

Five Ways to do Conditional
Filtering in Pandas

Filtering Method 1: Selection Brackets

Finding all the vehicles that have a year of 2013 or newer is a fairly standard

Pandas filtering task: select the column of the dataset to filter on, tell it what

value to filter against, and plug that condition into brackets for the entire

dataframe.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

one_condition = df[df['year'] >= 2013]

print(one_condition.head())

output:-

If we want to make our multi-condition search, we can put each individual

filters inside parentheses () separated by our Boolean search criteria (& for

and, | for or, and ~ for not).

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

mult_conditions = df[(df['year'] >= 2013) & (df['year'] <= 2015) &

(df['name'].str.contains('Honda')) &

 (df['selling_price'] >= 300000) & (df['selling_price'] <=

450000)]

print(mult_conditions.head())

Output:-

These multiple conditions technically work, but the readability of this code is

not great. There are brackets and parentheses all over the place. To clean

up the code and use fewer conditions, pandas has various methods that we

can apply for the same results, one of which we just used in the code chunk

above, called str.contains().

Filtering Method 2: Selection Brackets
with Series Functions

The reason we look at series methods as we filter is because each column of

our Pandas.DataFrame individually is a Pandas.Series element, so we can

apply Pandas.Series methods and functionality to it.

There are numerous methods we could use with the vehicles dataset, but to

filter the data with our multiple condition example, we will use:

 isin() – check to see if the series values are in a given list

 str.contains() – check to see if a string is in the series

 between() – find series value that are between two values

We will use isin() to check which vehicles meet our years of interest,

str.contains() to find which vehicles have Honda in the name, and between()

to find vehicles in our price range.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

years = [2013, 2014, 2015]

mult_condition_filters_methods = df[

 (df["year"].isin(years)) &

 (df["name"].str.contains("Honda")) &

 (df["selling_price"].between(300000, 450000))

]

print(mult_condition_filters_methods.head())

Output:-

This cleans up the code somewhat, and takes advantage of a few

Pandas.Series methods, but the code still isn’t exactly readable. To make this

look better, we can drop our code across multiple lines, one line per filtering

action. The way to do that is by putting regular parentheses just inside our

initial dataframe selection brackets, then inserting all conditions inside these

parentheses.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

years = [2013, 2014, 2015]

years = [2013,2014,2015]

mult_conditions_readable = df[(# <---- This is the open parenthesis needed for

multi-line separatation

 (df['year'].isin(years)) &

 (df['name'].str.contains('Honda')) &

 (df['selling_price'].between(300000,450000))

) #<---- This is the closed parenthesis needed for

multi-line separatation

]

print(mult_conditions_readable.head())

output:-

Filtering Method 3: Selection Brackets
with External Filters and Series Methods

A blend of the two methods above, we can define filters outside of our

selection brackets as variables and then call each variable inside the selection

brackets. This is a clean way to write each filter on its own individual line and

then call all filters in one line of code. It means less overall parentheses and

line breaks throughout the code.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

years = [2013,2014,2015]

filter_a = df['year'].isin(years)

filter_b = df['name'].str.contains('Honda')

filter_c = df['selling_price'].between(300000,450000)

mult_condition_filters = df[filter_a & filter_b & filter_c]

print(mult_condition_filters.head())

Output:-

Filtering Method 4: query()

I first heard of pandas.Series.query a year or two ago on a podcast, and I

wasn’t a fan at first. Over time, it has really grown on me. A query expression

is a great way to subset data: they can be basic and easy or complex and

powerful. The query expression to subset vehicles with years 2013 and

newer is simple. You feed your filtering parameter(s) in as a string.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

one_year_query = df.query('year >= 2013')

print(one_year_query.head())

Output:-

As you move on to multi-condition filters, you can make your query string

more complex. Instead of typing & or | between your filter parameters, you

simply type and or or, respectively. Below is the code to write a query

expression for our multi-condition filter. *Note: to call variables that are inside

the environment but outside of the DataFrame/ Series you are querying, you

need to use an @ before calling the variable. See the use of @ immediately

before calling the list “years.”

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

years = [2013, 2014, 2015]

mult_conditions_query = df.query(

 'year.isin(@years) and name.str.contains("Honda") and

selling_price.between(300000,450000)'

)

print(mult_conditions_query.head())

Output:-

This is a really neat way to subset your data! Yet, the more query parameters you add, the less

readable it becomes. To overcome this problem, using query, we can simply add \ at the place

where we want a line break and continue the query expression on the next line. If we want, we

can maintain the notation of putting one filter condition per line.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

years = [2013, 2014, 2015]

multi_conditions_query_readable = df.query('year.isin(@years) and \

 name.str.contains("Honda") and \

 selling_price.between(300000,450000)'

)

print(multi_conditions_query_readable.head())

Output:-

Filtering Method 5: loc[]

I really enjoy the power that comes with using python lambda functions. How

can we translate lambda into filtering the vehicles dataset with our

conditions? With the simple, single condition filter we have been applying, we

call loc off of our dataframe, and with lambda, we can insert our condition.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

one_year_loc = df.loc[lambda x: x["year"] >= 2013]

print(one_year_loc.head())

output:-

If we want to add multiple conditions, we can just chain another loc off the

results of the previous one. However, if left on one line, there are brackets

and periods everywhere! It becomes very difficult to read. To make this more

readable, we can wrap the entire right side of our expression in parentheses

and then can put each loc filter on its own line.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

years = [2013, 2014, 2015]

mult_conditions_loc_readable = (df

 .loc[lambda x: x["year"].isin(years)]

 .loc[lambda x: x['name'].str.contains('Honda')]

 .loc[lambda x:

x['selling_price'].between(300000,450000)]

)

print(mult_conditions_loc_readable.head())

Output:-

