4.2.3)

wherep0 is found by solving the set of equations (11.4.1.1).

Following results are taken from Chu.

The buffer size as a function of message length1/p is sketched in figure 11.8 for overflow
probabilityPof

−−
−610 .

Exercise

Show that for a finite M/M/1 buffer which can accommodate a maximum ofM messages, the
probability of message blocking and the overflow probability are the same, i.e.

11.4. Concentration: Finite buffers 141

Average message length (characters)1
9p

Pof ρ−− 0.6 buffer capacityN (characters)

Finite Exponential

1 −310 5 12

1 −710 16 30

2 −310 22 24

2 −810 63 69

4 −310 50 47

4 −810 153 144

10 −310 150 118

10 −810 410 393

Table 11.1. Buffer capacity and overflow probability

1 20 40 60 80
10

100

1000

10000

Average burst length, 1/p, in characters

N, buffer size, (char)

Exponential approx.

= 0.8

= 0.3ρ

ρ

Figure 11.8. Buffer size vs. message length,Pof
−−

−610 . (From W.W. Chu, “Buffer Behavior
for Batch Poisson Arrivals and Single Constant Output,”IEEE Trans. on Communication
Technology, COM-18, no. 5, Oct 1970, 613-18.)

pof
−− pB

−− pM
−−

(1− ρ) Mρ

91− M+1ρ

The character capacity of an M/M/1buffer is approximated by

142 Chapter 11. Dynamic Buffering and Block Storage

N−−M
9µ

where1/µ is the average message length in characters.

11.4.3. Example

The above results can be used for some simple design calculations.As an example,say the central
processor (CPU) ultimately connects with 46 data terminals as shown in figure 11.9.

Assume that each terminal transmits, at a Poisson rate, an average of 1 message every 2.84 sec.
The CPU replies at the same rate so that the number of Poisson-distributed message leaving the
computer is46λ. Assume the CPU messages to each terminal are geometrically distributed in
length,with a mean length1/p−− 20 characters.Say 20%is added for overhead,so that the average
message or burst length is 24 characters. If a 480 char/sec trunk is used leaving the CPU what
size buffer is needed at the CPU to accommodate messages outbound over this trunk for (a)pof

−−
310 , (b)pof

−−
810 ?

What if the trunk capacity is now 960 char/sec?

143

buffer

inbound trunk

outbound trunk
buffer

CPU

concentratordata terminals

Figure 11.9. Model of rudimentarynetwork (after W.W.Chu, “Buffer behavior for batch Poisson
Arrivals”)

Chapter 12. Reliability of Networks

One of the requirementsusually imposed on computer networks is that they be reliable, that is the
networks continue to function properly (relative to certain performance criteria) even if some of
its components (nodes, links) fail.The measures of reliability falls into two classes:Deterministic
measures and Probabilistic measures. The deterministic measures depend only on the topology
of the network. The probabilistic measures depend not only on the network topology but also
on the probabilities of failure of network components. In this chapter we describe some of the
abovementioned measures.

12.1. Deterministic measures

Network analysis relies heavily on graph theory, so we begin by defining some notations and
stating relevant results from graph theory.

12.1.1. Flow in networks

Consider a network or graphG−− [N, L] with N nodes andL links. Each link (i, j) from node
i to nodej has associated with it a link flowf ij and a link capacitycij. A feasible flow from a
source nodes to a destination nodet is a set of link flows that satisfies the flow conservation
equations:

∑
x∈N

f ix−
∑
y∈N

f yi
−−

{
γst if i −− s

0 if i −−/ s or t

−γst if i −− t

(12.1.1.1)

0 ≥ f ij ≤ cij all i, j ∈N (12.1.1.2)

That is, for all nodes other than the source and the destination the total flow into the node equals
to the total flow out of that node.γst is the value of the flows, t.

An example is shown in figure 12.1.

12.1.2. Cuts

A cut is a set of links that connects one group of nodes (x) to all remaining nodes
−
(x). A s− t cut

separatingsandt is a set of links (x,−x) wheres∈ x, t ∈−x. For example, the set of links{(1,4), (1,
5), (2,3)} is a cut (x,−x) with x−− {1,2} as shown in figure 12.2.

A directedi, j link cut-set is a set of links that has the same property as ani, j cut, in addition it is
minimal. For example, a cut (x,−x) above is also a (2,3) cut, but it is not a2,3 link cut-set since the
removal of the smaller set of links{(2,3)} breaks every directed route between node 2 and node
3. The set{(2,3)} is a link cut-set.

144

12.1. Deterministic measures 145

s

4

1

2 1

1

1

1
1

2

1

The value of this flow is 3

Figure 12.1.

X = {1,2}

1

1

3

4

5

Figure 12.2.

The capacity of a cut is the sum of the capacities of the links in the cut. A cut with the minimum

146 Chapter 12. Reliability of Networks

capacity is called a minimum cut.

If the source and the destination are in different groups of nodes, all flow from one to the other
must pass through the cut that connects them. Therefore, the maximum flow from source to
destination cannot exceed the capacity of the cut.

12.1.3. The max-flow min-cut theorem [Ford & Fulkerson]

The maximum flow from source to destination is equal to the capacity of the minimum cut
between them.

There are fewalgorithmsfor finding out the maximum flow between twonodes,we report below a
Labelling algorithm by Ford and Fulkerson.The algorithm also finds which flow pattern achieves
this maximum flow.

F-F algorithm:

Initially, set f ij
−− 0 for all (i, j) in L; the algorithm breaks into two parts:

Labelling routine:

A node is considered to be in one of three states: unlabelled, labelled and scanned, or labelled
and unscanned. Initially all nodes are unlabelled.

1. Label the sourcesby [s, + ,e(s)−−∞]. s is now labelled and unscanned. Goto step 2.

2. Select any labelled and unscanned node x.

(a) For any unlabelledy such that f xy < cxy, label y by [x, t, e(y)] where
e(y)−−min[e(x),cxy− f xy]. y is now labelled and unscanned.

(b) For any unlabelledysuch thatf yx> 0, then labelyby [x,− ,e(y)]wheree(y)−−min[e(x),
f yx]. y is now labelled and unscanned.

Repeat (a) and (b) until no morey qualify; then change the label onx by encircling its
+ or − entry.x is now labelled and scanned. Goto step 3.

3. Repeat step 2 untilt is labelled (in which case, proceed to the Augmentation Routine) or
until no more labels can be assigned. In the latter case the algorithm terminates and the flow
currently in the network represents a maximum flow pattern froms to t.

Augmentation Routine

1. Letz−− t and go to step 2.

2. If the label onz is [q, + ,e(t)] then increasef qz by e(t). If the label onz is [q, − ,e(t)] then
decreasef zq by e(t). Go to step 3.

12.1. Deterministic measures 147

3. If q−− s, erase all labels and return to step 1 of the Labelling Routine. Otherwise, letz−− q
and return to step 2 of the Augmentation Routine.

12.2. Cohesion or link connectivity

One of the two basic measuresof network reliability is cohesion or link connectivity . It is defined
as the minimum number of links,ca, that must be removed from the networkG(N,L) to break all
routes between at least one pair of nodes.

For example, in figure 12.3, theA−F link connectivity is 2, theA−C link connectivity is 3, and
the cohesion of the network is 2.

The link connectivity can be defined in terms of link-disjoint paths. Two paths are said to be
link-disjoint if they have no links in common. For example, pathsACF andABCDEF in figure
12.4 are link-disjoint. It can be seen that if there arek link-disjoint paths betweenX andY, then
at leastk links must be removed from the graph to disconnect the nodes.

12.2.1. Finding the Cohesion of a Directed Graph

The max-flowmin-cut theorem can be used tocalculate the number of link-disjoint pathsbetween
a given pair of nodes. A modified Labelling algorithm is as follows:

First replace the capacity on the links, if any, with a unit capacity on each link. Now compute
the maximum flow between the given nodes, used as source and destination. The resulting flow,
which is equal to the number of links in the maximum cut, is also equal to the number of disjoint
paths between the nodes.

The cohesion of the network can be calculated in a straightforward way. Just calculate the
link-connectivity for each pair of nodes and take the minimum value found.

12.2.2. Finding the Cohesion in an Undirected Graph

Starting with undirected graph (G′(N,L′), we find the link connectivity betweens, t as follows:

First, we derive fromG′(N,L) a directed graphG(N,L) by:

(a) replacing each link that ends ats in L′ by a directed link inL from s to the appropriate
node;

(b) replacing each link that ends att in L′ by a directed link inL from the appropriate node to
t;

(c) replacing each other link (i, j) in L′ by 2 directed links (i, j) and (j, i) in L.

The transformation is illustrated in figure 12.4.

The labelling algorithm can now be applied to find the link connectivity betweens, t as before.

148 Chapter 12. Reliability of Networks

A

G

B
C

D

E F

H

Figure 12.3.

s

t

s

t

Figure 12.4.

12.3. Node connectivity

The other measure of network reliability is the node connectivity,or just connectivity. It isdefined
as the minimum number of nodes,cn, whose removal completely disconnect at least one pair of
nodes.

The node connectivity between 2 nodes can be defined in terms of node-disjoint paths. For
example there are 3 node disjoint paths in the graph of figure 12.5.

It can be seen that if there aren node disjoint paths betweenX andY then at leastn nodes must
be removed from the graph to disconnect the nodes

12.3. Node connectivity 149

A

B C

D
E

F G

Figure 12.5.

12.3.1. Finding the node connectivity of a undirected graph

The max-flow algorithm can be used again. The basic idea is to convert the problem of finding
node-disjoint paths into an equivalent problem involving link-disjoint paths.

The transformation proceeds as follows: take the original (undirected) graph, with itsN nodes
andL links, convert it into a directed graph with2N nodes and2L + N links by replacing a link
between each pair of nodes by a set of links as illustrated in figure 12.6. An example is in figure
12.7.

All that remains to find the number of node-disjoint paths between the source and destination is
to run the max-flow algorithm.

The node connectivity of the whole network is found by applying the modified max-flow
algorithm to every pair of nodes in the modified network and taking the minimum over all pairsof
nodes. For a network withnnodes,n(n−1)/2 applications of the max-flow algorithm are needed.
In large networks this much computation is infeasible. To find out whether a proposed network
is k link-connected ork node-connected more efficient methods can be used. We consider
only the case of node connectivity, because node connectivity is stronger requirement than link
connectivity. That is, if a graph can withstand the loss ofk + 1 nodes, it can also withstand the
loss ofk + 1 links, by Whitney’s theorem which states that

cn ≤ ca ≤ d

whered is the minimum degree taken over all nodes in the graph.

12.3.2. Kleitman’s Algorithm:

An algorithm due to Kleitman (1969) is as follows:

Choose any node and call itN1. Verify that the node connectivity betweenN1 and every other
node in the graph is at leastk.

Now delete nodeN1 and all its attached links from the graph and choose another node and call
it N2. Verify that this node has at least a node connectivity ofk− 1 with every other node. Next,

150 Chapter 12. Reliability of Networks

A B

A B

A’ B’

Figure 12.6.

A

B

C
D

E

A

A’

B

B’

C

C’ D’

E

E’

D

Figure 12.7.

12.3. Node connectivity 151

removeN2 and its attached links from the graph, and choose a third nodeN3. Verify thatN3 has
at least a node connectivity ofk−2 with each of the remaining nodes.Continue this process until
you have verified that some nodeNk is at least1-connected to all nodes of the remaining graph.
If, on the other hand,G is notk-connected, i.e.cn < k, the iterative process will fail at one step
and the algorithm need not be carried beyond this step.

An example is illustrated in figure 12.8, showing the original graph is 4-connected.

12.3.3. Even’s algorithm

Even (1975) has devised another way to check for connectivityk. Number the nodes1, 2, …N
and proceed as follows:

(a) Form the subset consisting of the nodes1,2,…k. Check to see that each node in the subset
hask node-disjoint paths to each of the other node. If this step succeeds, continue with step
(b); otherwise, stop: the graph obviously does not havek node disjoint paths between all
pairs of nodes.

(b) For each node,j, k < j ≤ N, perform the following operations:

(i) Form the subsets−− {1,2,…., j− l}

(ii) Add a new nodex and connect it to each node ins.

(iii) Verify that there arek node disjoint paths betweenj andx.

If for some j step (b) fails, the graph does not havek node-disjoint paths between all pairs of
nodes; otherwise, it does.

Exercise

Is the graph of figure 12.9 3-connected?

12.4. Probabilistic link and node failures

The links and nodes of the network may fail to operate because of equipment breakdowns,
natural disasters, etc... We will assume that each link (i, j) has a probability of failurepij, that
each nodei has a probability of failurepi and that all the link and node failures are statistically
independent.

We will calculate for a particular node-pairs− t the probabilityRst that at least one operable route
exists froms to t. Rst can be found as follows:

Suppose that there areN possible routes froms to t. Let Ei,i −− 1, …,N be the event that routei
betweensandt is operable;EiEj the joint event that routesi andj are both operable, and so forth
for eventsEiEjEk, and so on; in each case we assumei < j < k…≤ N so that each combination
of routes has a unique representation.

Similarly, letPi be the probability of eventEi, Pij the probability of eventEij, and so on. We wish
to compute the jprobability of the event that at least one among theEk occurs, i.e. the event

152 Chapter 12. Reliability of Networks

1

2

3 4

5

6

8 7

Figure 12.8.

A

B
C

D

E F

Figure 12.9.

E−− E1∪E2…∪EN

For our purpose it is not sufficient to know the probabilities of the individual eventsEk, but we
must be given complete information concerning all possible overlaps, i. e.Pij, Pijk,

We define

12.4. Probabilistic link and node failures 153

S1−−
∑

Pi, S2−−
∑

Pij, S3−−
∑

Pijk, …

We then have

Rst
−− S1−S2 + S3−…±SN

Each termSk in the above equation is the sum of (k) distinct probabilities for a givenk routes out
of N being operable.

Example

For the network of figure 12.10 we want to findRst.

Possible routes from s to t are

1. Route 1 (s,x), (x, t) ; P1?

2. Route 2 (s,x), (x,y), (y, t) ; P2?

3. Route 3 (s,y), (y,x), (x, t) ; P3?

4. Route 4 (s,y), (y, t) ; P4?

S1−− P1 + P2 + P3 + P4

S2−− P12 + P13 + P14 + P23 + P24 + P34

S3−− P123 + P124 + P134 + P234

S4−− P1234

P1−− qsxqst qij
−− 1−pij

P2−− qsxqxyqyt

···

P12−− qsxqxtqxyqyt

−− P1 ∗P2

where ∗ is defined as follows:

qa
ij ∗ qb

kl
−− qij if link (i, j) is the same as link (k, l); a andb are any exponent≥ 1.

154 Chapter 12. Reliability of Networks

s t

x

y

Figure 12.10.

P13−− P1 ∗P3

−− qsxqxt ∗ qsyqyxqxt {(x,y)−− (y,x)}

−− qsxqxtqsyqyx

···

Chapter 13. The Arpanet

[As with some of the other chapters the information in this chapter is quite dated. I have left it
here for historical interest as much as anything but have not had time to include the figures.]

13.1. Introduction

The network was originally conceived by the Advanced Research Projects Agency (ARPA)
or the U.S. Department of Defence as an experiment in computer resource sharing: a network
that would interconnect dissimilar computer throughout the United States, allowing users and
programs at one computer centre to access reliably and interactively use facilities other centres
geographically remote from one another.

The ARPA network has probably generated more interest and excitement in the field of computer
networking than any other network in the world. It has spawned a vast amount of research
activities in many diverse areas such as: computer-to-computer protocol, interconnection of
dissimilar networks, line protocol, communication processor hardware and software design,
network topological design, network reliability, network security, adaptive routing and flow
control, protocol verifications packet-switching concepts, and so on. The development of
the ARPA network has led, directly or indirectly, to the development of a whole host of
large-scale computer-communications networks worldwide, both commercial as well as
government-owned.

The network began operation in 1969 with four nodes (computer center sites) interconnected;10
nodes by 1970;15nodes by 1971;24 nodes by January 1972;34 nodes by September 1972 and 57
nodes by June 1975. Evolution of the ARPANET topology is shown in figure 13.1. The network
has been operating ever since, and has subsequently grown to well over 100 computers spanning
half the globe, across United States, to Hawaii and to Norway.

Much of our present knowledge about networking is a direct result of the ARPANET project.

13.2. Topology, Concept and Functional Descriptions

The distributed store-and-forwardsystem was chosen as the ARPANET communicationssystem.
Such a system has a switch or store-and-forward center at every node in the network. Each
node has a few transmission lines to other nodes; messages are therefore routed from node to
node until reaching their destination. Each transmission line thereby multiplexes messages from
a large number of source-destination pairs of nodes. In addition, emphasis was placed on the
segmentation of messages from a computer system (Host) at a source node into blocks called
packets and these packets are stored and forwarded to the destination.

The topological connection is in the form of a distributed network which provides protection
against total line failure by providing at least two physically separate paths between each pair
of nodes. Each HOST is connected through an asynchronous serial 100 kbps channel to a nodal

155

156 Chapter 13. The Arpanet

Figure 13.1.

switching computer called an Interface Message Processor (IMP). The IMP’s are themselves
interconnected by leased 50 kbps full duplex synchronous channels. In addition, there are two
230.4 kbps lines in California, one 50 kbps satellite channel to Hawaii, one 7.2 kbps satellite
channel to Norway, and one 9.6 kbps channel from Norway to England.The IMPs act as network
doorways for the HOST computers. The IMP was introduced to relieve the HOST from many of
the message-handling tasks of the communication network. In each HOST, a program referred
to as the Network Control Program (NCP) is implemented as part of the operating system; the
NCP allows the HOST computers to communicate with each other according to a HOST-HOST
protocol, which is a network-wide standard. In addition, a program known as TELNET acts as
a convenient interface between the user and the NCP, allowing him to converse with the network
in a neutral way. Thus the network comprised two parts: a network of data processing systems
(HOSTS), and a communication sub-network of packet switching node computers (IMPs).

The ARPANET implementation of a packet-switching network is as follows. For a byte stream
from (say)a terminaluser tobe sent toa remotecomputingsystem,the user’sHOST must package
the byte stream into a message stream. This originating HOST then delivers each message,
including a destination HOST address, to its local IMP. The network IMPs then determine the
route, provide error control, handle all message buffering and transmission functions, and finally
notify the sender of the eventual receipt of the message at its destination HOST.

A dedicated path is not set up between HOST computers that are in communication but rather
this communication involves a sequence of message transmissions sharing the communication
line with other messages in transit. Thus a pair of HOSTs will typically communicate over
the net via a sequence of messages whose maximum size is 8063 bits (plus 40 bits used as a
HOST-HOST header). In fact, the IMP, having received the message from the source HOST,
partitions the message into one or more packets, each containing at most 1008 bits. Each packet
of a message is transmitted independently to the destination IMP which reassembles the message
before shipment to that destination HOST. Following this, an end-to-end acknowledgement
is sent back to the source HOST. In its journey through the net, a packet will hop from IMP to
neighboring IMP; if the neighbor accepts the packet (i.e., the transmission is found to be valid
and there is storage available), then an IMP-to-IMP packet acknowledgement is returned. If no
acknowledgement is received after a time out period, then the packet is retransmitted.The packet
store-and-forward operation and its associated flow control are depicted in figure 13.2.

13.3. Hardware Implementation of Switching Nodes

(1) The original IMP was constructed using a Honeywell DDP-516 minicomputer with l2K
16-bit words of memory. Later Honeywell DDP-316 minicomputers with 16K memories
were used.

The IMP is responsible for all the processing of packets, which includes decomposition of
HOST messages into packets; routing; relaying and receiving store-and-forward packets;
acknowledging accepted packets and retransmitting unacknowledge packets; reassembling

13.3. Hardware Implementation of Switching Nodes 157

Figure 13.2. Flow control at network level

Figure 13.3. The ARPA IMP

packets into messages at the destination HOST; generating control messages. The IMP is
also responsible for gathering statistics, performing on-line testing, and monitoring the line
status.

In terms of performance, the 516 IMP can process approximately 850 KBPS and the
316 IMP can process approximately 700 KBPS under the most favourable assumption of
maximum length messages The effective capacity of the 50 KBPS line is approximately 40
fullpacket messages per second.

(2) The Terminal IMP (TIP) is built around a Honeywell 316 minicomputer with 28K of
memory. It is fitted with a multiline controller (MLC) which allows direct connection of up
to 63 terminals to the net, and up to three modem and/or HOST interfaces may be connected
to the TIP. Figure 13.4 shows a Terminal IMP connection. The terminals are handled on a
per-character basis with start and stop bits even on synchronous lines. Data rates (from 75
BPS up to 19.2 KBPS) and character bit lengths may be set for each terminal by the TIP
program. For each input and output terminal line, two full characters are buffered - the one
currently being assembled or disassembled and one further character to account for memory
accessing delays.

(3) The Satellite IMP, a modified version of the IMP discussed earlier, was developed
specifically for satellite links.The Satellite IMP uses some of the packet broadcast ideas that
enable several network nodes to statistically share a communications channel to a satellite.

(4) A multiprocessor IMP called Pluribus,based on the Lockheed SUE minicomputer,has been
used to provide high reliability and throughput. The Pluribus incorporates 14 processors
and can handle tens of hosts and hundreds of terminals simultaneously.

13.4. Host-to-Host or Transport Protocol

The HOST-to-HOST protocol of the ARPANET operates by establishing and clearing
connections, giving the network the appearance to the users of a circuit switched system. Since
the network provided highly reliable and sequenced message delivery, the host-host protocol
focussed on flow control, interrupt, multiplexing, and convenient addressing. The first transport
protocol of the ARPANET is the Network Control Protocol (NCP) whose basic functions
include open, close, send, receive, and interrupt operations. The user interface to the NCP is
stream-oriented, with flow control in both bits and messages provided by incremental “allocate”
control messages between NCPs. Interrupt signals are not synchronized with the data stream.
Control messages for all connections between a pair of NCPs are sent over a single control
connection, while data messages are sent on their individual connections.

158 Chapter 13. The Arpanet

Figure 13.4. Terminal IMP connections

Before processes can send messages connections must be established. The basic transport
service provided by NCP to its users is an error-free, sequenced, simplex connection. To achieve
full-duplex communication, two connections are required.A connection is established between a
specific socket at one end and a specific socket at the other end, through which data may be sent
in one direction only. The sockets are identified by a 32-bit HOST number, with even number
used for receivingand odd numbers for sending.When a connection isset up, the receivingHOST
allocates a link number which is used together with the HOST number to identify the connection.
The link number is used in subsequent flow control commands.

Figure 13.5 shows diagrammatically the way that processes are linked via the HOST-HOST
protocol. The correspondence between processes in the HOST and sockets is maintained by the
HOST’s NCP.

A process, as shown, may have several send or receive “ports” each identified with a particular
socket. The connections shown are functionally like circuit connections, but really they take the
form of entries in tables, used to handle messages from one process to another.

The NCPs in the HOSTs control the communication between different HOSTs through the
medium of the intervening network. Each NCP is able to receive messages from the other NCPs
using its own “link Q”.

A connection between two processes in different machines is established by arranging for their
NCPs to exchange requests for a connection over the link zero channel, which is assumed to be
alwaysopen and thereforedoesnot need socket numbers.The control commandsused toestablish
and break connectionsare STR (Sender ToReceiver),RTS(Receiver ToSender)and CLS(Close).
When a user does an INIT (a transport service primitives), the transport station inspects the
genders (send or receive) of the ports to determine whether the connection is for outbound or
inbound traffic. Armed with this knowledge it sends an RTS or STR to the remote host. When
the request for connection arrives at the remote host, the transport station there checks to see if
anyone is listening on the specified port. If sos an STR or an RTS is sent back; if not the transport
station may choose to queue the request for a while, or it may reject the connection attempt
using CLS message. Once a connection has been established, it is assigned an 8-bit link number
to eliminate the need to send tvio 32-bit sockets in every message.

The NCP does not have any acknowledgement scheme at all; it simply assumes that the subnet
can handle al1 errors transparently, and that all messages are delivered in sequence, exactly as
sent.

Connections-are closed by an exchange of CLS messages.

13.5. Imp-to-Imp or Network Layer Protocol

Each message is segmented by the IMP into at most 8 packets with a maximum of 1008 bits each.
In order to offer virtual circuit service, the ARPANET layer 3 protocol contains provision for
explicit end-to end acknowledgements within the subnet.When a message enters the source IMP
it is assigned a number. If an acknowledge for this message fails to arrive from the destination

13.5. Imp-to-Imp or Network Layer Protocol 159

Figure 13.5. Connections and sockets in the ARPA HOST-HOST protocol

IMP within the timeout interval (30 sec), the source IMP sends a query to the destination IMP.
Depending on the answer, if any, the source DMP may retransmit the message.

Originally, the routing in the ARPANET was done with the distributed adaptive algorithm.Every
640 msec each IMP exchanged delay information with its neighbours. As the 1160- bit routing
messages came in (every 640 msec), each IMP updated its routing tables. In addition, a separate
check was made to see which IMPs were reachable by using hop acount as metric. It was found
(in 1979) that this algorithm adapted too slowly, occasionally caused packets to loop for long
periods of time, did not use alternate routes at all, and that the routing packets were interfering
with the regular traffic. It is replaced by a new routing algorithm in which each IMP maintains
pertinent routing information of the entire ARPANET, including delays on each line.

Using this data base, every IMP computes the shortest path to every other IMP, with delay being
the metric for distance. These paths are used for routing. Since every IMP runs the shortest path
calculation on almost the same data base, the paths are consistent and there is little looping. The
new algorithm adapts to traffic changes by updating information at each IMP every 10 sec. Each
IMP measures the delay on each of its lines average over a 10 sec. period. The results of these
measurements, together with an update sequence number, are then broadcast to all other IMPs
using a flooding algorithm.

The flow control mechanism in the ARPANET was modified to avoid the occurrence of
reassembly lockup. In version 2, no multipacket message ils allowed to enter the network until
storage for that meSsage has been allocated at the destination IMP. As soon as the source IMP
takes in the first packet of a multipacket message, it sends a small control message (REQALL)
to the destination IMP requesting that reassembly storage (i.e., 8 buffers) be reserved. It does not
take in further packets from the host until it receives an allocation message (ALL) in reply. To
provide high bandwidth for long sequences of messages (i.e. file transfer) only the first message
in a sequence of multipacket messages is required to go through the reservation procedure; from
that point on, the reservation is held for the message sequence as long as more data is delivered
to the source IMP within 250 msec after the RFNM is received (Fis.8).To provide good response
for single-packet messages, a special mechanism was provided: a single-packet message serves
as its own allocation request. If there is buffer space available at the destination, the message
is accepted and passed on to the HOST, then the RFNM is sent back to the source IMP. If no
space is available at the destination IMP, this single-packet message is then discarded and this
transmission is then considered to be a request for space; when space becomes available, the
source IMP is so informed, at which point the stored single-packet may be retransmitted.

Format of an ARPANET data packet is shown in figure 13.6. It can be seen that the ARPANET
protocols do not make a clear distinction between layers 2 and 3, and that the ARPANET also
has the subnet end-to-end protocol. Seq, Logical channel number, Acknowledgement bits fields
belong to the data link protocol (layer 2)most of the rest are used by the source IMP to destination
IMP (subnet end-to-end) portion of the protocol.

160 Chapter 13. The Arpanet

Figure 13.6. Format of an ARPANET data package

13.6. Data Link Protocol

The ARPANET has both single frame and multiframe messages. Long messages are partitioned
into segments each of maximum length 1008 bits.The source IMP first builds a 128 bit-(8words)
header and attaches it to the front of the segment, forming a packet. When an IMP wants to send
a packet to an adjacent IMP, it sets it up in a memory buffer and then starts the transmission
hardware.Before sending the first character in the buffer, the transmission hardware sends a SYN
(SYNchronize), a DLE (Data Link Escape) and an STX (Start of TeXt). These three characters
serve to define the start of the frame for the receiver. The contents of the IMP buffer is then
transmitted, I bit at a time.Finally the hardware automatically transmits a DLE and an ETX (End
of TeXt) followed by a 24 bit CRC checksum and then another SYN character. If there is no new
frame to transmit, the hardware keeps sending SYNs. The frame format is shown in figure 13.7.

In order to achieve data transparency a technique called “character stuffing” is used (figure 13.8).
That is, to differentiatea data pattern which happens to be DLE ETX (not the ending of the frame)
the transmitter hardware automatically inserts an extra DLE in front of any DLE pattern in the
text. The receiving hardware strips off the extra DLEs.

The protocol does nct use NAKs. If a packet comes in damaged it is just ignored. The sender
will time out in 125 msec, and send it again.

Although the IMP transmitting hardware automatically generates checksums that are verified by
the receiving IMP hardware, these checksums only guard against transmission errors. To guard
against errors caused by bad memory in an IMP, the source IMP computes a software checksum.
This checksum is transported along with the packet.At each intermediate IMP along the way, the
software checksum is explicitly verified before sending the IMP-IMP acknowledgement.With 16
bits of software checksum and 24 bits of hardware checksum per packet, the mean time between
undetected errors should be centuries.

161

Figure 13.7.

Figure 13.8. Data transparency by character stuffing

Chapter 14. The Internet Protocol (IP)

14.1. Introduction

“IP”, the “Internet Protocol”, is the network layer protocol associated with the popular “TCP/IP”
network software. IP is the basis of the world-wide network commonly known as the Internet.
More correctly the Internet is a connection of smaller networks (an internetwork) and IP
is the protocol used to route between those networks. In practice, IP is also used within those
networks.

14.2. IP Header

Figure 14.1 shows the format of the IP header. The IP header contains the following fields:

version
This 4-bit field contains the version number of IP to which this packet conforms. This field
should currently contain the value 4, although IP version 6 is currently being defined. Parts
of the header for version 6 will be different, particularly the length of the address fields.

IHL This 4-bit field contains the length of the header in 32-bit words. If there are no options,
the value of this field will be 5 (giving a header length of 20 bytes).

type of service
Thisfield gives information about the qualityof service requested for thispacket. It contains
subfields which indicate the type of packet and its urgency.

total length
This 16-bit field gives the total length of this packet in bytes.

identification
The identification field is used in conjunction with the source and destination address fields
toensure that each packet isuniquely identified. Thisfield can be used to reassemblepackets
which have been fragmented because they are too long for one of the links.

flags
This3-bit field contains three flags,only two of which are currentlydefined. One flag isused
to indicate that this packet cannot be fragmented. This might be used when the destination
node is known to be unable to reassemble fragmented packets. The other flag is used to
indicate that this is part of a packet which has been fragmented by the system. This bit is
clear if this is the last fragment of a larger packet.

162

14.2. IP Header 163

version IHL type of service total length

identification flags fragment offset

time to live protocol header checksum

destination address

Options

Data

source address

padding

32 bits

Figure 14.1. The IP packet format

fragment offset
This field is used when packets are fragmented. It contains the offset from the beginning of
the original packet where this packet starts. It is measured in multiples of 8 bytes.

time to live
This field is initialised when the packet is generated and decremented as the packet passes
through each node. If the value ever reaches zero, the packet is discarded. This is intended
to defeat routing loops.

protocol
This field indicates which higher level protocol should be used to interpret the data in this
packet. This often corresponds to TCP or UDP, described in the next chapter, but could also
be another transport layer protocol.

header checksum
This checksum is used to ensure that the header has been transmitted correctly.

source address
This field contains the IP address of the originating host for this packet. This does not
necessarily correspond to the address of the node which sent this packet within the network
but is the address of the host which first put this packet into the network. It thus differs from
the data link layer address.

164 Chapter 14. The Internet Protocol (IP)

destination address
This is the address of the host for which this packet is ultimately destined. It is this address
which is used to determine the path this packet will take through the network. Not that
each packet contains full addressing information rather than a virtual circuit number. IP is
a datagram oriented (connectionless) protocol.

options
There are various options which are available. We will not worry about them here.

padding
The padding field is used to ensure that the header is a multiple of 32 bits long.

data
This field contains whatever data the transport layer passes to the IP layer. The information
in this field is not interpreted by the IP layer.

14.3. IP addresses

All IP addresses are (currently) 32 bits. The next version of IP will extend this to much longer
addresses. The address consists of two parts. A network number and a host number within that
network. To allow maximum flexibility the network and host numbers are of different lengths
as described in the subsections which follow.

The format of IP addresses is shown in Figure 14.2. An IP address is traditionally written as four
decimal numbers separated by dots with each number representing one byte of the IP address.
Thus a typical IP address might be 131.172.44.7.

14.3.1. Class A addresses

A class A address has the most significant bit 0. The next seven bits contain the network number
and the last 24 bits the host number. There are thus 126 possible class A networks, each having
up to about 16,000,000 hosts. (Networks 0 and 127 are used for other purposes.)

14.3.2. Class B addresses

A class Baddress has the two most significant bits 10. The next fourteen bits contain the network
number and the last 16 bits the host number.There are thus 16384 possible class Bnetworks each
containing 65354 hosts.

14.3.3. Class C addresses

A class C address has the three most significant bits 110. The next 21 bits contain the network
number and the last eight bits the host number. There are thus more than 2000000 possible class
C networks each containing 254 hosts.

14.3. IP addresses 165

0 net

1 7 24

class A:

class C:

class B:

host

host

host

10

110 net

net

2 14 16

3 21 8

Figure 14.2. IP address formats

14.3.4. Multicast addresses

It is often desirable to send some types of message to many different hosts simultaneously. The
remaining IP addresses (i.e. those which start with 111) are used for such messages. As a special
case, the address 255.255.255.255 is a broadcast address so that packets with that destination
address are received by all hosts within the network. In some networks the address 0.0.0.0 is also
a broadcast address.

Within a network, the addresswith the host number containing all 1s (or 0s) is a broadcast address
within that network.

14.3.5. Subnetting

Within an IP network (i.e. that groups of hosts which have the same net number in their IP
address), it is still necessary to be able to route between the hosts. For convenience, particularly
in class A and class B networks, it is often needed to split the network up into smaller parts and
then route between those parts much as the routing is done at a higher level between networks.

Accordingly many IP networks are “subnetted”. That is, there is another partition made in the
IP number in that the host number is split in two parts, a subnet number and a host number. The
partition is made at a convenient point given the topology of the desired network.Effectively, the
boundary between the host and net numbers is moved to the right, but only within the network.
As far as hosts outside the network are concerned there is no subnetting within other networks.

14.4. Routing IP

Because an internet is a collection of networks, routing is simplified by the assumption that a
host in a network can connect to any other host in the same network without leaving that network.
Thus if two hosts have IP addresses with the same network number then they can communicate
without leaving that network. The further assumption is made that if a host from outside that
network knows how to get to any one host in a particular other network then that other host will
be able to route packets toall hosts in that network. Thisdrasticallysimplifies the routingproblem
because now all routers in the network only need to know how to get to a particular network and
not to every host within each network.

166 Chapter 14. The Internet Protocol (IP)

Unfortunately, because the Internet is so successful, there are now a very large number of
networks connected together. Because there is no extra routing information in the net number
part of the IP address, all routers need to remember how to get to every one of the networks
constituting the internet. Routers thus need large amounts of memory to contain these tables and
a significant amount of time is spent in transmitting routing information between routers. Some
changes have been made in the way in which IP numbers have been allocated in an attempt to
partly alleviate this problem and IP version 6 will be arranged so that there is routing information
inherent in an IPv6 address.

14.5. ARP

A major problem in networks is finding the address of the host that you want. For example, once
you know the IP addressof the destination machine you need to work out where to send th packet.
Part of this is solved by the routing algorithms described elsewhere, but once the destination
machine is known to be on your network (say a broadcast network like ethernet) you still need to
find the data link layer addressof the desired machinewithout having tomaintain large translation
tables.

Thisproblem issolved by using the AddressResolution Protocol (ARP).An ARP packet isshown
in figure 14.3. The particular case shown here is for an IP address to ethernet address translation,
but the protocol is designed to be able to be used for any address translation required between any
two protocol addresses. The packet shown here is a full ethernet packet, including the ethernet
addresses and packet type field at the beginning. (The padding necessary at the end to achieve
a minimum length ethernet packet is not shown). Note that this is not an IP packet. The ARP
protocol is a separate protocol which does not need any routing.

When a host needs to translate an IP address to an ethernet address it constructsa packet as shown
in figure 14.3. Obviously it cannot fill in all the fields or it would not need to send the request.
Instead, the destination ethernet address field (the first field) contains the ethernet broadcast
address (all ones) and the target hardware address field (which contains the value we are trying
to find) is left blank.

This packet is transmitted and any host on the network which knows the desired ethernet address
(most probably the target host) will fill in that field, change the opcode field to indicate that this
is a reply, modify the destination and source ethernet addresses at the beginning and transmit the
packet. The original host can then read the reply to find the desired ethernet address.

14.6. RARP

A different, but related, problem to that of finding another machines ethernet address when you
know its IP address is to find you’re own IP address when all you know is your ethernet address.
The ethernet address of a host is often configured into its hardware somewhere, but its IP address
will be assigned by an administrator somewhere within the network. It is inconvenient to have to
set up each individual computer to tell it its IP address and this procedure is also prone to error.

An alternative is to maintain a central database containing the IP addresses of all hosts in a
network and let them ask for their addresses. (This also allows for dynamic allocation of IP
addresseswhen only a few hostsare likely to be using the network at the same time.)Thisproblem
is compounded by the hosts inability to send packets to other machines because it doesn’t know

14.6. RARP 167

8 bits

standard ethernet header

ethernet
destination

address

source
ethernet
address

packet type (ARP)

physical address type

protocol address type

opcode (ARP or RARP)

sender hardware address

sender protocol address

target hardware address

target protocol address

hardware address length (6)

protocol address length (4)

Figure 14.3. ARP/RARP packet format

what to put in the source address fields.

This problem is solved by modifying the ARP protocol slightly. This alternative is the Reverse
Address Resolution Protocol (RARP). A packet similar to the ARP packet is constructed, the
only differences being that the sender protocol address field is left blank (as well as the target
addresses) and the opcode field is changed to represent a RARP request. The packet is broadcast
onto the network and the database server fills in the blank fields and sends the response.

14.7. ICMP

Within an IP internetwork there is often the need for auxiliary information to be transmitted
between hosts relating to the operation of the network rather than communication between the
hosts. The Internet Communication Message Protocol (ICMP) is designed for this job and it
has messages which can send information through the network passing information such as the
reasons why packets are dropped.

It also contains an ECHO directive which simply asks the target machine to send it back. This

168 Chapter 14. The Internet Protocol (IP)

is useful to see whether a remote host is still working.

Chapter 15. TCP and UDP

15.1. Introduction

There are several transport layer protocols used with IP. The most common of these are TCP
(thus giving rise to the common term “TCP/IP”) and UDP.

15.2. TCP

The Transmission Control Protocol (TCP) is one of the main transport layer protocols used with
IP. It is a connection oriented protocol based on the connectionless IP protocol. Because it is the
lowest layer which has end-to-end communication, it needs to handle things such as lost packets.
In this respect it is similar to the data-link layer which must handle errors on an individual link.
Consequently many of its facilities are familiar from our discussion of the data-link layer.

The format of a TCP header is shown in figure 15.1.

source port
All of the address fields in the lower layer protocols are only concerned with getting the
packet to the correct host. Often, however, we want to have multiple connections between
two hosts.The source port is simply the number of the outgoing connection from the source
host.

destination port
Similarly, this is the number of the incoming connection on the destination host. There must
be a program on the destination host which has somehow told the networking system on that
host that it will accept packets destined for this port number. Standard system services such
as SMTP, NNTP and NTP (all described in later chapters) have well known standard port
numbers. Thus to connect to the SMTP port on a particular host (in order to transmit some
email)a TCP connection would be set up with the correct destination port number (25). The
source port number does not matter except that it should be unique on the sending machine
so that replies cvan be received correctly.

sequence number
This is the sequence number of this packet. It differs from the usual data-link layer sequence
number in that it is in fact the sequence number of the first byte of information and is
incremented by the number of bytes in this packet for the next message. In other words, it
counts the number of bytes transmitted rather than the number of packets.

acknowledgement number
This is the sequence number of the last byte being acknowledged. This is a piggy-backed
acknowledgement.

169

170 Chapter 15. TCP and UDP

Options

Data

padding

32 bits

source port

sequence number

acknowledgement number

data offset reserved flags window

checksum urgent pointer

destination port

Figure 15.1. TCP header format

data offset
This field is the offset in the packet of the beginning of the data field. (In other words it is
the length of the header.)

flags
This field contains several flags relating to the transfer of the packet. We will not consider
them further here.

window
Thisfield isused in conjunction with the acknowledgement number field. TCP usesa sliding
window protocol with a variable window size (often depending on the amount of buffer
space available. This field contains the number of bytes which the host is willing to accept
from the remote host.

checksum
This field contains a checksum of the header. It actually uses a modified form of the header
which includes some of the information from the IP header to detect some unusual types of
errors.

urgent pointer
There is provision in TCP for some urgent data messages to be sent bypassing the normal
sequence number system. This field is used to indicate where such data is stored in the
packet.

15.2. TCP 171

options
As with IP, various options may be set. We will not consider them here.

padding
Padding is added to make the header a multiple of 32 bits long. This is only necessary when
options are used.

data
The data field is passed intact to the program which is receiving packets addressed to this
port.

15.3. UDP

The User Datagram Protocol (UDP) isa datagram transport which uses the underlying IP protocol
for its network layer. It is used when there is a need to transmit short packets through a network
where there is no stream of data to be sent as in TCP. It is consequently a much simpler protocol
and therefore much easier to handle. It is also less reliable in that there are no sequence numbers
and other error recovery techniques available. If errors and lost packets are important then the
user of UDP must cater for these.

The format of a UDP header is shown in figure 15.2.

source port
This field performs the same function as in TCP.

destination port
This field is also the same as in TCP. Note that the same port number can be used by TCP
and UDP for different purposes.

length
This field contains the length of the data field.

checksum
As in TCP, this field is the checksum of the header plus parts of the IP header.

data
This field is passed to the relevant program.

172 Chapter 15. TCP and UDP

32 bits

source port destination port

length checksum

data

Figure 15.2. UDP header format

Chapter 16. Who’s Who (the Domain Name
System)

16.1. Introduction

While IP addresses uniquely designate a host connected to the Internet, they are not convenient
to use because they are difficult to remember, containing no mnemonic information. As people
we would rather remember names which have som meaning to us. Accordingly most computers
have names. The main School of Electronic Engineering Unix server, for example, is called
“faraday”. Unfortunately, there are so many computers in the world that it is difficult to come
up with a unique name for each computer, and so computers are grouped together into domains.
In fact a hierarchical structure is employed. The full name of each computer (its fully qualified
domain name or FQDN) is formed by joining the name of the computer together with its doamin
name. Thus faraday’s full name is faraday.ee.latrobe.edu.au indicating that it is in the School of
Electronic Engineering (ee) at La Trobe University (latrobe) which is an educational institution
(edu) in Australia (au).

Faraday also has an IP address (some computers and all routers have more than one) of
131.172.44.7. It is the job of the doamin name system to translate between the two. Note that
there is complete orthogonality (at least in principle) between the domain name system and IP
addresses. While shannon is another computer in the School of Electronic Engineering it could
have a quite unrelated IP number. In practice, the two systems tend to be fairly well correlated
simply because of the way in which the two sets of naming procedures are set up. (Shannon’s
IP address is 131.172.44.4.)

16.2. Host tables

Once upon a time (i.e. only a few years ago) all the hosts connected to the Internet were listed
in a file which contained both there FQDNs and their IP addresses. Every now and again (i.e.
once a week or so) every computer connected to the network would obtain a new copy of the file.
Whenever a translation needed to be made it was a relatively simple job to look up the relevant
data in the file.

As the Internet grew, thisquickly became unwieldy. The file grew so large and changed so rapidly
that it became impossible to keep it up to date and the time needed to transfer it around the world
increased so that it would take up a significant part of the network bandwidth.The administration
required to update also became very difficult.

Accordingly this system is no longer used, being replaced by the domain name system.

173

174 Chapter 16. Who’s Who (the Domain Name System)

16.3. Named

The domain name system is really a world-wide distributed database. (In some respects it is
amazing that it works at all.) The records for each subdomain are kept by the administrators of
that domain and when a host needs to translate a FQDN to an IP address it sends a request to the
host which contains that part of the database to find that information.

That is a simplistic view of the system. It is complicated by having to discover just which host
it is that holds the right part of the database. In practice, the system works as follows:

When a translation is required (say to translate faraday.ee.latrobe.edu.au), the program named
on the host will connect to one of a few well known hosts which know all about the top-level
domains, asking for information about the ee.latrobe.edu.au domain. The answer will probably
be that it knows nothing about that doamin but it does know who to ask about the au top-level
domain. That machine will be contacted to find out about the edu.au domain which will give
another pointer to the latrobe.edu.au domain and so on until it finds a server which knows the
information we are seeking.

While this is a fairly long procedure, the information found will be cached so that if a similar
search is undertaken it will proceed much more quickly.

A reverse search is made possible by the addition of another top-level domain. If it is desired
to find the FQDN corresponding to faraday’s IP address, then a search would be made for
“7.44.172.131.in-addr.arpa”. The same procedure described above can then work through the
hierarchical system to find the corresponding name.

While this sounds fairly simple, the actual protocols are more complicated to enable the system
to still work when parts of the network are not working correctly and to enable the system
to work with as little network load as possible. In addition, the DNS is also able to distribute
information other than just FQDN to IP adress translations. For example, it also contains
so-called MX records which contain information about where to send email. For example, an
email address like K.Pye@ee.latrobe.edu.au will work even though there is no computer called
just “ee.latrobe.edu.au”. There is however an MX record which says that email should be sent
to faraday, which understands that it should deliver that email as though it were addressed to
“kjp@ee.latrobe.edu.au”.

Chapter 17. SMTP and Mail

17.1. Introduction

The Simple Mail Transfer Protocol (SMTP) is the protocol used by TCP/IP networks for
transferring email between systems. It is a mail transfer agent (MTA) as distinct from a mail
user agent (MUA) which is used by real people to read and send mail. A MUA will use a MTA
to actually transfer the mail to the correct host on which the intended recipient will use a (possibly
different) MUA to read and respond to the mail.

Email is a store-and-forward system. The email is not necessarily delivered immediately to its
recipient or even to the final machine. It is instead sent at least part of the way to its destination,
where it is stored until it can be forwarded further on its journey. This isdone for mainlyhistorical
reasons when telecommunications were expensive and not all hosts were connected together all
the time, but instead dialled each other at regular times and transferred any messages which were
waiting for them. Today, most systems are permanently connected and so email travels much
more quickly. Indeed automatic response systems can sometimes have replies back for mail to
them within seconds. In any case, email must be a form of store-and-forward system since we
cannot guarantee the intended recipient is waiting patiently at their computer for your email to
arrive, and so the email must always be stored at its destination.

17.2. Mail format

Real (“snail”)mail contains four basic parts:the envelope, the headers, the body and the signature.
There can also be attachments to it.

Email is modelled after ordinary mail, and also has all the concepts of ordinary mail.

Theenvelopecontains the mail, and contains all the information needed to transmit the message
to its destination. It may be modified during transmission by the addition of such information as
postmarks to indicate where the mail has been and how it reached its destination. It might also
contain redirection messages.

Theheadersare contained as part of the actual message, and contain information such as the
identity of the sender and recipient (including their addresses) and the date.

Thebodyof the message contains the usual information. Nothing in the body is important for
the transmission of the message.

The signature repeats some of the information in the header about the sender, but more
importantly it can be used to authenticate the sender (i.e. to prove that the sender really is who
they claim to be).

Attachmentsmay be included which relate to the letter but are not actually part of it.

Email contains only three major parts, and moves the boundary between some of them. An
email envelope contains the information as to the sender and recipient of the mail. The email

175

176 Chapter 17. SMTP and Mail

headers contain all of the information of the ordinary mail headers but add to that the information
sometimes added to the envelope of ordinary mail relating to the transmission of the mail.
Email also contains no specific signature and attachments but there are methods of including
this information in the body of a message. An email message thus consists of only three parts,
the envelope, headers and body.

The headers and body are normally stored in a single file. The header is all the lines at the
beginning of the file up to the first blank line. Everything else is the body. The header lines are
all of the same format. They consist of a keyword, followed by a colon and space followed by
any extra information needed.

The envelope information is not stored in the file but is passed through the SMTP protocol
separately as shown in section 17.4.When the email is delivered at its final destination, the sender
information from the envelope is added to the beginning of the file and appears as another header
line (although the colon is missing).

17.3. Headers

Thereare manypossibleheader linesused in mail. Onlya fewof the most important aredescribed
below.

From:
Thisheader contains the name of the person sending the message.It often containsboth their
email address and the full name if that information is available to the MUA originating the
message.

Sender:
This header contains the name of the person who actually caused the email to be sent. This
might be the secretary who sent the mail after asked to do so by his boss, whose name would
appear in the From: header.

To:
This header contains the name of the person for whom the message is primarily intended.
This is not necessarily the same as the person for whom this particular copy of the message
is intended.That information is contained in the envelope and is often different when several
copies of the message are being sent, as with mailing lists or when the CC: header (see
below) is used.

Received:
This header line is added by each MTA which sees the message as it is passed to its
destination. By looking at the Received: headers it is possible to tell how the message
travelled through the network and how long it spent on each host (assuming that their clocks
are accurate).

Date:
This header contains the date and time when the MUA first sent the message.

17.3. Headers 177

Subject:
This header contains information which the sender of the message has specified to give
the recipient of the message some indication of what the message is about. MUAs would
typically display this information as well as the name of the sender so that the recipient can
choose the order in which he reads his email (if at all).

Return-path:
This header should contain a valid email address which could be used to send an answer
back to whoever sent this email.

Reply-to:
This header contains the address of a person to whom replies should be sent. This is not
necessarily the same person who sent the mail.

CC:
This header contains the email addresses of other people who will receive this email as well
as the primary recipient.

Content-length:
This header gives the total length of the message. It is used to distinguish between messages
when multiple messages are stored in the same file.

Message-ID:
This header contains an identification string for this message. It is unique, so that it is
possible to tell whether you have seen this message before.

Mime-content-type:
This header is used to specify the format and encoding of the body of the message. The
Multipurpose Internet Mail Extensions (MIME) are a set of standard ways of organising
the body of a mail message to handle signatures and attachments as well as transferring
non-textual information within a mail message.

17.4. The protocol

In this section we describe only a small part of the SMTP protocol. We will do so by following
through a simple SMTP session, sending a simple mail message. This is an unrealistic example
in that the sender and recipient addresses are on the same machine. We assume that a TCP
connection hasbeen made to the SMTP port on faraday.ee.latrobe.edu.au. Each of the commands
given here will generate a response from the destination host. We assume here that each response
is favourable and that we should continue.

HELO faraday.ee.latrobe.edu.au
This command simply introduces the source host to the destination host. The destination
host might verify that this is a valid machine name and that it does in fact correspond to the
host who is connected. This is done to make forgeries more difficult.

178 Chapter 17. SMTP and Mail

RCPT TO: K.Pye@ee.latrobe.edu.au
This command says that the host wants to transmit a message to the specified email address.
That address need not be on the destination machine, which would then forward it on.

MAIL FROM: kjp@ee.latrobe.edu.au
This command gives the email address of the originator of the message. Note that this
command and the previous one transfer the envelope of the message.

DATA
This command is followed by the actual message itself, i.e. the headers and body. They are
simply sent as is and followed by a line containing only a single dot which indicates the end
of the message. (If the message contains such a line then another dot is added. The extra
dot is stripped by the receiving MTA. This is similar to the bit stuffing used by SDLC.)

QUIT
This indicates the we have no more messages to transmit and are about to disconnect.

Chapter 18. NNTP and News

18.1. Introduction

The Network News Transport Protocol (NNTP) has two quite distinct although related functions.
One is to allow the transfer of news articles between machines and the other is to allow
newsreaders to access those articles from a database maintained on a news server.The commands
needed to do these two jobs are quite different and it would probably have been better to design
two different protocols, however NNTP is designed to do both.

18.2. Article format

News articles are very similar in format to mail messages as described in the last chapter.

A news article consists of a header, similar in format to a mail header, including the format of
each header line, and a body. MIME can also be used to enhance the capabilities of the body of
the article.Most of the header lines described in the last chapter can also be used in news articles,
although a few, such as the “To:” and “Received:” headers are either meaningless or not used in
news articles. In addition the following header lines may be useful:

Path:
This header replaces the Received: header of email. Each time the article passes through a
machine, the name of the machine is placed at the beginning of a list. It is thus possible to
trace the path of the article.

Newsgroups:
This header contains the list of newsgroups to which this article should be posted.

References:
When a followup is made to a article, the references line of the old article is copied and its
message-id added to the end. It is thus possible to trace back and find the thread of articles
in which this article belongs.

Lines:
This is simply the number of lines in the message.

Summary:
This (often multi-line) header contains a brief summary of the contents of the article. It
gives more detail than the subject line.

Distribution:
This indicates the area in which the article should be distributed. For example, if the article
is intended only for an Australian audience it might contain “Distribution: aus”.

179

180 Chapter 18. NNTP and News

Followup-To:
This header indicates where followups should be directed. It might contain a subset of
the newsgroups to which the article is posted or it might contain the word “poster” which
indicates that responses should be sent back to the sender by email.

Approved:
Some newsgroups are moderated which means that only one person (the “moderator”)
can post to them. This header line indicates that the article has been approved by the
moderator.

Expires:
This indicates when the poster believes that the article should be deleted. It is sometimes
used when the information in the article is only relevant for a short time so that the article
can be deleted when the information is no longer useful and sometimes used when the
information will be useful for a long period of time and should be kept longer than usual.
Other articles are deleted when the disk space is needed for newer articles.

18.3. The reading protocol

Because there are a large number of different possibilities for reading news, there are a lot of
commands associated with it. Only the most important will be described here.

The reading process is based on newsgroups, just as it is in the newsreader program (similar to a
MUA) used by the person reading the news. This simplifies the interface and allows the server to
be implemented more efficiently. The command “GROUP news.group.name” is used to change
to a newsgroup. The response to this command indicates the range of valid article numbers.

An article can then be retrieved with the “ARTICLE number” command. The requested article
(if it is available) is then transmitted, followed by a line containing only a dot, as with the transfer
of mail messages using SMTP.

Alternatively, the “HEAD number” command can be used, which will only transfer the headers
for the article. This could allow the reader to decide whether he really wants to read this
article.

This would normally be followed by the “BODY” command which transfers the rest of the
article.

Other commands can be used to transfer the list of all newsgroups with the current article
numbers, to transfer information from a database containing some of the header information for
all articles and to post article.

18.4. The transfer protocol

The protocol used for transferring articles between servers is much simpler, since the variants
are simpler. When a server has news articles to transfer, it will connect to the NNTP port on the
other server and send an “IHAVE <message-id>” command. The other server will check to see
whether it already has that article (which it might have received from another server)and respond
appropriately. If the other server does not have the article it will be transmitted. If more articles

18.4. The transfer protocol 181

are to be transmitted then the procedure is repeated.When no more articles remain, the connection
is terminated with the “QUIT” command.

This protocol is a simple stop-and-wait protocol and suffersall the problems associated with such
a protocol. With the increasing volume of news traffic, a new protocol became necessary. This
is a pipelined protocol which separates the tasks of seeing whether the other server already has
a particular article and actually sending the article.

The first task is undertaken with the “CHECK <message-id>” command. The response indicates
whether the server already has that article or not. Several such commands can be outstanding at
a time, so that the latency of the network (and the lookup time on the server) does not slow down
the overall process.

A separate “TAKETHIS<message-id>” command is used to transfer the articles which the other
server does not have. There is no need to wait after the “TAKETHIS” command before sending
the data since we already know that the other server does not have the article. (In the rare case
where another server has transferred the article in the meantime then one of the copieswill simply
be discarded.)

Chapter 19. The Network Time Protocol

19.1. Introduction

Often in networksof computers it is important (or sometimes just convenient) for them all to have
the same idea of the time. When times are stored for the modification of files it can be important
in what order the files were modified. Similarly some protocols (particularly those associated
with security)can be dependent on having the correct time (or at least the same idea of the current
time). When computers are connected together it is possible for them to exchange their idea of
the time and thus to synchronise their clocks.

19.2. The Network Time Protocol

The Network Time Protocol (NTP) is a protocol designed to facilitate the exchange the current
time and provide a means for accurately establishing the time over a network of computers.

The time is transferred as a 64 bit fixed-point quantity, with the top 32 bits representing the time
in seconds since the beginning of 1900 and the remaining 32 buts representing the fractions of
a second, giving a resolution of about 232 picoseconds and a range of 136 years.

UDP packets are exchanged regularly between hosts which contain that hosts idea of the current
time together with its estimatiom of how accurate that value is. Some hosts also have external
accurate clocks connected to them derived from such sources as atomic clocks and GPSreceivers.
They advertise an accurate time which the others synchronise to.

To improve the accuracy, statistics are kept about the round-trip delay times between hosts and
how much they vary. Various statistical calculations are made which allow an accurate idea of
the time to be derived and maintained.

182

Chapter 20. Security

20.1. Introduction

Whenever a computer is connected to a network, questions of security arise. Any computer
is subject to security problems. Who should be allowed to use it? What data should they be
allowed to access? How do you prevent data from being corrupted or transferred to somebody
who shouldn’t have it?

Connecting the computer to the network compounds these problems. Now it is possible for
people to access the computer without being physically present. In addition, now some of the
data is being transferred over the network and passing through other people’s hosts and cables
where we have no control. How do we know that the data is coming from where we think it is?

20.2. Authentication

Authentication is the process of verifying that somebody is who they say they are. There are
various techniques for doing this relying either on the possession of some unique physical device
(including various characteristics of a person such as a fingerprint or retina pattern or a physical
device such as an access card) or on the common knowledge of some piece of information which
only the person and the computer possess (such as a password).

Unfortunately, when the computers are connected to a network, the authentication information
must pass over the network somehow, and it is then prone to capture by other people who then
have the information. Even if it is a physical device which is needed, the characteristicsof it must
pass over the network and if those characteristics are later retransmitted then it can be difficult
to tell the difference between the original transmission of the data and a later forgery.

The most common form of authentication today is still the simple password. Passwords are
becoming less secure, partly because computers are becoming faster and faster and so it is easier
to crack them and partly because they are prone to “sniffing” by observing packets on a local area
network. Consequently it is necessary to find replacement techniques for user authentication.

Most of the possible replacements rely on the use of one-time-passwords (OTPs) which are like
ordinary passwords except they are valid for only one use.

Some OTP systems rely on a user having a physical device which displays a password which
changes regularly. The computer knows which password will be displayed at any time and thus
knows which to expect.There are problemswith such a system in keeping the time on the portable
device and the computer synchronised but they can be overcome by having the computer accept
any one of a few passwords generated around the correct time and thus being able to calculate
the drift of the clock on the portable device. Such a system does rely on the user not losing the
device. If it is lost then the security of the system is compromised because the finder can use it
to log in to the computer.

183

184 Chapter 20. Security

Another OTP system uses encryption to generate the passwords. By using a pass phrase which
is remembered by the user and typed in to the computer at which he is actually sitting (and thus
not passing over the network) it is possible to generate passwords by repeatedly encrypting the
phrase. The first time it is used, the pass phrase might be encrypted 100 times. The next time it
would be encrypted 99 times and so on. With a good encryption scheme, knowing the passwords
which have already been used it will still be impossible to generate the next password to be used.
When the pass phrase has been used 100 times (the last with only a single encryption) it will be
necessary to choose another pass phrase. This would need to be done while physically located at
the computer (so that the pass phrase does not pass over the network) or encrypted in some way
using keys which have already been agreed upon.

A related problem is that of authenticating messages on a network. This particularly applies to
email messages where you want to be sure that they really come from whom they purport to.
There are now systems available which allow this authentication to take place, although they all
share the problem that at some stage you have to trust some information that you receive from
somebody else.

20.3. Data Integrity

The integrity of your data is also extremely important. You need to be sure that the data has not
been changed, that it is correct (and is reliable) and that nobody sees it who shouldn’t. The last
of these requires some form of encryption if the data is to pass over a network and the encryption
can also be used to help with the other requirements.

The main problem with encryption is passing the keys to those people who need them and making
sure that those who shouldn’t have them don’t. This is similar to the password problem and to
the problem of keeping the data secret in the first place. The safest way to transfer the keys is to
not use the network, but pass them in some other way.

An alternative is to use a public key system. This is a system where the key used to encrypt the
data is different from the one used to decrypt the data and the decryption key cannot easily be
derived from the encryption key. Then if I want someone to send me some data I can send them
the encryption key (or publish it in some public place) and they can then encrypt the data and
send it to me. Nobody apart from me can decrypt the data (even the person who encrypted it).
With such a system it also becomes possible to solve the authentication problem with the data.
If you send with the request some data encrypted with the other person’s public key and they
decrypt it and send it back encrypted with your public key then you can be sure that the person
whose public key you used is the person who is sending you the data in the same message.

In practice public key systems need to use very long keys to be secure. Keys of thousands of bits
are common. This makes the encryption and decryption processes slow. Thus if a large amount
of data needs to be encrypted you would probably use the public key system to exchange keys
for a simpler and much faster encryption system and use that to actually encrypt the data.

Appendix A. A TCP/IP Tutorial

Status of this Memo1

This RFC is a tutorial on the TCP/IP protocol suite, focusing particularly on the steps in
forwarding an IP datagram from source host to destination host through a router. It does not
specify an Internet standard. Distribution of this memo is unlimited.

A.1. Introduction

This tutorial contains only one view of the salient points of TCP/IP, and therefore it is the “bare
bones” of TCP/IP technology. It omits the history of development and funding, the business case
for its use, and its future as compared to ISO OSI. Indeed, a great deal of technical information
is also omitted. What remains is a minimum of information that must be understood by the
professional working in a TCP/IP environment. These professionals include the systems
administrator, the systems programmer, and the network manager.

This tutorial uses examples from the UNIX TCP/IP environment, however the main points apply
across all implementations of TCP/IP.

Note that the purpose of this memo is explanation, not definition. If any question arises about the
correct specification of a protocol, please refer to the actual standards defining RFC.

The next section is an overview of TCP/IP, followed by detailed descriptions of individual
components.

A.2. TCP/IP Overview

The generic term “TCP/IP” usually means anything and everything related to the specific
protocols of TCP and IP. It can include other protocols, applications, and even the network
medium. A sample of these protocols are:UDP, ARP, and ICMP. A sample of these applications
are:TELNET, FTP, and rcp. A more accurate term is “internet technology”. A network that uses
internet technology is called an “internet”.

A.2.1. Basic Structure

To understand this technology you must first understand the logical structure shown in figure
A.1.

This is the logical structure of the layered protocols inside a computer on an internet. Each
computer that can communicate using internet technology has such a logical structure. It is

1This appendix contains a copy of RFC1180, written by T. Socolofsky and C. Kale of Spider Systems Limited in January
1991. The only changes I have made here are to reformat the text and redraw the diagramsand minimal changesnecessary
because of the reformatting.

185

186 Appendix A. A TCP/IP Tutorial

Ethernet Cable

ENET

ARP

TCP UDP

network applications

o

@

*
IP

Figure A.1. Basic TCP/IP Network Node

this logical structure that determines the behavior of the computer on the internet. The boxes
represent processing of the data as it passes through the computer,and the lines connecting boxes
show the path of data. The horizontal line at the bottom represents the Ethernet cable; the “o”
is the transceiver. The “*” is the IP address and the “@” is the Ethernet address. Understanding
this logical structure is essential to understanding internet technology; it is referred to throughout
this tutorial.

A.2.2. Terminology

The name of a unit of data that flows through an internet is dependent upon where it exists in the
protocol stack. In summary: if it is on an Ethernet it is called an Ethernet frame; if it is between
the Ethernet driver and the IP module it is called a IP packet; if it is between the IP module and the
UDP module it is called a UDP datagram; if it is between the IP module and the TCP module it is
called a TCP segment (more generally, a transport message); and if it is in a network application
it is called a application message.

These definitions are imperfect. Actual definitions vary from one publication to the next. More
specific definitions can be found in RFC 1122, section 1.3.3.

A driver issoftware that communicatesdirectlywith the network interfacehardware. A module is
software that communicates with a driver, with network applications, or with another module.

A.2. TCP/IP Overview 187

The terms driver, module, Ethernet frame, IP packet, UDP datagram, TCP message, and
application message are used where appropriate throughout this tutorial.

A.2.3. Flow of Data

Let’s follow the data as it flows down through the protocol stack shown in Figure A.1. For an
application that uses TCP (Transmission Control Protocol), data passes between the application
and the TCP module. For applications that use UDP (User Datagram Protocol), data passes
between the application and the UDP module. FTP (File Transfer Protocol) is a typical
application that uses TCP. Its protocol stack in this example is FTP/TCP/IP/ENET. SNMP
(Simple Network Management Protocol) is an application that uses UDP. Its protocol stack in
this example is SNMP/UDP/IP/ENET.

The TCP module, UDP module, and the Ethernet driver are n-to-1multiplexers. As multiplexers
they switch many inputs to one output. They are also 1-to-n de-multiplexers. As de-multiplexers
they switch one input to many outputs according to the type field in the protocol header.

If an Ethernet frame comes up into the Ethernet driver off the network, the packet can be passed
upwards to either the ARP (Address Resolution Protocol) module or to the IP (Internet Protocol)
module. The value of the type field in the Ethernet frame determines whether the Ethernet frame
is passed to the ARP or the IP module.

If an IP packet comes up into IP, the unit of data is passed upwards to either TCP or UDP, as
determined by the value of the protocol field in the IP header.

If the UDP datagram comes up into UDP, the application message is passed upwards to the
network application based on the value of the port field in the UDP header. If the TCP message
comes up into TCP, the application message is passed upwards to the network application based
on the value of the port field in the TCP header.

The downwards multiplexing is simple to perform because from each starting point there is only
the one downward path; each protocol module adds its header information so the packet can be
demultiplexed at the destination computer.

Data passing out from the applications through either TCP or UDP converges on the IP module
and is sent downwards through the lower network interface driver.

Although internet technology supports many different network media, Ethernet is used for all
examples in this tutorial because it is the most common physical network used under IP. The
computer in Figure A.1has a single Ethernet connection. The 6-byte Ethernet address is unique
for each interface on an Ethernet and is located at the lower interface of the Ethernet driver.

The computer also has a 4-byte IP address. This address is located at the lower interface to the
IP module. The IP address must be unique for an internet.

A running computer always knows its own IP address and Ethernet address.

A.2.4. Two Network Interfaces

If a computer is connected to 2 separate Ethernets it is as in Figure A.3.

Please note that this computer has 2 Ethernet addresses and 2 IP addresses.

It is seen from this structure that for computers with more than one physical network interface,

188 Appendix A. A TCP/IP Tutorial

multiplexer

1

1 2 3 n

of
flow

data

1

1 2 3 n

of
flow

data

de-multiplexer

Figure A.2. n-to-1multiplexer and 1-to-n de-multiplexer

ENET

ARP

TCP UDP

network applications

o

@

*
IP

Ethernet Cable 1
Ethernet Cable 2

o

ENET

ARP

@

*

Figure A.3. TCP/IP Network Node on 2 Ethernets

the IP module is both a n-to-m multiplexer and an m-to-n de-multiplexer.

It performs this multiplexing in either direction to accommodate incoming and outgoing data.
An IP module with more than 1network interface is more complex than our original example in
that it can forward data onto the next network. Data can arrive on any network interface and be
sent out on any other.

The process of sending an IP packet out onto another network is called “forwarding” an IP
packet. A computer that has been dedicated to the task of forwarding IP packets is called an

A.2. TCP/IP Overview 189

multiplexer

1 2 3 n

of
flow

data

1 2 3 m

1 2 3 n

of
flow

data

1 2 3 m

de-multiplexer

Figure A.4. n-to-m multiplexer and m-to-n de-multiplexer

TCP UDP

IP

data data
comes in

here
goes out

here

Figure A.5. Example of IP Forwarding a IP Packet

“IP-router”.

As you can see from the figure, the forwarded IP packet never touches the TCP and UDP modules
on the IP-router. Some IP-router implementations do not have a TCP or UDP module.

A.2.5. IP Creates a Single Logical Network

The IP module is central to the success of internet technology. Each module or driver adds its
header to the message as the message passes down through the protocol stack. Each module
or driver strips the corresponding header from the message as the message climbs the protocol
stack up towards the application. The IP header contains the IP address, which builds a single
logical network from multiple physical networks. This interconnection of physical networks is
the source of the name: internet. A set of interconnected physical networks that limit the range

190 Appendix A. A TCP/IP Tutorial

of an IP packet is called an “internet”.

A.2.6. Physical Network Independence

IP hides the underlying network hardware from the network applications. If you invent a new
physical network, you can put it into service by implementing a new driver that connects to the
internet underneath IP. Thus, the network applications remain intact and are not vulnerable to
changes in hardware technology.

A.2.7. Interoperability

If two computers on an internet can communicate, they are said to “interoperate”; if an
implementation of internet technology is good, it is said to have “interoperability”. Users
of general-purpose computers benefit from the installation of an internet because of the
interoperability in computers on the market. Generally, when you buy a computer, it will
interoperate. If the computer does not have interoperability, and interoperability can not be
added, it occupies a rare and special niche in the market.

A.2.8. After the Overview

With the background set, we will answer the following questions:

When sending out an IP packet, how is the destination Ethernet address determined?

How does IP know which of multiple lower network interfaces to use when sending out an IP
packet?

How does a client on one computer reach the server on another?

Why do both TCP and UDP exist, instead of just one or the other?

What network applications are available?

These will be explained, in turn, after an Ethernet refresher.

A.3. Ethernet

This section is a short review of Ethernet technology.

An Ethernet frame contains the destination address, source address, type field, and data.

An Ethernet address is 6 bytes. Every device has its own Ethernet address and listens for Ethernet
frames with that destination address. All devices also listen for Ethernet frames with a wild- card
destination address of “FF-FF-FF-FF-FF-FF” (in hexadecimal), called a “broadcast” address.

Ethernet uses CSMA/CD (Carrier Sense and Multiple Access with Collision Detection).
CSMA/CD means that all devices communicate on a single medium, that only one can transmit
at a time, and that they can all receive simultaneously. If 2 devices try to transmit at the same
instant, the transmit collision isdetected,and both deviceswait a random (but short)period before
trying to transmit again.

A.3. Ethernet 191

A.3.1. A Human Analogy

A good analogy of Ethernet technology is a group of people talking in a small, completely dark
room. In this analogy, the physical network medium is sound waves on air in the room instead
of electrical signals on a coaxial cable.

Each person can hear the words when another is talking (Carrier Sense). Everyone in the room
has equal capability to talk (Multiple Access), but none of them give lengthy speeches because
they are polite. If a person is impolite, he is asked to leave the room (i.e., thrown off the net).

No one talks while another is speaking. But if two people start speaking at the same instant, each
of them know this because each hears something they haven’t said (Collision Detection). When
these two people notice thiscondition, they wait for a moment, then one begins talking. The other
hears the talking and waits for the first to finish before beginning his own speech.

Each person has an unique name (unique Ethernet address) to avoid confusion. Every time one
of them talks, he prefaces the message with the name of the person he is talking to and with his
own name (Ethernet destination and source address, respectively), i.e., “Hello Jane, this is Jack,
..blah blah blah...”. If the sender wants to talk to everyone he might say “everyone” (broadcast
address), i.e., “Hello Everyone, this is Jack, ..blah blah blah...”.

A.4. ARP

When sending out an IP packet, how is the destination Ethernet address determined?

ARP (Address Resolution Protocol) is used to translate IP addresses to Ethernet addresses.
The translation is done only for outgoing IP packets, because this is when the IP header and the
Ethernet header are created.

A.4.1. ARP Table for Address Translation

The translation is performed with a table look-up. The table, called the ARP table, is stored in
memory and contains a row for each computer. There is a column for IP address and a column
for Ethernet address. When translating an IP address to an Ethernet address, the table is searched
for a matching IP address. Table A.1 is a simplified ARP table.

The human convention when writing out the 4-byte IP address is each byte in decimal and
separating bytes with a period. When writing out the 6-byte Ethernet address, the conventions
are each byte in hexadecimal and separating bytes with either a minus sign or a colon.

The ARP table is necessary because the IP address and Ethernet address are selected
independently; you can not use an algorithm to translate IP address to Ethernet address. The IP
address is selected by the network manager based on the location of the computer on the internet.
When the computer is moved to a different part of an internet, its IP address must be changed.
The Ethernet address isselected by the manufacturer based on the Ethernet addressspace licensed
by the manufacturer. When the Ethernet hardware interface board changes, the Ethernet address
changes.

A.4.2. Typical Translation Scenario

During normal operation a network application, such as TELNET, sends an application message

192 Appendix A. A TCP/IP Tutorial

IP ADDRESS Ethernet Address
223.1.2.1 08-00-39-00-2F-C3
223.1.2.3 08-00-5A-21-A7-22
223.1.2.4 08-00-10-99-AC-54

Table A.1. Example ARP Table

to TCP, then TCP sends the corresponding TCP message to the IP module. The destination IP
address is known by the application, the TCP module, and the IP module. At this point the IP
packet has been constructed and is ready to be given to the Ethernet driver,but first the destination
Ethernet address must be determined.

The ARP table is used to look-up the destination Ethernet address.

A.4.3. ARP Request/Response Pair

But how does the ARP table get filled in the first place? The answer is that it isfilled automatically
by ARP on an “as-needed” basis.

Two things happen when the ARP table can not be used to translate an address:

1. An ARP request packet with a broadcast Ethernet address is sent out on the network to every
computer.

2. The outgoing IP packet is queued.

Every computer’s Ethernet interface receives the broadcast Ethernet frame. Each Ethernet driver
examines the Type field in the Ethernet frame and passes the ARP packet to the ARP module.
The ARP request packet says “If your IP address matches this target IP address, then please tell
me your Ethernet address”. An ARP request packet looks something like table A.2.

Each ARP module examines the IP address and if the Target IP address matches its own IP
address, it sends a response directly to the source Ethernet address. The ARP response packet
says “Yes, that target IP address is mine, let me give you my Ethernet address”. An ARP
response packet has the sender/target field contents swapped as compared to the request. It looks
something like table A.3.

The response is received by the original sender computer. The Ethernet driver looks at the Type
field in the Ethernet frame then passes the ARP packet to the ARP module. The ARP module
examines the ARP packet and adds the sender’s IP and Ethernet addresses to its ARP table.

The updated table now looks like table A.4.

A.4.4. Scenario Continued

The new translation has now been installed automatically in the table, just milli-seconds after
it was needed. As you remember from step 2 above, the outgoing IP packet was queued. Next,
the IP address to Ethernet address translation is performed by look-up in the ARP table then
the Ethernet frame is transmitted on the Ethernet. Therefore, with the new steps 3, 4, and 5, the

A.4. ARP 193

Sender IP Address 223.1.2.1
Sender Enet Address 08-00-39-00-2F-C3

Target IP Address 223.1.2.2
Target Enet Address <blank>

Table A.2. Example ARP Request

Sender IP Address 223.1.2.2
Sender Enet Address 08-00-28-00-38-A9

Target IP Address 223.1.2.1
Target Enet Address 08-00-39-00-2F-C3

Table A.3. Example ARP Response

IP address Ethernet address
223.1.2.1 08-00-39-00-2F-C3
223.1.2.2 08-00-28-00-38-A9
223.1.2.3 08-00-5A-21-A7-22
223.1.2.4 08-00-10-99-AC-54

Table A.4. ARP table after response

scenario for the sender computer is:

1. An ARP request packet with a broadcast Ethernet address is sent out on the network to every
computer.

2. The outgoing IP packet is queued.

3. The ARP response arrives with the IP-to-Ethernet address translation for the ARP table.

4. For the queued IP packet, the ARP table is used to translate the IP address to the Ethernet
address.

5. The Ethernet frame is transmitted on the Ethernet.

In summary, when the translation is missing from the ARP table, one IP packet is queued. The
translation data is quickly filled in with ARP request/response and the queued IP packet is
transmitted.

Each computer hasa separate ARP table for each of itsEthernet interfaces. If the target computer
does not exist, there will be no ARP response and no entry in the ARP table. IP will discard
outgoing IP packets sent to that address. The upper layer protocols can’t tell the difference
between a broken Ethernet and the absence of a computer with the target IP address.

Some implementations of IP and ARP don’t queue the IP packet while waiting for the ARP

194 Appendix A. A TCP/IP Tutorial

response. Instead the IP packet is discarded and the recovery from the IP packet loss is left to
the TCP module or the UDP network application. This recovery is performed by time-out and
retransmission. The retransmitted message is successfully sent out onto the network because the
first copy of the message has already caused the ARP table to be filled.

A.5. Internet Protocol

The IP module is central to internet technology and the essence of IP is its route table. IP uses
this in-memory table to make all decisions about routing an IP packet. The content of the route
table is defined by the network administrator. Mistakes block communication.

To understand how a route table is used is to understand internetworking. This understanding is
necessary for the successful administration and maintenance of an IP network.

The route table is best understood by first having an overview of routing, then learning about IP
network addresses, and then looking at the details.

A.5.1. Direct Routing

The figure below is of a tiny internet with 3 computers:A, B, and C. Each computer has the same
TCP/IP protocol stack as in Figure 1. Each computer’s Ethernet interface has its own Ethernet
address. Each computer has an IP address assigned to the IP interface by the network manager,
who also has assigned an IP network number to the Ethernet.

When A sends an IP packet to B, the IP header contains A’s IP address as the source IP address,
and the Ethernet header contains A’s Ethernet address as the source Ethernet address. Also, the
IP header contains B’s IP address as the destination IP address and the Ethernet header contains
B’s Ethernet address as the destination Ethernet address. This is shown in table A.5.

For this simple case, IP is overhead because the IP adds little to the service offered by Ethernet.
However, IP does add cost: the extra CPU processing and network bandwidth to generate,
transmit, and parse the IP header.

When B’s IP module receives the IP packet from A, it checks the destination IP address against
its own, looking for a match, then it passes the datagram to the upper-level protocol.

This communication between A and B uses direct routing.

A.5.2. Indirect Routing

Figure A.7 is a more realistic view of an internet. It is composed of 3Ethernets and 3 IP networks
connected by an IP-router called computer D. Each IP network has 4 computers; each computer
has its own IP address and Ethernet address.

Except for computer D, each computer has a TCP/IP protocol stack like that in Figure A.1.
Computer D is the IP-router; it is connected to all 3 networks and therefore has 3 IP addresses
and 3 Ethernet addresses. Computer D has a TCP/IP protocol stack similar to that in Figure A.3,
except that it has 3 ARP modules and 3 Ethernet drivers instead of 2. Please note that computer
D has only one IP module.

The network manager has assigned a unique number, called an IP network number, to each of
the Ethernets. The IP network numbers are not shown in this diagram, just the network names.

A.5. Internet Protocol 195

A B C

Ethernet 1
IP network "development"

Figure A.6. One IP Network

Ethernet 1
IP network "development"

A B C E F G

H I J

D

Ethernet 2

Ethernet 3

IP network "accounting"

IP network "factory"

Figure A.7. Three IP Networks; One internet

address source destination
IP header A B

Ethernet header A B

Table A.5. Addresses in an Ethernet frame for an IP packet from A to B

When computer A sends an IP packet to computer B, the process is identical to the single network
example above. Any communication between computers located on a single IP network matches
the direct routing example discussed previously.

When computer D and A communicate, it is direct communication. When computer D and E
communicate, it is direct communication. When computer D and H communicate, it is direct
communication. This is because each of these pairs of computers is on the same IP network.

However, when computer A communicates with a computer on the far side of the IP-router,
communication is no longer direct. A must use D to forward the IP packet to the next IP network.
This communication is called “indirect”.

196 Appendix A. A TCP/IP Tutorial

This routing of IP packets is done by IP modules and happens transparently to TCP, UDP, and
the network applications.

If A sends an IP packet to E, the source IP address and the source Ethernet address are A’s. The
destination IP address is E’s, but because A’s IP module sends the IP packet to D for forwarding,
the destination Ethernet address is D’s as shown in table A.6.

D’s IP module receives the IP packet and upon examining the destination IP address, says “This
is not my IP address,” and sends the IP packet directly to E as shown in table A.7.

In summary, for direct communication, both the source IP address and the source Ethernet
address is the sender’s, and the destination IP address and the destination Ethernet address is the
recipient’s. For indirect communication, the IP address and Ethernet addresses do not pair up in
this way.

This example internet is a very simple one. Real networksare often complicated by many factors,
resulting in multiple IP-routers and several types of physical networks. This example internet
might have come about because the network manager wanted to split a large Ethernet in order
to localize Ethernet broadcast traffic.

A.5.3. IP Module Routing Rules

This overview of routing has shown what happens, but not how it happens. Now let’s examine
the rules, or algorithm, used by the IP module.

• For an outgoing IP packet, entering IP from an upper layer, IP must decide whether to send
the IP packet directly or indirectly, and IP must choose a lower network interface. These
choices are made by consulting the route table.

• For an incoming IP packet, entering IP from a lower interface, IP must decide whether to
forward the IP packet or pass it to an upper layer. If the IP packet is being forwarded, it is
treated as an outgoing IP packet.

• When an incoming IP packet arrives it is never forwarded back out through the same
network interface.

These decisions are made before the IP packet is handed to the lower interface and before the
ARP table is consulted.

A.5.4. IP Address

The network manager assigns IP addresses to computers according to the IP network to which
the computer is attached. One part of a 4- byte IP address is the IP network number, the other part
is the IP computer number (or host number). For the computer in table A.1, with an IP address
of 223.1.2.1, the network number is 223.1.2 and the host number is number 1.

The portion of the address that is used for network number and for host number is defined by
the upper bits in the 4-byte address. All example IP addresses in this tutorial are of type class C,
meaning that the upper 3 bits indicate that 21bits are the network number and 8 bits are the host
number. This allows 2,097,152 class C networks up to 254 hosts on each network.

A.5. Internet Protocol 197

address source destination
IP header A E

Ethernet header A D

Table A.6. Addresses in an Ethernet frame for an IP packet from A to E (before D)

address source destination
IP header A E

Ethernet header D E

Table A.7. Addresses in an Ethernet frame for an IP packet from A to E (after D)

The IP addressspace isadministered by the NIC (Network Information Center). All internets that
are connected to the single world-wide Internet must use network numbers assigned by the NIC.
If you are setting up your own internet and you are not intending to connect it to the Internet,
you should still obtain your network numbers from the NIC. If you pick your own number, you
run the risk of confusion and chaos in the eventuality that your internet is connected to another
internet.

A.5.5. Names

People refer to computers by names, not numbers. A computer called alpha might have the IP
address of 223.1.2.1. For small networks, this name-to-address translation data is often kept on
each computer in the “hosts” file. For larger networks, this translation data file is stored on a
server and accessed across the network when needed. A few lines from that file might look like
this:

223.1.2.1 alpha
223.1.2.2 beta
223.1.2.3 gamma
223.1.2.4 delta
223.1.3.2 epsilon
223.1.4.2 iota

The IP address is the first column and the computer name is the second column.

In most cases,you can install identical “hosts” files on all computers. You may notice that “delta”
has only one entry in this file even though it has 3 IP addresses. Delta can be reached with any
of its IP addresses; it does not matter which one is used. When delta receives an IP packet and
looks at the destination address, it will recognize any of its own IP addresses.

IP networks are also given names. If you have 3 IP networks, your “networks” file for
documenting these names might look something like this:

198 Appendix A. A TCP/IP Tutorial

223.1.2 development
223.1.3 accounting
223.1.4 factory

The IP network number is in the first column and its name is in the second column.

From thisexample you can see that alpha is computer number 1on the development network,beta
is computer number 2 on the development network and so on. You might also say that alpha is
development.1, Beta is development.2, and so on.

The above hosts file is adequate for the users, but the network manager will probably replace the
line for delta with:

223.1.2.4 devnetrouter delta
223.1.3.1 facnetrouter
223.1.4.1 accnetrouter

These three new lines for the hosts file give each of delta’s IP addresses a meaningful name. In
fact, the first IP address listed has 2 names; “delta” and “devnetrouter” are synonyms. In practice
“delta” is the general-purpose name of the computer and the other 3 names are only used when
administering the IP route table.

These files are used by network administration commands and network applications to provide
meaningful names. They are not required for operation of an internet, but they do make it easier
for us.

A.5.6. IP Route Table

How does IP know which lower network interface to use when sending out a IP packet? IP
looks it up in the route table using a search key of the IP network number extracted from the IP
destination address.

The route table contains one row for each route. The primary columns in the route table are:
IP network number, direct/indirect flag, router IP address, and interface number. This table is
referred to by IP for each outgoing IP packet.

On most computers the route table can be modified with the “route” command. The content of
the route table is defined by the network manager, because the network manager assigns the IP
addresses to the computers.

A.5.7. Direct Routing Details

To explain how it is used, let us visit in detail the routing situations we have reviewed previously
and as shown in figure A.8.

The route table inside alpha looks like table A.8.

This view can be seen on some UNIX systems with the “netstat -r” command. With this simple
network, all computers have identical routing tables.

For discussion, the table is printed again without the network number translated to its network

A.5. Internet Protocol 199

alpha beta
1 1

Ethernet 1
IP network "development"

Figure A.8. Close-up View of One IP Network

network direct/indirect
flag

router interface number

development direct <blank> 1

Table A.8. Example Simple Route Table

name as table A.9.

A.5.8. Direct Scenario

Alpha is sending an IP packet to beta. The IP packet is in alpha’s IP module and the destination
IP address is beta or 223.1.2.2. IP extracts the network portion of this IP address and scans the
first column of the table looking for a match. With this network a match is found on the first
entry.

The other information in this entry indicates that computers on this network can be reached
directly through interface number 1. An ARP table translation is done on beta’s IP address then
the Ethernet frame is sent directly to beta via interface number 1.

If an application tries to send data to an IP address that is not on the development network, IP
will be unable to find a match in the route table. IP then discards the IP packet. Some computers
provide a “Network not reachable” error message.

A.5.9. Indirect Routing Details

Now, let’s take a closer look at the more complicated routing scenario that we examined
previously as shown in figure A.9.

The route table inside alpha looks like table A.10.

For discussion the table is printed again using numbers instead of names in table A.11.

The router in Alpha’s route table is the IP address of delta’s connection to the development
network.

A.5.10. Indirect Scenario

Alpha issending an IP packet to epsilon. The IP packet is in alpha’s IP module and the destination

200 Appendix A. A TCP/IP Tutorial

network direct/indirect
flag

router interface number

223.1.2 direct <blank> 1

Table A.9. Example Simple Route Table

network direct/indirect
flag

router interface number

development direct <blank> 1
accounting indirect devnetrouter 1

factory indirect devnetrouter 1

Table A.10. Alpha Route Table

network direct/indirect
flag

router interface number

223.1.2 direct <blank> 1
223.1.3 indirect 223.1.2.4 1
223.1.4 indirect 223.1.2.4 1

Table A.11. Alpha Route Table with Numbers

Ethernet 1 Ethernet 2

Ethernet 3

IP network "development" IP network "accounting"

IP network "factory"

alpha delta epsilon

iota

1 1 2 3 1

1

Figure A.9. Close-up View of Three IP Networks

A.5. Internet Protocol 201

IP address is epsilon (223.1.3.2). IP extracts the network portion of this IP address (223.1.3) and
scans the first column of the table looking for a match. A match is found on the second entry.

This entry indicates that computers on the 223.1.3 network can be reached through the IP-router
devnetrouter. Alpha’s IP module then does an ARP table translation for devnetrouter’s IP address
and sends the IP packet directly to devnetrouter through Alpha’s interface number 1. The IP
packet still contains the destination address of epsilon.

The IP packet arrives at delta’s development network interface and is passed up to delta’s IP
module. The destination IP address is examined and because it does not match any of delta’s
own IP addresses, delta decides to forward the IP packet.

Delta’s IP module extracts the network portion of the destination IP address (223.1.3) and scans
its route table for a matching network field. Delta’s route table looks like table A.12.

Table A.13 is delta’s table printed again, without the translation to names.

The match is found on the second entry. IP then sends the IP packet directly to epsilon through
interface number 3. The IP packet contains the IP destination address of epsilon and the Ethernet
destination address of epsilon.

The IP packet arrives at epsilon and is passed up to epsilon’s IP module. The destination IP
address is examined and found to match with epsilon’s IP address, so the IP packet is passed to
the upper protocol layer.

A.5.11. Routing Summary

When a IP packet travels through a large internet it may go through many IP-routers before it
reaches its destination. The path it takes is not determined by a central source but is a result of
consulting each of the routing tables used in the journey. Each computer defines only the next
hop in the journey and relies on that computer to send the IP packet on its way.

A.5.12. Managing the Routes

Maintaining correct routing tables on all computers in a large internet is a difficult task; network
configuration is being modified constantly by the network managers to meet changing needs.
Mistakes in routing tables can block communication in ways that are excruciatingly tedious to
diagnose.

Keeping a simple network configuration goes a long way towards making a reliable internet. For
instance, the most straightforward method of assigning IP networks to Ethernet is to assign a
single IP network number to each Ethernet.

Help is also available from certain protocols and network applications. ICMP (Internet Control
Message Protocol) can report some routing problems. For small networks the route table is
filled manually on each computer by the network administrator. For larger networks the network
administrator automates this manual operation with a routing protocol to distribute routes
throughout a network.

When a computer is moved from one IP network to another, its IP address must change. When
a computer is removed from an IP network its old address becomes invalid. These changes
require frequent updates to the “hosts” file. This flat file can become difficult to maintain for
even medium-size networks. The Domain Name System helps

202 Appendix A. A TCP/IP Tutorial

network direct/indirect
flag

router interface number

development direct <blank> 1
factory direct <blank> 3

accounting direct <blank> 2

Table A.12. Delta’s Route Table

network direct/indirect
flag

router interface number

223.1.2 direct <blank> 1
223.1.3 direct <blank> 3
223.1.4 direct <blank> 2

Table A.13. Delta’s Route Table with Numbers

A.6. User Datagram Protocol

UDP is one of the two main protocols to reside on top of IP. It offers service to the user’s network
applications. Example network applications that use UDP are: Network File System (NFS) and
Simple Network Management Protocol (SNMP). The service is little more than an interface to
IP.

UDP is a connectionless datagram delivery service that does not guarantee delivery. UDP
does not maintain an end-to-end connection with the remote UDP module; it merely pushes the
datagram out on the net and accepts incoming datagrams off the net.

UDP adds two values to what is provided by IP. One is the multiplexing of information between
applications based on port number. The other is a checksum to check the integrity of the data.

A.6.1. Ports

How does a client on one computer reach the server on another?

The path of communication between an application and UDP is through UDP ports. These ports
are numbered, beginning with zero. An application that is offering service (the server) waits for
messages to come in on a specific port dedicated to that service. The server waits patiently for
any client to request service.

For instance, the SNMP server, called an SNMP agent, always waits on port 161. There can
be only one SNMP agent per computer because there is only one UDP port number 161. This
port number is well known; it is a fixed number, an internet assigned number. If an SNMP client
wants service, it sends its request to port number 161 of UDP on the destination computer.

When an application sends data out through UDP it arrives at the far end as a single unit. For
example, if an application does 5 writes to the UDP port, the application at the far end will do 5
reads from the UDP port. Also, the size of each write matches the size of each read.

A.6. User Datagram Protocol 203

UDP preserves the message boundary defined by the application. It never joins two application
messages together, or divides a single application message into parts.

A.6.2. Checksum

An incoming IP packet with an IP header type field indicating “UDP” is passed up to the UDP
module by IP. When the UDP module receives the UDP datagram from IP it examines the UDP
checksum. If the checksum is zero, it means that checksum was not calculated by the sender and
can be ignored. Thus the sending computer’s UDP module may or may not generate checksums.
If Ethernet is the only network between the 2 UDP modules communicating, then you may not
need checksumming. However, it is recommended that checksum generation always be enabled
because at some point in the future a route table change may send the data across less reliable
media.

If the checksum is valid (or zero), the destination port number is examined and if an application
is bound to that port, an application message is queued for the application to read. Otherwise the
UDP datagram is discarded. If the incoming UDP datagrams arrive faster than the application
can read them and if the queue fills to a maximum value, UDP datagrams are discarded by UDP.
UDP will continue to discard UDP datagrams until there is space in the queue.

A.7. Transmission Control Protocol

TCP provides a different service than UDP. TCP offers a connection- oriented byte stream,
instead of a connectionless datagram delivery service. TCP guarantees delivery, whereas UDP
does not.

TCP isused by network applicationsthat requireguaranteed deliveryand cannot be bothered with
doing time-outsand retransmissions. The two most typical network applications that use TCP are
File Transfer Protocol (FTP)and the TELNET. Other popular TCP network applications include
X-Window System, rcp (remote copy), and the r- series commands. TCP’s greater capability is
not without cost: it requiresmore CPU and network bandwidth. The internalsof the TCP module
are much more complicated than those in a UDP module.

Similar to UDP, network applications connect to TCP ports. Well- defined port numbers are
dedicated to specific applications. For instance, the TELNET server uses port number 23. The
TELNET client can find the server simply by connecting to port 23 of TCP on the specified
computer.

When the application first starts using TCP, the TCP module on the client’s computer and the
TCP module on the server’scomputer start communicating with each other. These two end-point
TCP modulescontain state information that definesa virtual circuit. Thisvirtual circuit consumes
resources in both TCP end-points. The virtual circuit is full duplex;data can go in both directions
simultaneously. The application writes data to the TCP port, the data traverses the network and
is read by the application at the far end.

TCP packetizes the byte stream at will; it does not retain the boundaries between writes. For
example, if an application does 5 writes to the TCP port, the application at the far end might do
10 reads to get all the data. Or it might get all the data with a single read. There is no correlation
between the number and size of writes at one end to the number and size of reads at the other
end.

204 Appendix A. A TCP/IP Tutorial

TCP is a sliding window protocol with time-out and retransmits. Outgoing data must be
acknowledged by the far-end TCP. Acknowledgements can be piggybacked on data. Both
receiving ends can flow control the far end, thus preventing a buffer overrun.

Aswith all slidingwindowprotocols, the protocolhasa windowsize.The window size determines
the amount of data that can be transmitted before an acknowledgement is required. For TCP,
this amount is not a number of TCP segments but a number of bytes.

A.8. Network Applications

Why do both TCP and UDP exist, instead of just one or the other?

They supply different services. Most applications are implemented to use only one or the other.
You, the programmer, choose the protocol that best meets your needs. If you need a reliable
stream delivery service, TCP might be best. If you need a datagram service, UDP might be best.
If you need efficiency over long-haul circuits, TCP might be best. If you need efficiency over
fast networks with short latency, UDP might be best. If your needs do not fall nicely into these
categories, then the “best” choice is unclear. However, applications can make up for deficiencies
in the choice. For instance if you choose UDP and you need reliability, then the application
must provide reliability. If you choose TCP and you need a record oriented service, then the
application must insert markers in the byte stream to delimit records.

What network applications are available?

There are far too many to list. The number is growing continually.Some of the applications have
existed since the beginning of internet technology:TELNET and FTP. Others are relatively new:
X-Windows and SNMP. The following is a brief description of the applications mentioned in
this tutorial.

A.8.1. TELNET

TELNET provides a remote login capability on TCP. The operation and appearance is similar to
keyboard dialing through a telephone switch. On the command line the user types “telnet delta”
and receives a login prompt from the computer called “delta”.

TELNET works well; it is an old application and has widespread interoperability. Implementa-
tions of TELNET usually work between different operating systems. For instance, a TELNET
client may be on VAX/VMS and the server on UNIX System V.

A.8.2. FTP

File Transfer Protocol (FTP), as old as TELNET, also uses TCP and has widespread
interoperability. The operation and appearance is as if you TELNETed to the remote computer.
But instead of typing your usual commands, you have to make do with a short list of commands
for directory listings and the like. FTP commands allow you to copy files between computers.

A.8.3. rsh

Remote shell (rsh or remsh) is one of an entire family of remote UNIX style commands. The
UNIX copy command, cp, becomes rcp. The UNIX “who is logged in” command,who, becomes

A.8. Network Applications 205

rwho. The list continues and is referred to collectively to as the “r” series commands or the “r*”
(r star) commands.

The r* commands mainly work between UNIX systems and are designed for interaction
between trusted hosts. Little consideration is given to security, but they provide a convenient
user environment.

To execute the “cc file.c” command on a remote computer called delta, type “rsh delta cc file.c”.
To copy the “file.c” file to delta, type “rcp file.c delta:”. To login to delta, type “rlogin delta”, and
if you administered the computers in a certain way, you will not be challenged with a password
prompt.

A.8.4. NFS

Network File System, first developed by Sun Microsystems Inc, uses UDP and is excellent
for mounting UNIX file systems on multiple computers. A diskless workstation can access its
server’s hard disk as if the disk were local to the workstation. A single disk copy of a database
on mainframe “alpha” can also be used by mainframe “beta” if the database’s file system is NFS
mounted on “beta”.

NFS adds significant load to a network and has poor utility across slow links, but the benefits are
strong. The NFS client is implemented in the kernel, allowing all applications and commands to
use the NFS mounted disk as if it were local disk.

A.8.5. SNMP

Simple Network Management Protocol (SNMP) uses UDP and is designed for use by central
network management stations. It is a well known fact that if given enough data, a network
manager can detect and diagnose network problems. The central station uses SNMP to collect
this data from other computers on the network. SNMP defines the format for the data; it is left
to the central station or network manager to interpret the data.

A.8.6. X-Window

The X Window System uses the X Window protocol on TCP to draw windows on a workstation’s
bitmap display. X Window is much more than a utility for drawing windows; it is entire
philosophy for designing a user interface.

A.9. Other Information

Much information about internet technology was not included in this tutorial. This section lists
information that is considered the next level of detail for the reader who wishes to learn more.

• administration commands: arp, route, and netstat

• ARP: permanent entry, publish entry, time-out entry, spoofing

• IP route table: host entry, default gateway, subnets

206 Appendix A. A TCP/IP Tutorial

• IP: time-to-live counter, fragmentation, ICMP

• RIP, routing loops

• Domain Name System

A.10. References

[1] Comer,D., “Internetworkingwith TCP/IP Principles,Protocols,and Architecture”,Prentice
Hall, Englewood Cliffs, New Jersey, U.S.A., 1988.

[2] Feinler, E., et al, DDN Protocol Handbook, Volume 2 and 3, DDN Network Information
Center,SRI International,333Ravenswood Avenue,Room EJ291,Menlow Park,California,
U.S.A., 1985.

[3] Spider Systems, Ltd., “Packets and Protocols”, Spider Systems Ltd., Stanwell Street,
Edinburgh, U.K. EH6 5NG, 1990.

A.11. Relation to other RFCs

This RFC is a tutorial and it does not UPDATE or OBSOLETE any other RFC.

A.12. Security Considerations

There are security considerations within the TCP/IP protocol suite. To some people these
considerations are serious problems, to others they are not; it depends on the user requirements.

This tutorial does not discuss these issues, but if you want to learn more you should start with
the topic of ARP-spoofing, then use the “Security Considerations” section of RFC 1122 to lead
you to more information.

A.13. Authors’ Addresses

Theodore John Socolofsky
Spider Systems Limited
Spider Park
Stanwell Street
Edinburgh EH6 5NG
United Kingdom

Phone:
from UK 031-554-9424
from USA 011-44-31-554-9424

Fax:

A.13. Authors’ Addresses 207

from UK 031-554-0649
from USA 011-44-31-554-0649

EMail: TEDS@SPIDER.CO.UK

Claudia Jeanne Kale
12 Gosford Place
Edinburgh EH6 4BJ
United Kingdom

Phone:
from UK 031-554-7432
from USA 011-44-31-554-7432

EMail: CLAUDIAK@SPIDER.CO.UK

Index
abort, 23
active channel state, 23
Advanced Research Projects Agency, 155
Aloha, 57

reservation, 61
slotted, 60

application layer, 4
architecture

Digital Network, 5–7
network, 1
System Network, 4–5

ARP, 191
ARPA, 155
arpanet, 88, Arpanet, 155–160
ARQ, 17
asynchronous balanced mode, 25
asynchronous response mode, 24
automatic request for repeat (ARQ), 17

balanced mode, 25
binary exponential backoff, 67
buffering, 131–142

capacity assignment, 120–129
proportional, 124
square root channel, 120
uniform, 123

carrier sense multiple access, 65
channel queue limit flow control, 82
channel state

active, 23
idle, 23

choke packet scheme, 87
Cigule network, 88
cohesion, 147
communication

virtual, 1
communication satellite, 55
communication subnet layer, 2
concentration – finite buffers, 138
congestion, 79

connectivity
link, 147
node, 148

connector, 70
contention, 57, 65
contention ring, 74
CSMA/CD, 65

datagrams, 45
data link layer, 1, 8–32
deadlock, 79

reassembly, 88
resequence, 88

DEC, 5–7
DECNET, 5–7
Digital Network Architecture, 5–7
direct routing, 194
discouraged arrivals, 105
distribution

Poisson, 59, 95
DNS, 173–174
Domain Name System, 173–174
downlink, 55

email, 175–178
entry-to-exit flow control, 88
equilibrium solutions, 100
error control, 30
ethernet, 65–70, 190
Even’s algorithm, 151

fdm, 56
fill

interframe time, 23
fixed assignment time division multiple

access, 56
flag, 21
flow control, 31, 78–90

channel queue limit, 82
choke packet scheme, 87
entry-to-exit, 88

208

209

hop level, 81
input buffer limit scheme, 86
isarithmicscheme, 86
network access, 86
SNA virtualroutepacingscheme, 90
structured buffer pool, 83
virtual circuit hop level, 84

flow deviation method, 40
frame

information, 24
supervisory, 24
unsequenced, 24

frequency division multiplexing, 56
unnumbered, 24

FTP, 204

go back N, 17

HDLC, 20
high level data link control procedures, 20
hop level flow control, 81

IBM, 4–5
idle channel state, 23
indirect routing, 194
information frame, 24
input buffer limit scheme, 86
interface, 1
interframe time fill, 23
Internation Standards Organisation (ISO), 1
internet protocol, 162–168, 194
IP, 162–168, 194
isarithmic scheme, 86
ISO, 1

Kleitman’s algorithm, 149

layer
application, 4
communication subnet, 2
data link, 1, 8–32
network, 2, 33–53
physical, 1
physical link control, 8
presentation, 3

session, 3
transport, 2

link connectivity, 147
Little’s theorem, 95
local area networks, 65–77

mail, 175–178
max-flow min-cut theorem, 146
message flow conservation, 39
M/G/1queue, 114
M/M/1/K queue, 109
M/M/1queue, 103, 112

networks of, 117
M/M/m/m queue, 110
M/M/m queue, 107
M/M/∞ queue, 107
mode

asynchronous balanced, 25
asynchronous response, 24
balanced, 25
normal response, 24

multiple outstanding frames, 17
multiplexing

frequency division, 56

NCP, 156
network access flow control, 86
network architecture, 1
network layer, 2, 33–53
Network News Transport Protocol, 179–181
networks of M/M/1queues, 117
Network Time Protocol, 182
news, 179–181
NFS, 205
NNTP, 179–181
node connectivity, 148
noisy channel, 12
normal response mode, 24
NTP, 182

one bit sliding window protocol, 14
Open Systems Interconnection, 1
osi, 1

PAD, 45
permanent virtual circuit, 45

210 Index

physical layer, 1
physical link control layer, 8
piggybacking, 13
pipelining, 16

multiple outstanding frames, 17
Poisson distribution, 59, 95
presentation layer, 3
primary station, 21
proportional capacity assignment, 124
protocol

internet, 194
one bit sliding window, 14
random access, 57
simplex – noisy channel, 12
simplex stop-and-wait, 11
stop-and-wait, 11
unrestricted simplex, 10

M/G/1, 114
M/M/1, 112

networks of, 117
single server, 112–119

queuing theory, 91–99
equilibrium solution, 100

random access protocols, 57
reassembly deadlock, 88
register insertion ring, 75
reject, selective, 20
reject, selective, 17
reliability, 144–154
resequence deadlock, 88
reservation Aloha, 61
reservation TDMA, 63
response mode, asynchronous, 24

normal, 24
response time, 115
ring

contention, 74
register insertion, 75
token, 70

ring networks, 70–75
Robert’s reservation scheme, 62
routing, 33–53

direct, 194
indirect, 194

routing table, 35
rsh, 204

satellite, communication, 55
SDLC, 20
secondary station, 21
security, 183–184
selective reject, 17, 20
session, 3
session layer, 3
simplex protocol – noisy channel, 12
simplex stop-and-wait protocol, 11
single server queue, 112–119
sliding window, 14
slotted Aloha, 60
SMTP, 175–178
SNA, 4–5
SNA virtual route pacing scheme, 90
SNMP, 205
SPADE, 55
square root channel capacity assignment ,

120
station

primary, 21
secondary, 21

stop-and-wait protocol, 11
structured buffer pool flow control, 83
supervisory frame, 24
switched virtual circuit, 45
System Network Architecture (IBM), 4–5

TCP, 169–171, 203
TCP/IP, 185–207
tdma, 56

reservation, 63
Telnet, 204
token, 70
token passing, 70
token ring, 70–74
Transmission Control Protocol, 203
TRANSPAC, 85
transponder, 55
transportlayer, 2

uniform capacity assignment, 123
unnumbered frame, 24

211

unrestricted simplex protocol, 10
unsequenced frame, 24
uplink, 55

virtual calls, 45
virtual circuit, 45

permanent, 45
switched, 45

virtual circuit hop level flow control, 84
virtual communication, 1

window, sliding, 14

X.25, 43
X-Window, 205

