Five Ways to do Conditional
Filtering in Pandas

A B C 8] E 3 G H 1
1 |name year selling_price km_driven fuel seller_type transmission owner
2 Maruti 800 AC 2007 60000 70000 Petrol Individual Manual First Owner
3 Maruti Wagon R LXI Minor 2007 135000 50000 Petrol Individual Manual First Owner
4 |Hyundai Verna 1.6 X 2012 600000 100000 Diesel Individual Manual First Owner
5 Datsun RediGO T Option 2017 250000 46000 Petrol Individual Manual First Owner
6 Honda Amaze VX i-DTEC 2014 450000 141000 Diesel Individual Manual Second Owner
7 |Maruti Alto LX BSIII 2007 140000 125000 Petrol Individual Manual First Owner
8 Hyundai Xcent 1.2 Kappa S 2016 550000 25000 Petrol Individual Manual First Owner
9 |Tata Indigo Grand Petral 2014 240000 60000 Petrol Individual Manual Second Owner
10 |Hyundai Creta 1.6 VTVT S 2015 850000 25000 Petrol Individual Manual First Owner
11 |Maruti Celerio Green VXI 2017 365000 78000 CNG Individual Manual First Owner
12 |Chevrolet Sail 1.2 Base 2015 260000 35000 Petrol Individual Manual First Owner

Filtering Method 1: Selection Brackets

Finding all the vehicles that have a year of 2013 or newer is a fairly standard
Pandas filtering task: select the column of the dataset to filter on, tell it what
value to filter against, and plug that condition into brackets for the entire

dataframe.

import pandas as pd
pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

one_condition = df[df['year'] >= 2013]

print(one_condition.head())

output:-

name year
Datsun RediGO T Option 2817
Honda Amaze VX i-DTEC 2014

Hyundai Xcent 1.2 Kappa S 2016
Tata Indigo Grand Petrol 2014

selling price
25600008
450000
S55eoee
2460008
850008

km_driven
46000
141060
25000
68000
25000

fuel seller_type transmission owner
Petrol Individual Manual First Owner
Diesel Individual Manual Second Owner
Petrol Individual Manual First Owner
Petrol Individual Manual Second Owner
Petrol Individual Manual First Owner

Hyundai Creta 1.6 VTVT S 2015

If we want to make our multi-condition search, we can put each individual
filters inside parentheses () separated by our Boolean search criteria (& for
and, | for or, and ~ for not).

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

mult conditions = df[(df['year'] >= 2013) & (df['year'] <= 2015) &
(df["name'].str.contains('Honda')) &
(df['selling price'] >= 300000) & (df['selling price'] <=

450000) |

print(mult_conditions.head

Output:-

name year
Honda Amaze VX i-DTEC 2014
Honda Amaze VX i-DTEC 2014

Honda Brio S MT 2015
235 Honda Mobilio V i DTEC 2014
245 Honda Mobilio V i DTEC 2014

)

selling price
450000
456600
371000
300000
306000

km_driven
141060
141666
20000
1500060
158660

fuel seller_type transmission owner
Diesel Individual Manual Second Owner
Diesel Individual Manual Second Owner
Petrol Dealer Manual First Owner
Diesel Individual Manual First Owner
Diesel Individual Manual First Owner

These multiple conditions technically work, but the readability of this code is
not great. There are brackets and parentheses all over the place. To clean
up the code and use fewer conditions, pandas has various methods that we
can apply for the same results, one of which we just used in the code chunk
above, called str.contains().

Filtering Method 2: Selection Brackets
with Series Functions

The reason we look at series methods as we filter is because each column of
our Pandas.DataFrame individually is a Pandas.Series element, so we can

apply Pandas.Series methods and functionality to it.

There are numerous methods we could use with the vehicles dataset, but to

filter the data with our multiple condition example, we will use:

« isin() — check to see if the series values are in a given list

« str.contains() — check to see if a string is in the series

« between() — find series value that are between two values

We will use isin() to check which vehicles meet our years of interest,
str.contains() to find which vehicles have Honda in the name, and between()

to find vehicles in our price range.

import pandas as pd
df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')
years = [2013, 2014, 2015]

mult condition filters methods = df|

(df["year"].isin(years)) &
(df["name"].str.contains("Honda")) &
(df["selling price"].between(300000, 450000))

print(mult condition filters methods.head())

selling_price km_driven fuel seller_type transmission owner
Honda Amaze VX i- 450000 141080 Diesel Individual Manual Second Owner

Honda Amaze VX i- 450000 141600 Diesel Individual Manual Second Owner
Honda Brio 371668 20000 Petrol Dealer Manual First Owner
235 Honda Mobilio V i 300000 150000 Diesel Individual Manual First Owner

245 Honda Mobilio V i 300008 156800 Diesel Individual Manual First Owner
p -\ 5 hive

This cleans up the code somewhat, and takes advantage of a few
Pandas.Series methods, but the code still isn’t exactly readable. To make this
look better, we can drop our code across multiple lines, one line per filtering
action. The way to do that is by putting regular parentheses just inside our
initial dataframe selection brackets, then inserting all conditions inside these
parentheses.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

years [2013, 2014, 2015]

years [2013,2014,2015]

mult conditions readable = df[(
(df['year'].isin(years)) &

(df['name’].str.contains('Honda"')) &
(df['selling price'].between(300000,450000))

)

print(mult conditions readable.head())

output:-

name ing_price er_type transmission owner
4 Honda Amaze VX i-DTEC 450000 141000 Diesel Individual Manual Second Owner
17 Honda Amaze VX i-DTEC 450008 141066 Diesel Individual Manual Second Owner

87 Honda Brio S MT 371608 2eee@ Petrol Dealer Manual First Owner
235 Honda Mobilio V i DTEC 300000 150800 Diesel Individual Manual First Owner
245 Honda Mobilio V i DTEC 300000 150000 Diesel Individual Manual First Owner

Filtering Method 3: Selection Brackets
with External Filters and Series Methods

A blend of the two methods above, we can define filters outside of our
selection brackets as variables and then call each variable inside the selection
brackets. This is a clean way to write each filter on its own individual line and
then call all filters in one line of code. It means less overall parentheses and

line breaks throughout the code.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')
years = [2013,2014,2015]

filter_a = df['year'].isin(years)

filter b = df['name'].str.contains('Honda")
filter_c = df['selling price'].between(300000,450000)

mult_condition_filters = df[filter_a & filter b & filter_ c]

print(mult condition_filters.head())

Output:-

name year selling price km_driven fuel seller_type transmission owner
Honda Amaze VX i-DTEC 2014 450000 141000 Diesel Individual Manual Second Owner
Honda Amaze VX i-DTEC 2014 450000 141000 Diesel Individual Manual Second Owner

Honda Brio S MT 2015 3710060 20000 Petrol Dealer LELUER First Owner
235 Honda Mobilio V i DTEC 2014 300000 150600 Diesel Individual Manual First Owner
245 Honda Mobilio V i DTEC 2014 300000 150600 Diesel Individual Manual First Owner

Filtering Method 4: query()

| first heard of pandas.Series.query a year or two ago on a podcast, and |
wasn’t a fan at first. Over time, it has really grown on me. A query expression
IS a great way to subset data: they can be basic and easy or complex and
powerful. The query expression to subset vehicles with years 2013 and

newer is simple. You feed your filtering parameter(s) in as a string.

import pandas as pd
df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

one_year_query = df.query('year >= 2013")

print(one_year query.head())

name year selling price km_driven fuel seller_type transmission owner

Datsun RediGO T Option 2017 250000 46000 Petrol Individual Manual First Owner
Honda Amaze VX i-DTEC 2014 4580880 141000 Diesel Individual Manual Second Owner
Hyundai Xcent 1.2 Kappa S 2016 5500080 25000 Petrol Individual Manual First Owner
Tata Indigo Grand Petrol 2014 240000 60000 Petrol Individual Manual Second Owner
Hyundai Creta 1.6 VIVT S 2015 850000 25000 Petrol Individual Manual First Owner

As you move on to multi-condition filters, you can make your query string
more complex. Instead of typing & or | between your filter parameters, you
simply type and or or, respectively. Below is the code to write a query
expression for our multi-condition filter. *Note: to call variables that are inside

the environment but outside of the DataFrame/ Series you are querying, you
need to use an @ before calling the variable. See the use of @ immediately
before calling the list “years.”

import pandas as pd

pd.read csv('CAR DETAILS FROM CAR DEKHO.csv')

years = [2013, 2014, 2015]

mult_conditions_query = df.query(
'year.isin(@years) and name.str.contains("Honda") and
selling price.between(300000,450000) '

)

print(mult conditions query.head())

name year selling_price km_driven fuel seller_type transmission owner

Honda Amaze VX i-DTEC 2014 450000 141000 Diesel Individual Manual Second Owner

7 Honda Amaze VX i-DTEC 2014 450000 141000 Diesel Individual Manual Second Owner
B7 Honda Brio S MT 2615 3710606 20000 Petrol Dealer Manual First Owner
P35 Honda Mobilio V i DTEC 2014 300000 150000 Diesel Individual Manual First Owner
P45 Honda Mobilio V i DTEC 2614 300000 156000 Diesel Individual Manual First Owner

This is a really neat way to subset your data! Yet, the more query parameters you add, the less
readable it becomes. To overcome this problem, using query, we can simply add \ at the place
where we want a line break and continue the query expression on the next line. If we want, we
can maintain the notation of putting one filter condition per line.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')
years = [2013, 2014, 2015]

multi_ conditions_query_ readable = df.query('year.isin(@years) and
name.str.contains("Honda") and
selling price.between(300000,450000)"

print(multi_conditions_query_readable.head())

name selling price km_driven fuel seller_type transmission owner

Honda Amaze VX i-DTEC 456000 141080 Diesel Individual Manual Second Owner

Honda Amaze VX i-DTEC 450000 141600 Diesel Individual Manual Second Owner

Honda Brio S MT 371eee 20000 Petrol Dealer Manual First Owner

235 Honda Mobilio V i DTEC 300000 1580080 Diesel Individual Manual First Owner
245 Honda Mobilio V i DTEC 300000 1500080 Diesel Individual Manual First Owner

Filtering Method 5: loc|]

| really enjoy the power that comes with using python lambda functions. How
can we translate lambda into filtering the vehicles dataset with our
conditions? With the simple, single condition filter we have been applying, we

call loc off of our dataframe, and with lambda, we can insert our condition.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')
one_year_loc = df.loc[x: x["year"] >= 2013]

print(one_year_ loc.head())

output:-

name selling price km_driven fuel seller_type transmission owner

Datsun RediGO T Option 256000 46000 Petrol Individual Manual First Owner
Honda Amaze VX i-DTEC 450000 141600 Diesel Individual Manual Second Owner
Hyundai Xcent 1.2 Kappa S 556000 25000 Petrol Individual Manual First Owner
Tata Indigo Grand Petrol 240000 66000 Petrol Individual Manual Second Owner
Hyundai Creta 1.6 VTVT S 850000 25000 Petrol Individual Manual First Owner

If we want to add multiple conditions, we can just chain another loc off the
results of the previous one. However, if left on one line, there are brackets
and periods everywhere! It becomes very difficult to read. To make this more
readable, we can wrap the entire right side of our expression in parentheses
and then can put each loc filter on its own line.

import pandas as pd

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')
years = [2013, 2014, 2015]

mult conditions loc_readable = (df
.loc[x: X["year"].isin(years)]
.loc[x: X["name'].str.contains('Honda")]
leld | X:

x["selling price'].between(300000,450000)]

)

print(mult conditions_loc_readable.head())

Output:-

name
4 Honda Amaze VX i-DTEC
17 Honda Amaze VX i-DTEC

87 Honda Brio S MT
235 Honda Mobilio V i DTEC
245 Honda Mobilio V i DTEC

year
2014
2014
2015
2014
2014

selling_price
456000
450000
371060
300000
300000

km_driven
141060
141000
20000
150000
150088

fuel
Diesel
Diesel
Petrol
Diesel
Diesel

seller_type transmission

Individual
Individual

Dealer
Individual
Individual

ELTERN
Manual
Manual
Manual
Manual

Second
Second
First
First
First

owner
Owner
Owner
Owner
Owner
Owner

